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Abstract

Recent improvements in the speed, cost and accuracy of next generation sequencing are revolutionizing the discovery of

single nucleotide polymorphisms (SNPs). SNPs are increasingly being used as an addition to the molecular ecology toolkit

in nonmodel organisms, but their efficient use remains challenging. Here, we discuss common issues when employing

SNP markers, including the high numbers of markers typically employed, the effects of ascertainment bias and the inclu-

sion of nonneutral loci in a marker panel. We provide a critique of considerations specifically associated with the applica-

tion and population genetic analysis of SNPs in nonmodel taxa, focusing specifically on some of the most commonly

applied methods.
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Introduction

Recent improvements in the speed, cost and accuracy of

next generation sequencing (NGS) and advances in the

accompanying bioinformatic tools are revolutionizing the

opportunities for generating genetic resources in non-

model organisms. In turn, this is driving a shift from

anonymous markers such as microsatellites to direct

analyses of sequence variation including single nucleo-

tide polymorphisms (SNPs). This shift has evolved from

the initial uptake of such markers in humans and other

commercially important species, to their application in a

wide range of nonmodel species.

SNPs are attractive markers for many reasons (for

reviews see Brumfield et al. 2003; Morin et al. 2004),

including the availability of high numbers of annotated

markers, low-scoring error rates, relative ease of calibra-

tion among laboratories compared to length-based mark-

ers and the associated ability to assemble combined

temporal and spatial data sets from multiple laboratories.

Additionally, the potential for high-throughput geno-

typing improved genotyping results for poor quality

samples [such as historical, noninvasive or degraded

samples (Morin & McCarthy 2007; Smith et al. 2011)], a

simple mutation model, and the ability to examine both

neutral variation and regions under selection offers

unparalleled scope for expansive screening of genomes

and large sample sizes from natural populations.

Although several early studies questioned the advantage

of SNPs over neutral markers such as microsatellites (e.g.

Rosenberg et al. 2003), more recent studies have shown

that SNPs are also showing promise as highly informa-

tive markers, as many studies with access to very large

numbers of SNPs (mainly human) have shown that a

small fraction of the SNPs have a very high information

content for population structure analysis (e.g. Lao et al.

2006; Paschou et al. 2007), outperforming microsatellites

(Liu et al. 2005). Despite microsatellites typically display-

ing far greater allelic diversity per locus, individual SNPs

can segregate strongly among populations (Freamo et al.

2011; Karlsson et al. 2011).Correspondence: S.J. Helyar, Fax: 01248 370731;

E-mail: s.helyar@bangor.ac.uk

Molecular Ecology Resources (2011) 11 (Suppl. 1), 123–136

� 2011 Blackwell Publishing Ltd

Molecular Ecology Resources (2011) 11 (Suppl. 1), 123–136 doi: 10.1111/j.1755-0998.2010.02943.x



Although SNPs are increasingly being used as an

addition to the molecular ecology toolkit, their use as a

standard tool in nonmodel organisms remains challeng-

ing, with debate over how to utilize them most effi-

ciently. A recent study by Garvin et al. (2010) reviewed

the technical aspects of SNP discovery and genotyping,

but there are also challenges associated with the analysis

of SNP data. These concerns vary depending on the

questions being addressed: some specific issues have

been covered in other papers (e.g. parentage assignment,

Anderson & Garza 2006; Hauser et al. 2011; power

assessment, Morin et al. 2009; development of linkage

maps, Ball et al. 2010 and relatedness, Krawczak 1999).

However, an overview of the considerations specifically

associated with the application of SNPs and their

appropriate analysis in population genetic studies of

nonmodel organisms appears timely. We focus specifi-

cally on some of the most commonly applied methods

and first discuss the challenges common to all analyses;

problems arising from the dramatic increase in the num-

ber of markers that are available, the effects of ascertain-

ment bias and the inclusion of nonneutral loci in a

marker panel.

Number of loci

Using SNP data to analyse population structure is theo-

retically straightforward, but until recently a major obsta-

cle was the identification of software that could handle

large data sets. However, for many of the standard analy-

ses, such as basic descriptive statistics, authors have

modified their software to accept several thousand loci

(see Table 1). Nevertheless, many packages are still lim-

ited by either the number of loci or the sum of individu-

als · loci that can be analysed. Additional problems may

also arise when using some analytical methods that are

computationally intensive, such as Bayesian MCMC

methods. While such software may accept very large data

sets, the time taken for a standard desktop computer to

conduct the analysis may be prohibitive.

Ascertainment bias

Ascertainment bias is the systematic deviation from the

expected allele frequency distribution that occurs

because of the sampling processes used to find (ascertain)

marker loci. In SNPs, this may occur as the markers are

generally identified in a small panel of individuals from

part of the species’ range (ascertainment width). Like-

wise, only SNPs occurring more than a predefined num-

ber (k) of times in the ascertainment sample are included

(ascertainment depth). When these SNPs are then geno-

typed on a larger sample of individuals, an ‘ascertain-

ment bias’ is introduced (Nielsen 2000; Albrechtsen et al.

2010). Because of the small size of the ascertainment

panel (compared to the population), the probability that

a SNP is identified in this panel is a function of its minor

allele frequency (MAF), i.e. SNPs with a very low MAF

are less likely to be discovered than those with a higher

MAF.

Ascertainment bias may compromise analyses based

on diversity measures, for example, any statistical mea-

sure that relies on allele frequency may be affected.

Because there is a bias towards not sampling rare SNPs,

the average diversity of polymorphic sites is overesti-

mated, while the average diversity across all sites is

underestimated. This may lead to a bias in estimates of

nucleotide diversity, population size, demographic

changes, linkage disequilibrium, selective sweeps and

inferences of population structure (Nielsen 2000; Schlöt-

terer & Harr 2002; Akey et al. 2003; Nielsen & Signorov-

itch 2003; Marth et al. 2004; Rosenblum & Novembre

2007; Storz & Kelly 2008; Guillot & Foll 2009; Chen et al.

2010; Moragues et al. 2010). The size and direction of the

bias depend on the sampling strategy used for the ascer-

tainment panel; for example, studies on both humans

and Drosophila suggest that genetic diversity will be

underestimated if individuals from the ancestral popula-

tion range are not included in the ascertainment panel

(Schlötterer & Harr 2002; Romero et al. 2009). However, a

panel based on purely ancestral (African) Drosophila did

not underestimate the diversity in the European popula-

tions. Moreover, a study by Rosenblum & Novembre

(2007) that examined a spatially structured population of

lizards found that choosing individuals at random from

across the geographical range minimized the resulting

bias. However, some studies with small ascertainment

panels are not addressing these issues (e.g. Kerstens et al.

2009; Li et al. 2010).

Three main approaches have been used to address

and correct for ascertainment bias in studies of natural

populations: (i) the application of more robust methods,

such as those based on haplotype structure (e.g. Sabeti

et al. 2007, however, this requires a full genome as refer-

ence), (ii) the simulation of data based on the ascertain-

ment process to derive appropriate critical values and

confidence intervals taking the ascertainment into

account (e.g. Carlson et al. 2004; Voight et al. 2006) and

(iii) the direct correction of the statistical estimators and

statistics using specific models (e.g. Nielsen 2000; Wake-

ley et al. 2001; Nielsen & Signorovitch 2003; Polanski &

Kimmel 2003; Marth et al. 2004; Nielsen et al. 2004;. Also

see Table 1). However, a major restriction is that the cor-

rection of the allele frequency spectrum restricts down-

stream analyses to corrected summary statistic data

(allele frequencies) with the loss of the observed individ-

ual genotypes that are needed for many applications

(e.g. determining population structure, individual
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Table 1 Computer software used for the most common aspects of population genetics

Programme Functions

Maximum

number of loci

Maximum

number of

individuals Reference and web address

PEAS v1 Multiple data

manipulation and

summary statistics

None None Xu et al. (2010).

http://www.picb.ac.cn/~xushua/index.files/

Download_PEAS.htm

Data manipulation includes file conversion for

other population genetics programmes

SNPator Multiple data

manipulation and

summary statistics

None None Morcillo-Suarez et al. (2008). http://

www.snpator.org/public/downloads/

aRamirez/tajimasDCorrector/

POPGENE Multiple summary

statistics

1000 1400 pops ⁄ 150

groups

http://www.ualberta.ca/~fyeh/

Arlequin 3.5* Multiple summary

statistics

None None Excoffier & Lischer (2010).

http://cmpg.unibe.ch/software/arlequin35/

Genepop v4 Multiple summary

statistics

None None Rousset (2008).

http://kimura.univ-montp2.fr/~rousset/

Genepop.htm

popgen† Multiple None None http://mathgen.stats.ox.ac.uk/software.html

FSTAT2.9.4 Multiple summary

statistics

10 000 200 Goudet (1995).

http://www2.unil.ch/popgen/softwares/

fstat2.9.4_10kloc_9all_200pops.zip

HIERFSTAT† F-statistics None None Goudet (2005).

http://www.unil.ch/popgen/softwares/

hierfstat.htm.

GenAlEx6.4 Multiple summary

statistics

127

or 8192‡

65 500 Peakall and Smouse (2006).

http://www.anu.edu.au/BoZo/GenAlEx/

index.php

Genetix4.05 Multiple None None http://www.genetix.univ-montp2.fr/genetix/

genetix.htm

AscB† Correction for

Ascertainment

Bias

None None Guillot & Foll (2009)

http://www2.imm.dtu.dk/~gigu/AscB/

trueFS Correction for

Ascertainment

Bias

None None Nielsen et al. (2004).

http://people.binf.ku.dk/rasmus/webpage/

truefs.html

Plink1.07§ Multiple None None Purcell et al. (2007).

http://pngu.mgh.harvard.edu/purcell/plink/

DetSel Outlier locus

detection

None None Vitalis et al. (2003).

http://www.genetix.univ-montp2.fr/detsel.html

FDIST2 Outlier locus

detection

None None Detection of loci under selection from hierarchical

F-statistics, implemented in Arlequin (see above)

BAYESFST¶ Outlier locus

detection

None None Beaumont & Balding (2004).

http://www.reading.ac.uk/Statistics/genetics/

software.html

LOSITAN Outlier locus

detection

None None Antao et al. (2008)

http://popgen.eu/soft/lositan/

BayeScan Outlier locus

detection

None None Foll & Gaggiotti (2008).

http://www-leca.ujf-grenoble.fr/logiciels.htm

matSAM v2 Outlier locus

detection

None None Joost et al. (2008).

http://www.econogene.eu/software/sam/

Structure 2.3.3 (Spatial) Genetic

Structure

The maximum data set size around 100

million genotypes (loci · ind.)**††

Pritchard et al. (2000).

http://pritch.bsd.uchicago.edu/structure.html

PCAGEN Genetic Structure 50 5000 ind.

500 pops

http://www2.unil.ch/popgen/softwares/

pcagen.htm
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assignment, multilocus heterozygosity estimates, mixed

stock analysis).

The generation of more and longer reads will eventu-

ally lead to the next step in SNP genotyping, where indi-

viduals are directly (single track) sequenced, followed by

a high-confidence assembly and phasing of sequence

reads [using for example; Phase (Stephens et al. 2001),

FastPhase (Scheet & Stephens 2006), Shape-IT (Delaneau

et al. 2008)]. Alternatively, the genotyping-by-sequencing

approach, used for instance in RAD sequencing, com-

bines the power of high throughput sequencing and

large-scale polymorphism genotyping in one step (for a

limited number of individuals) significantly reducing the

problem of ascertainment bias (Baird et al. 2008; Hohen-

lohe et al. 2010).

However, as NGS data is likely to remain the basis of

SNP development for the foreseeable future (see conclu-

sions), and considering the inherent properties of newly

developed SNPs, ascertainment bias is likely to remain a

problem in the near future and may lead to incorrect pop-

ulation genetic inferences. Consequently, attempts must

be made both to minimize the effects by careful design of

the ascertainment panel. This can be achieved by the geo-

graphical sampling of multiple individuals, the tagging

of individuals used in the sequencing for later geno-

type ⁄ haplotype reconstructions and a sufficient sequenc-

ing depth for in silico frequency spectra to be assessed

before final SNP genotyping (for instance, by combining

long (454 Roche) and short (ABI, Illumina) read sequenc-

ing runs for reference assembly and SNP discovery,

Table 1 Continued

Programme Functions

Maximum

number of loci

Maximum

number of

individuals Reference and web address

adegenet† Genetic Structure None None Jombart (2008).

http://adegenet.r-forge.r-project.org/

Geneland† Spatial Genetic

Structure

None** None** Guillot & Santos (2009).

http://www2.imm.dtu.dk/~gigu/Geneland/

TESS 2.3 Spatial Genetic

Structure

None** None** Chen et al. (2007).

http://membres-timc.imag.fr/Olivier.Francois/

tess.html

BAPS Genetic Structure None** None** Corander et al. (2008).

http://web.abo.fi/fak/mnf/mate/jc/

smack_software_eng.html

GESTE Genetic Structure None** None** Foll & Gaggiotti (2006).

http://www-leca.ujf-grenoble.fr/logiciels.htm

GeneClass2 Assignment None** None** Piry et al. (2004).

http://www.ensam.inra.fr/URLB/GeneClass2/

Setup.htm

WHICHLOCI Locus selection None** None Banks et al. (2003).

http://www.bml.ucdavis.edu/whichloci.htm

GAFS 1.1 Locus selection None** None Topchy et al. (2004).

http://www.fw.msu.edu/~scribne3/

molecularecology/programs.htm

BELS Locus selection None** None Bromaghin (2008).

http://alaska.fws.gov/fisheries/biometrics/

programs.htm

*Although Arlequin is not an R package, the latest version interfaces with R to produce the graphs.

†An R package. Additional packages may be found at http://cran.r-project.org/web/views/Genetics.html

‡The number of loci is dependant of the version of excel that you use, for pre-2007 as the number of columns in Excel was 256, but this

has increased in Excel 2007 to 16 384 columns. For versions of GenAlEx 6.3 onwards, users are given the choice of installing either

GenAlEx6.3.xla or GenAlEx 6.3 for 2007.xla. Both versions will run in Excel 2007, but to take advantage of full compatibility with

Excel 2007 you should instal the Excel 2007 specific option.

§Extensible with via R function plug-ins.

¶R scripts also available on the website.

**While the are no physical constraints on the numbers of loci or individuals that can be submitted to this programme, the number of

permutations that may needed for the computation of some options may make the calculation prohibitive on a standard desktop

computer.

††The authors suggest reducing the data set for the exploratory analysis. Additionally, for large data sets, the default settings for

BURNIN and NUMREPS can be reduced, without affecting the accuracy.
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respectively). Accounting for the bias in the resulting

data with the use of up to date statistical and simula-

tion ⁄ modelling tools will allow the robustness of results

to be assessed, despite assumption violations (Balzer

et al. 2010). However, as explored in more detail in the

following sections, ascertainment bias need not always

pose a problem.

Nonneutral loci

The availability of thousands of genetic markers rein-

forces the need for careful evaluation of the markers used

for a specific population genetic study, as markers in

genic and nongenic regions may generally differ with

respect to basic properties such as levels of variation and

population differentiation, which will affect the outcome

of downstream analyses. In genome-wide association

(GWA) studies in humans, it has been found that SNPs in

genic regions are more likely to display signatures of

both positive and negative selection than those in non-

genic regions (Barreiro et al. 2008; Coop et al. 2009) and

that genetic variation is generally lower in gene-rich

regions (Cai et al. 2009). While the degree that these find-

ings apply to nonmodel organisms remains unknown,

they do indicate that markers situated in or close to genes

may not provide a representative picture of genome-

wide effects of neutral evolutionary forces. Additionally,

genomes contain gene regulatory networks (GRNs) that

are highly conserved regions within the noncoding DNA

(Davidson et al. 2002; Woolfe et al. 2005); this implies

both that these regions will not be identified by transcrip-

tome sequencing and also that there are sections of non-

coding DNA that are under selection.

SNPs represent the most widespread type of sequence

variation in genomes, and the combination of the contin-

uing decrease in costs for NGS and new efficient method-

ologies, such as RAD-tag sequencing (e.g. Miller et al.

2007; Baird et al. 2008) and RRS (reduced representation

sequencing—e.g. Castano-Sanchez et al. 2009), is showing

great promise for fast, efficient SNP detection in nonmod-

el species. While there are methods that can preferen-

tially target noncoding regions (e.g. EPIC markers,

Palumbi & Baker 1994), there are also increasing

expressed sequence tag (EST) resources available for

many taxa, increasing the likelihood that many SNP loci

that are being developed will be located either within or

very close to coding regions. However, it is now thought

that animal genomes are pervasively transcribed

(Ponting et al. 2009) with a large number of noncoding

transcripts being polyadenylated, which will therefore be

included in EST collections. Consequently, the

representation of the genome might be larger and have

fewer constraints on sequence variability than previously

thought.

For some applications, this potential bias in genome

coverage has been highlighted as an advantage, if for

example, the aim is to identify candidate genes under

selection (Bonin 2008; Brieuc & Naish 2011; Hemmer-

Hansen et al. 2011 and also see the discussion in the sec-

tion ‘Detection of Outliers’ below). However, issues

could arise if the purpose of a study is to make general

inferences about neutral evolutionary processes, such as

genetic drift and gene flow. In such cases, markers under

selection should be removed prior to analyses (Beaumont

& Nichols 1996), as they may bias results significantly

(see also discussion in Laval et al. 2010 and below). On

the other hand, markers under selection could be

exploited for specific purposes, such as investigating

population structure on ecological rather than evolution-

ary timescales (Waples & Gaggiotti 2006), and for

increasing the power for assigning individuals to popula-

tions of origin (Nielsen et al. 2009b).

With these caveats in mind, we now review the appli-

cation of the most common analytical methods in popula-

tion genetics to SNP data, paying special attention to the

significant issues described, particularly how ascertain-

ment bias and nonneutral loci affect analyses and how

such effects can be addressed. Finally, we highlight sali-

ent priorities for further research in the integration of

SNPs into molecular ecology.

Population genetic data analyses

Measures of genetic differentiation and population
structure

With the ever increasing opportunities for SNP mining in

nonmodel species, it is becoming increasingly evident

that the apparent shortcomings of individual SNPs to

detect population structure compared to microsatellites

(Rosenberg et al. 2003) can be overcome by the relative

ease with which large numbers of SNP markers can be

developed and screened. The statistical power to detect

population structure is related to the total number of

alleles examined, and the discriminatory power of �100

(neutral) SNPs is very roughly equivalent to 10–20 micro-

satellites (Kalinowski 2002). Moreover, the most informa-

tive SNP markers (i.e. those that show the greatest allele

frequency variation among populations) in a panel may

rival (or even exceed) the average information content of

microsatellite markers (e.g. Liu et al. 2005; Smith et al.

2007). Using SNP markers to investigate population

structure is theoretically straightforward, and most stan-

dard population genetic software packages allow for

inclusion of large numbers of loci. However, there are

also practical considerations, as some (especially Bayes-

ian) methods are computationally intensive and may

have problems handling very large data sets.
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Wright’s F-statistics are arguably the most com-

monly used descriptive statistics in population and

evolutionary genetics (Wright 1931). As their original

development, many related statistics have been

described either as improvements or for specific appli-

cations, for example, for microsatellite data (GST, h,

and RST), sequence data (FST) and for quantitative

traits (QST) (see Holsinger & Weir 2009 for a review).

One issue that has caused much debate is how to

compare diversity estimates among markers, with

much focus on the effect of differing mutation rates

and levels of heterozygosity between highly polymor-

phic markers, such as microsatellites, and less variable

markers, such as allozymes and SNPs (Waples &

Gaggiotti 2006; Allendorf & Luikart 2007). In 2005,

Hedrick proposed the new statistic G’ST to provide a

measure of differentiation that allows comparison

among loci with different levels of genetic variation,

such as among microsatellites, or between different

marker types, such as allozymes ⁄ SNPs and microsatel-

lites; measures such as this and the more recent DEST

(Jost 2008) are increasingly being used (e.g. De Carv-

alho et al. 2010; White et al. 2010). However, G’ST has

also been criticized as uninformative when migration

is not expected to be negligible (Ryman & Leimar

2008). Mutation rates are in general considerably lower

for SNPs than for microsatellites (Foll & Gaggiotti

2008; Excoffier et al. 2009), and more importantly while

the expected locus-specific heterozygosity may reach

more than 0.95 for a microsatellite marker, the maxi-

mum expected heterozygosity that can be reached by

a bi-allelic SNP is 0.5. Such constraints mean that sin-

gle locus FST estimates derived from SNP markers are

likely to be more comparable than those derived from

microsatellite loci. Many of the most frequently used

programmes for calculating FST and related statistics

have recently extended their capacity for numbers of

loci and samples (details shown in Table 1).

Within human genetics, large-scale GWA studies are

increasingly focusing on the population genetics of the

samples, as unidentified structure may lead to spurious

associations between traits and markers ⁄ genes. While

such factors have enhanced the development of some

SNP-specific software, such as Plink (Purcell et al. 2007),

it has yet to be seen how applicable these are to more tra-

ditional population genetic approaches in nonmodel

organisms.

In nonmodel species, global and pairwise FST values

are typically estimated over all loci; as all markers are

assumed to be effectively neutral, there should not be

any major inconsistencies between loci. However, when

loci are potentially under different selective pressures the

estimates may be different for each locus, requiring per

locus estimates. Xu et al. (2009) proposed a new measure

of population structure specifically for SNPs. It is based

on the c parameter (Nicholson et al. 2002), which is popu-

lation-specific and measures the differentiation of the

population from the common ancestral population. In

contrast, the new measure C is an index of the overall lev-

els of population structure across populations. Extensive

simulations in Xu et al. (2009) show that C takes into

account ascertainment bias and correlates well with

Wright’s FST. The correlation increases with increasing

information (more SNPs and ⁄ or more subpopulations in

the samples).

Clustering algorithms such as Bayesian MCMC clus-

tering approaches are frequently utilized in genetic

analyses. These methods define populations by mini-

mizing departures from Hardy–Weinberg and maxi-

mizing linkage equilibrium. Clustering analyses can be

performed independently of spatial information or be

linked analytically to spatial and ⁄ or environmental

parameters; the latter commonly termed ‘landscape

genetics’ (Guillot et al. 2009). Genetic clustering and

analyses of spatial structure can be based on neutral

marker variation, on markers under selection or on a

combination, with the last of these commonly being

of particular interest in many EST-derived SNP

approaches. User-friendly software for conducting such

analyses includes Structure (Pritchard et al. 2000), BAPS

(Corander et al. 2008), GESTE (Foll & Gaggiotti 2008)

and Geneland (Guillot et al. 2005), the current versions

of which all allow for the inclusion of larger numbers

of loci (see Table 1). However, the assumptions of no

linkage disequilibrium between markers common to

many of these applications are likely to be violated

with denser SNP coverage ⁄ representation across chro-

mosomal regions, although some applications do allow

the inclusion of linkage information (Falush et al. 2003).

Including a relatively low number of markers in link-

age disequilibrium is not likely to bias estimates of

population differentiation, but may lead to overesti-

mates of clusters (Kaeuffer et al. 2007). However, the

effects of including markers with different levels of

linkage disequilibrium on estimates of cluster numbers

and divergence are not well described. As an alterna-

tive to Bayesian clustering, principal component analy-

sis (PCA) and related approaches have been applied in

several SNP studies of human population structure

(Patterson et al. 2006). An advantage of PCA-based

approaches, compared to Bayesian methods, is that

PCA can be performed quickly on desktop computers.

PCA approaches also facilitate the identification of sub-

sets of markers that effectively describe differences

among populations (Paschou et al. 2007), and it has

even been argued that PCA outperforms Bayesian

methods for inferring population structure when many

loci are available and the structure is subtle (Reeves &
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Richards 2009). However, PCA methods are sensitive to

missing data and sampling effects, especially for spe-

cies and populations with continuous distributions (No-

vembre & Stephens 2008), which can limit inference

about underlying historical and demographic processes

[although ways of circumventing these problems have

been proposed for SNP data (Paschou et al. 2007)].

SNP-based estimates of population structure are

potentially affected by ascertainment bias if the SNP

panel used was developed for populations (or species)

other than those analysed (Nielsen 2000). Nonetheless,

few statistical assessments of the effect of ascertainment

bias on fundamental measures such as FST estimates

have been reported (although see Schlötterer & Harr

2002; Albrechtsen et al. 2010; and Moragues et al. 2010).

Including information for loci either under directional

or balancing selection themselves or loci tightly linked

to regions under selection leads to violation of assump-

tions for most neutral population genetic models and

may cause erroneous inference about population demo-

graphic parameters, such as rates of genetic drift and

migration between individual demes. Several reports of

population structure based on presumably neutral mar-

ker information are likely to (unknowingly) have incor-

porated nonneutral markers (Nielsen et al. 2006). In

weakly structured species, the effect of just a few loci on

overall patterns could be significant, but provided

selected loci make up only a small proportion of the

total marker number, biological inference is not gener-

ally expected to be severely biased (Luikart et al. 2003).

Nonetheless, with SNP markers often developed from

transcriptomic sequencing, the dramatic increase in gen-

ome coverage implies that some proportion of the mark-

ers are likely to be linked to genes ⁄ regions under

selection, making it of paramount importance to test for

marker ‘neutrality’ prior to exploring population struc-

ture (for example, by using outlier tests as outlined in

the section below). Studies that combine information

from neutral and nonneutral markers in analyses of

population structure and estimation of demographic

parameters are still scarce for nonmodel organisms (for

examples see Gaggiotti et al. 2009; Nielsen et al. 2009a),

and there is a need for development of analytical tools

that allow integration across marker classes (Guillot

et al. 2009).

Detection of outliers

The search for signatures of selection in molecular data

has a long tradition in evolutionary biology. Most meth-

ods rely on the concept of genetic hitch-hiking (Maynard

Smith & Haigh 1974), where a marker is linked to a site

under selection, and although not the target of selection,

the ‘hitch-hiking’ marker fails to display patterns of

neutrality. For molecular markers, the methods to detect

outlier loci can be divided into two broad categories, the

first based on linkage disequilibrium between markers,

and the second based on differences in levels of genetic

variation and levels of genetic divergence between sam-

ples (see also Vasemägi & Primmer 2005).

Genome scan approaches (see Luikart et al. 2003 and

Storz 2005 for reviews) have now been applied to an

increasing number of nonmodel organisms (e.g. Ander-

son et al. 2005; Bonin et al. 2006; Hayes et al. 2007; Eveno

et al. 2008; Moen et al. 2008; Namroud et al. 2008; Nielsen

et al. 2009a), and this has generated insight into the pros

and cons to the various approaches for detecting markers

under selection in the wild.

Many nonmodel species still have little or no genomic

resources, and the location of SNPs within the genome is

therefore often unknown, rendering methods relying on

detailed analyses of linkage disequilibrium unfeasible.

Methods based on comparisons of genetic variation in

random sets of markers have been developed both for

microsatellites (Schlötterer 2002; Kauer et al. 2003; Marshall

& Weiss 2006) and SNP-based haplotypes (Voight et al.

2006; Sabeti et al. 2007); however, these do not seem to be

relevant for a relatively limited number of SNPs without

genomic information. In contrast, many methods based on

comparisons of levels of genetic divergence between

samples can be applied to markers where information

about genomic location is missing. Hence, these methods

appear better suited for studies in nonmodel species.

Most methods based on comparisons of divergence

among samples are based on the original Lewontin–

Krakauer test, which compares single locus estimates of

FST to an expected neutral distribution of FST (Lewontin

& Krakauer 1973). The original Lewontin–Krakauer test

is now rarely used, mainly because of concerns over its

performance when allele frequencies are correlated

between samples leading to an increased number of false

positives (Robertson 1975; Beaumont 2005). However,

several closely related methods have been proposed to

overcome the shortcomings of the original approach.

With a very large number of markers, it may be possible

simply to estimate the expected distribution of FST from

the markers themselves (e.g. Akey et al. 2002), but for

most nonmodel organisms, the available number of

markers is too limited and simulations must be used to

generate the neutral distribution. In these cases, the

model used for the simulations is crucially important, as

it will effect the identification of outlier loci. For instance,

Vitalis et al. (2001, 2003) developed a method (imple-

mented in DetSel) based on pairwise population compar-

isons of individual locus FST to a simulated distribution

of FST generated under a model of two fully isolated pop-

ulations descended from a common ancestral population.

Beaumont & Nichols (1996) developed FDIST2, which
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uses a classical island model to generate the expected

neutral distribution of FST estimates. While these meth-

ods remove the need to directly use genotyped markers

as the baseline, they do so indirectly by using the esti-

mated overall FST as a starting point for simulations.

Thus, including loci under selection in the initial FST esti-

mate may generate a bias in the simulated distribution.

Additionally, the models used for the simulation of data

in the two methods are unlikely to match most natural

situations, because many populations are significantly

connected through asymmetrical patterns of gene flow.

The two limitations above have been addressed in later

Bayesian methods based on logistic regression models of

locus and population effects on FST. Both BAYESFST

(Beaumont & Balding 2004) and BayeScan (Foll & Gag-

giotti 2008) allow FST to vary between populations and

identify loci potentially under selection through esti-

mates of locus effects on FST. The two methods are based

on the same basic regression model, but differ in the way

that the effect of selection is inferred. While BAYESFST

does not conduct a formal statistical test, BayeScan uses a

likelihood ratio test to assess the most likely of the two

alternative models (no effect of selection vs. effect of

selection). Both programmes have been widely applied,

but they have also recently been found to be vulnerable

to complex population structure scenarios, such as when

populations are hierarchically structured, leading to cor-

related allele frequencies among samples (Excoffier et al.

2009). A modified, hierarchical, version of FDIST2 imple-

mented in the Arlequin 3.5 software may be more appro-

priate for such situations (Excoffier et al. 2009). The

implementation of a hierarchical island model results in

higher variance between simulated neutral loci and thus

leads to a more conservative estimate of the number of

outlier loci (Excoffier et al. 2009). It seems inevitable that

the lower false-positive rate comes at the expense of a

higher false-negative rate; however, the method has so

far only been evaluated with simulated neutral loci,

focusing on the discovery of false positives, rather than

the power for discovering true positives.

While the Bayesian methods may be relatively power-

ful for detecting directional selection, they have low

power for detecting loci under balancing selection, par-

ticularly for SNP applications (Beaumont & Balding 2004;

Foll & Gaggiotti 2008). This may be problematic in situa-

tions with low levels of population structure, when the

power for detecting directional selection could be sub-

stantially higher than the power for discriminating

between loci under balancing selection and loci evolving

under neutrality.

In general, a low number of samples also substantially

reduces the statistical power of these methods (Foll &

Gaggiotti 2008), meaning that pairwise comparisons (e.g.

between populations under different environmental

forcing) will detect only extreme outlier loci, and many

potential candidate loci may be missed. In contrast, too

many samples could also bias results, particularly if allele

frequencies are correlated among samples, resulting in

increased false-positive rates (Excoffier et al. 2009). This

bias could be reduced through analysing balanced sub-

sets of samples, i.e. using a similar number of samples

from each of a number of populations or groups of popu-

lations identified through other approaches, such as clus-

tering methods. Thus, a balanced design could minimize

effects from complex population structure not easily han-

dled by many current methods. Furthermore, it is possi-

ble to evaluate the effect of study design by running

several tests on different subsets of samples.

The genetic resource originally used for developing the

genetic markers can impact results of outlier detection

approaches in several ways. For instance, it must be

remembered that in current studies of nonmodel organ-

isms, markers will often mainly be linked to the variation

in coding (and expressed) parts of the genome (see section

on nonneutral loci). Although the effects of such an

ascertainment strategy on genome scans have yet to be

assessed, in some approaches, these markers will be used

to generate the expected ‘neutral’ distribution of FST val-

ues. However, if this baseline is biased, then results may

not truly reflect the proportion of loci under selection. Fur-

ther biases may be introduced through ascertainment bias

(see introduction and discussion in Nielsen et al. 2009b). In

addition, loci in linkage disequilibrium could bias results

by introducing biased genome coverage among the mark-

ers, for instance biassing FST through physical linkage of

loci displaying elevated or lowered levels of structuring.

Although the aforementioned methods have their lim-

itations, they have all been developed to handle relatively

large data sets and they are very useful for providing a

general overview of the data at hand. Again, the impor-

tant thing is to have clarity in the question that is being

addressed. If the goal is to identify sets of markers with

high discriminatory power between different popula-

tions ⁄ groups of populations, then in principle it does not

matter if a detected outlier is truly subject to selection, or

if it is a false positive, provided that the signal is tempo-

rally stable. In this case, the outlier detection can be

viewed as an explorative and preliminary exercise sup-

porting downstream analyses. However, if evolutionary

or demographic processes are being investigated, the

inclusion of loci under selection may influence results

significantly and careful attention should be paid to the

design of the scan for outlier loci.

Power analysis

Several population genetic applications, such as conser-

vation management, product traceability and forensic
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genetic analysis, involve the assignment of individuals,

or collections of individuals, to population of origin

based on their (multilocus) genotypes (Manel et al. 2005).

Here, the inclusion of markers exhibiting evidence for

diversifying selection need not violate assumptions and

can dramatically increase assignment success, at least if

all (or most) reference populations are represented in the

baselines against which samples are compared. Analyses

combining marker types should, however, be accompa-

nied by simulations of how potential sampling effects

could influence assignment (see Anderson 2010). Like-

wise, inclusion of nonneutral markers may be advanta-

geous when attempting to estimate genetic admixture of

individuals or populations.

For applications such as individual assignment (IA),

there are many advantages (for example, the reduction in

costs, time and computational demands) in using a

reduced panel of markers that have been identified as

maximizing the power available. For example, selection

of breed-informative SNP markers for IA in cattle

enabled a reduction in panel size from 54 000 to 200 SNPs

with negligible loss of assignment power in twelve Euro-

pean cattle breeds (Wilkinson et al., pers.com). However,

a marker panel that has been reduced for this purpose is

not suitable for many standard population genetic analy-

ses because of the bias introduced through the high grad-

ing of markers that segregate among target populations

(Waples 2010).

Identifying loci with maximum power. Not all geno-

typed loci are necessary for increasing assignment

power. Loci may have high-genotyping error rates, be

noninformative with little discriminatory power or be

strongly correlated (linked) with other markers, thereby

yielding redundant information. For some purposes, it

may be desirable to create ‘minimal panels with maxi-

mum power’, for example; panels for assigning individu-

als to major groups, or very specific panels for

discriminating between two alternative hypotheses in

relation to individual assignment. The selection of loci to

form SNP panels for assignment will be driven by the

complexity of the assignment question involved. A bi-

allelic marker will only ever be able to segregate two pop-

ulations; therefore, multiple SNPs will be needed for IA

when there are multiple candidate source populations.

By assessing assignment power at the level of the indi-

vidual SNP, there will always be a risk that the SNPs

selected with most power (e.g. highest FST values), will

be biased towards the most differentiated populations

and will not allow for assignment to more finely differen-

tiated groups. When dealing with large numbers of SNP

markers, automated methods for selecting loci with the

most power across a range of application scenarios are

required; simply ranking SNPs by FST values is unlikely

to lead to an optimum, minimal panel of markers for

complex assignment problems, as it is particular combi-

nations of loci that are likely to contain the highest dis-

crimination power.

Three different approaches for locus selection have

been developed together with accompanying software.

WHICHLOCI (Banks et al. 2003) initially estimates the

assignment power of individual loci from empirical data

and ranks them according to individual assignment

(and ⁄ or misassignments). In a second round of assign-

ment, loci are added to an assignment trial from the top

of the individual power list until the user specified level

of accuracy is achieved. The programme and approach is

relatively simple and straightforward. However, an

important caveat is that the programme does not explore

the potential power of certain combinations of loci, which

may maximize IA, but may not include loci from the top

of the list. An alternative approach is genetic algorithm-

based feature selection (GAFS, Topchy et al. 2004). This

programme uses a ‘genetic algorithm’ optimization tech-

nique, by exploring different locus combinations where

the highest classification accuracy is the parameter of

interest that is being searched for. The programme works

on many solutions simultaneously in contrast to other

optimization algorithms using incremental improvement

(see above). Although the programme allows for an

exhaustive search of all potential combinations, it may

not be computationally feasible to explore all combina-

tions, thereby leaving potentially highly discriminatory

combinations unexplored. The third and most recently

described option is ‘backward elimination locus selec-

tion’ using the programme BELS (Bromaghin 2008). The

programme excludes each locus in the baseline data tem-

porarily, and the baseline accuracy for assignment (or

Mixed Stock Analysis) of remaining loci is evaluated iter-

atively. After all loci have been evaluated, the locus caus-

ing the least power reduction is permanently excluded.

The procedure is repeated until only one locus is left or

the level of accuracy reaches a user-defined minimum.

The advantage of the programme is that (like GAFS) it

exploits possible synergistic effects among loci. The

downside is that with many loci and populations, it takes

a long time to run on a standard desktop computer.

Another shortcoming of the BELS procedure is in cases of

forensic assignment where selection for the smallest sub-

set of loci, providing 100% correct assignment is the goal.

In this case, the programme is unable to rank loci as elim-

ination of any locus from the full data set will not lead to

a drop in overall assignment power (100%). Instead, a

reverse procedure where loci are added according to

their individual assignment power and subsequently

eliminated using subsets of loci where assignment power

is below 100% could be applied (J. Bromaghin, personal

communication). Overall, it appears that the two latter
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programmes represent the most optimal approaches for

SNP loci under selection, as they search for ‘synergistic’

combinations of loci providing the highest overall level

of assignment power regardless of their individual

power.

A final note of caution for the selection of particular

loci with elevated assignment power was pointed out in

a recent paper by Anderson (2010). The programmes

described in this section all use the same data for ranking

loci and assessing their power, leading to biased and

over-optimistic estimates of assignment power. Instead,

Anderson suggested a procedure called THL (training,

holdout, leave-one-out), where a subset of samples (train-

ing samples) is used for selection of highly informative

loci to be included in the final panel of loci. These sam-

ples are combined with another subset of data (the hold-

out samples) to form the baseline for assignment using

the final panel. By assigning the holdout samples using

the full baseline sample employing a leave-one-out pro-

cedure, it is possible to separate the process of locus

selection or ‘high grading’ from the evaluation of assign-

ment power, while at the same time making use of the

whole data set. This approach should be encouraged and

implemented as a standard for evaluation of assignment

power of loci under selection.

Power for detecting population differentiation. A recent

paper by Morin et al. (2009) addresses the issue of the

number of SNPs and sample size that should be used

to maximize statistical power to identify evolutionary

significant units (ESUs) and demographic independents

units (DIPs) using the programme POWSIM (Ryman &

Palm 2006). The ‘effect sizes’, i.e. the magnitude of dif-

ferentiation required to detect two scenarios was FST =

0.2 and FST = 0.0025. The study assessed sample sizes

within 10–100, number of loci 10–75 and MAFs 0.01–0.5.

Overarching results showed that approximately 30 neu-

tral loci were required to detect ESUs (Nem = 0.1), while

identification of DIPs may require >75 loci. Different

MAFs had little effect on power; haplotypes (linked

loci) from different SNPs within the same locus could

improve power, though sample size had a strong effect

on power. For example, with 75 SNPs and FST = 0.0025,

an increase in sample size from 50 to 100 provided a

twofold increase in power (proportion of significant

tests) from 0.4 to 0.8. Accordingly, if the aim is specifi-

cally to address the issue of microgeographical popula-

tion structure, it may be advisable to use relatively

large sample sizes. Also, including loci suspected to be

under selection may increase power to detect differenti-

ation; however, the stability of the pattern has to be

investigated because contemporary selection may alter

allele frequencies even within a cohort (see Nielsen

et al. 2009a).

Glover et al. (2010) compared the IA resolution

between analyses with 309 mapped SNPs (global FST

)0.002 to 0.316; only one ‘outlier locus’) and 14 micro-

satellite markers (global FST 0.033–0.115) in wild and

domesticated strains of Atlantic salmon (Salmo salar).

They found that proportions of correctly assigned indi-

viduals was 0.65, 0.73 and 0.73 when assigned with 14

microsatellites, 300 SNPs and 195 ‘mapped’ (>1 cM)

SNPs, respectively. Overall, assignment was best (80%

correct) when �100 unlinked SNP loci were used.

Above 100 loci, assignment success decreased. Com-

paring marker types, the most informative 15 salmon

SNPs matched the level of assignment achieved by the

most informative four microsatellite loci (ranked by

maximizing allelic variation). If linkage information is

available, Structure (Pritchard et al. 2000; Falush et al.

2003) may outperform Geneclass (Cornuet et al. 1999),

as Structure enables the use of a linkage model, taking

marker distance into consideration in computations,

whereas Geneclass treats loci as independent. In the

study by Glover et al. (2010) using Structure, the use

of a linkage model led to 88% correct self-assignment

when using 300 SNPs, whereas correct assignment

was 80% with Geneclass. This study suggests that the

identification of a highly informative set of SNPs from

a larger panel is likely to give significantly more accu-

rate individual genetic self-assignment compared to

any combination of microsatellite loci. However, there

is a risk of an upwards bias of the estimates of assign-

ment success when ‘high-grading’ loci, as described by

Anderson (2010). The study by Glover et al. (2010) also

underlines the importance of using an appropriate

method for modelling the statistical power and assign-

ment resolution when choosing subsets of markers for

targeted assignment analyses.

Conclusions

In several of the aforementioned sections, attention has

been drawn to some of the concerns associated with the

discovery of SNPs from NGS data. Some of these issues,

such as the bias in genome coverage achieved, or the

complications of not having a reference genome, are

being dealt with by advances in technology (e.g. reducing

the bias in terminal end sequencing (Korbel et al. 2007),

paired-end reads for sequence assembly without a refer-

ence sequence (Li et al. 2010), also see Harismendy et al.

2009 for an evaluation of the different issues between

platforms and Everett et al. 2011 for an assessment of the

potential to assemble sequences to publicly available EST

databases). Other major drawbacks such as the conver-

sion rate from NGS data to validated SNPs, and the

inherent ascertainment bias in the data still need practical

solutions (for reviews see Hudson 2008; Shendure & Ji
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2009; Garvin et al. 2010). NGS is one of the most powerful

tools currently available, but its use must be undertaken

with its limitations in mind. Meanwhile major advances

in sequencing—such as the third generation technolo-

gies—are promising to resolve many of the difficulties

with the current systems with less expensive, longer

read, more accurate systems promised in the near future

(Eid et al. 2009; Metzker 2009; Rusk 2009). However,

although it has been suggested that ecologists may soon

be able to perform population genetics at a genome,

rather than a gene level (Hudson 2008), these technolo-

gies are likely to remain out of reach for the majority of

studies on nonmodel organisms for the foreseeable

future. Additionally, the replacement of SNP genotyping

by the analysis of the full genome sequence data is also

currently out of reach for the majority of nonmodel

species.

The continued increase in speed and decrease in

cost for SNP genotyping nonmodel organisms is

undoubtedly going to lead to further major changes in

relation to the availability of data on a genomic scale

for population genetic analysis in the near future. Cur-

rently, we are in a transition period where population

structure is typically inferred from relatively few

genetic markers for some wild organisms, while thou-

sands of markers and even whole genomes (Hohenlohe

et al. 2010) are being analysed in others. Accordingly,

we expect to see an increased movement towards gen-

ome wide analyses to gain a general understanding of

the relative importance of neutral and adaptive pro-

cesses in wild populations. Such a development will

result in a conceptual change as it will no longer be

feasible to manually edit or check data quality. In turn,

further developments will be required in relation to

statistical tools and associated software for analysing

data orders of magnitude larger than is currently stan-

dard, some of which have been highlighted above.

However, the fundamental principles of population

genetics remain the same and specific research ques-

tions will continue to require appropriate analysis

dependant on the nature of the markers used.

Although the data sets that we have access to are

increasing in size, there will continue to be a need for

small panels of ‘genetic tags’ for ecological, management

and forensic purposes where the assignment of individu-

als and groups of individuals to the population of origin

is desired. We expect these applications to grow tremen-

dously and become commonplace as the costs of geno-

typing decline progressively. To generate added

momentum, there is an enhanced need for genomic data

for nonmodel taxa, from where the high grading of the

most informative loci for individual assignment can take

place to create cost-effective panels of minimum size with

maximum power.
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