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Abstract: Geopolymers may be the best alternative to ordinary Portland cement because they are
manufactured using waste materials enriched in aluminosilicate. Research on geopolymer composites
is accelerating. However, considerable work, expense, and time are needed to cast, cure, and
test specimens. The application of computational methods to the stated objective is critical for
speedy and cost-effective research. In this study, supervised machine learning approaches were
employed to predict the compressive strength of geopolymer composites. One individual machine
learning approach, decision tree, and two ensembled machine learning approaches, AdaBoost and
random forest, were used. The coefficient correlation (R2), statistical tests, and k-fold analysis were
used to determine the validity and comparison of all models. It was discovered that ensembled
machine learning techniques outperformed individual machine learning techniques in forecasting
the compressive strength of geopolymer composites. However, the outcomes of the individual
machine learning model were also within the acceptable limit. R2 values of 0.90, 0.90, and 0.83 were
obtained for AdaBoost, random forest, and decision models, respectively. The models’ decreased
error values, such as mean absolute error, mean absolute percentage error, and root-mean-square
errors, further confirmed the ensembled machine learning techniques’ increased precision. Machine
learning approaches will aid the building industry by providing quick and cost-effective methods for
evaluating material properties.

Keywords: geopolymer composites; sustainable materials; compressive strength; artificial intelli-
gence; machine learning; prediction models

1. Introduction

Cement-based conventional concrete (CBCC) is the most broadly utilized type of
construction material on a global scale [1–3]. The primary constituents of CBCC are
aggregates, water, and ordinary Portland cement (OPC) [4,5]. Following aluminum and
steel, OPC is the third most energy-demanding substance on the earth, consuming 7% of the
total energy of global industry [6,7]. Regrettably, the manufacture of OPC produces large
quantities of greenhouse gases, i.e., CO2, which substantially add to climate change [8–10].
The production of OPC is anticipated to release 1.35 billion tons of greenhouse emissions
annually [11–13]. Thus, scholars have focused their attempts on minimizing OPC usage
through the use of alternate binder types. Alternatives to CBCC may include alkali-
activated compounds such as geopolymers [14–16]. When precursors and activators react,
alkali-activated compounds are formed. They have been categorized into two kinds based
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on the calcium proportion of the products formed during the reaction: those that are
calcium-rich, with a Ca/(Si+Al) fraction above 1, and those that are calcium-deficient, i.e.,
geopolymers [17–19].

Geopolymer is a novel binder that was established to substitute OPC in concrete
production [20–22]. The purpose is to acquire a building material that is free of OPC, envi-
ronmentally caring, and sustainable. As industry and people grow, a significant amount
of waste material (waste glass powder, fly ash, sugarcane bagasse ash, ground granulated
blast furnace slag (GGBS), silica fume, and rice husk ash, for example) is generated and
disposed of in landfills. Due to the fact that these waste products contribute to pollu-
tion, their disposal in landfills is dangerous to the ecosystem [23–26]. Since geopolymer
composites (GPCs) require raw ingredients with a high aluminosilicate content, which
are found in these waste materials, recycling these waste materials can help to reduce
environmental pollution [27–30]. The method of producing GPC is represented in Figure 1,
along with the various components and curing regimes employed. Consumption of these
waste materials benefits both the environment and the economy, as the demand for inex-
pensive housing will increase as the population expands [31–33]. GPC has been the topic
of broad research and development on a global scale, and it may one day become the best
green construction material [34–37]. GPC, on the other hand, has the potential to make a
significant contribution to the prolonged sustainability of both CBCC technology and the
building sector.
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Figure 1. Production process of geopolymer concrete.

Artificial intelligence (AI) advancements have resulted in the widespread usage of ma-
chine learning (ML) techniques for anticipating the properties of a variety of materials [38–41].
Ahmad et al. [14] conducted a comparative investigation of three ML approaches for as-
sessing the compressive strength (CS) of fly ash-based GPC, including decision tree (DT),
AdaBoost, and bagging regressor (BR). It was noted that the BR model was the most pre-
cise of the models examined. Ahmad et al. [42] forecasted the CS of concrete, including
recycled coarse aggregate using an artificial neural network (ANN) and gene expression
programming (GEP). The GEP technique was found to be more predictively exact than
the ANN technique. Song et al. [43] used an ANN method to estimate the CS of concrete,
and they observed a satisfactory forecasting ability. Nguyen et al. [44] predicted the CS
and tensile strength of high-performance concrete using a range of ML approaches. They
concluded that ensembled ML techniques outperformed individual ML techniques in
terms of precision. Thus, numerous scientists have reported on diverse ML strategies that
improve the accuracy of material property estimation. As a result, it is critical to conduct
additional in-depth investigations to elucidate this topic.
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This research concentrates on the use of ML approaches to estimate the CS of GPCs.
Three different types of ML approaches were used, including decision tree (DT), AdaBoost,
and random forest (RF), and their performance was assessed using statistical tests and
correlation coefficient (R2). Additionally, the validity of each strategy was determined
using k-fold analysis and error distributions. DT is an individual ML technique, whereas
AdaBoost and RF are ensemble ML algorithms. This research is novel in that it estimates
the CS of GPC using both individual and ensembled ML techniques, whereas experimental
investigations need significant human work, experimental costs, and time for material
acquisition, casting, curing, and testing. The use of modern techniques, like ML, in the field
of civil engineering to predict material properties will reduce human effort and save time
since experimental work for said purpose can be eliminated. ML approaches require a data
set that might be retrieved from the literature as considerable research has been conducted
to experiment with the material properties, and the data set can be used to train the ML
models and estimate the various characteristics of a material. This study aims to identify
the most suitable ML technique for the CS of GPCs in terms of results prediction and the
influence of input parameters on the model’s performance.

2. Methods
2.1. Description of Data

To obtain an appropriate result, SML algorithms require a varied range of input
variables [45–47]. The CS of GPC was estimated using data retrieved from the literature
(attached as a Supplementary File). To prevent bias representation, experimental data were
randomly chosen from the literature. The literature published on the use of comparable
materials for the CS of GPC was assessed. While most papers examined additional features
of GPC, this study acquired CS-based data points to run the algorithms. Nine variables
were included as inputs in the algorithms, containing water/solids ratio, NaOH molarity,
gravel 4/10 mm, gravel 10/20 mm, NaOH, Na2SiO3, fly ash, GGBS, and fine aggregate,
with CS as the output variable. The number of inputs and datasets have a considerable
effect on the model’s outcome [48–50]. In the current investigation, 363 data points were
used to run ML algorithms. Table 1 summarizes the descriptive statistic evaluation of
each input variable. The term “descriptive statistics” refers to a group of concise, factual
measurements that generate an outcome, which may be the whole population or a subset
of the population. The mean, median, and mode variables represent fundamental tendency,
whereas the maximum, minimum, and standard deviation represent variability. The table
provides all the mathematical terms for the model’s input variables. The relative frequency
distribution of all variables used in the analysis is depicted in Figure 2. It depicts the total
number of interpretations related to each value or combination of values. It is intrinsically
related to probability dispersal, a widely used statistical term.

Table 1. Descriptive measurements of input variables employed.

Parameter Water/Solids
Ratio

NaOH
Molarity

Gravel
4/10 mm
(kg/m3)

Gravel
10/20 mm
(kg/m3)

NaOH
(kg/m3)

Na2SiO3
(kg/m3)

Fly Ash
(kg/m3)

GGBS
(kg/m3)

Fine
Aggregate

(kg/m3)

Minimum 0 1 0 0 3.5 18 0 0 459
Maximum 0.63 20 1293.4 1298 147 342 523 450 1360

Range 0.63 19 1293.4 1298 143.5 324 523 450 901
Median 0.34 9.2 208 789 56 108 120 300 728
Mode 0.53 10 0 0 64 108 0 0 651
Mean 0.34 8.14 288.39 737.37 53.74 111.66 174.34 225.15 729.88

Standard Error 0.01 0.24 19.54 18.82 1.67 2.53 8.82 8.52 6.87
Standard
Deviation 0.11 4.56 372.31 358.55 31.91 48.16 167.95 162.27 130.97

Sum 124.8 2955.1 104,684.3 267,664.9 19,508.8 40,532.7 63,286.0 81,728.1 264,947.8
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Figure 2. Relative frequency dispersal of inputs: (a) Water/solids ratio; (b) NaOH Molarity; (c) Gravel
4/10 mm; (d) Gravel 10/20 mm; (e) NaOH; (f) Na2SiO3; (g) Fly ash; (h) GGBS; (i) Fine aggregate.

2.2. Machine Learning Algorithms Employed

Individual ML approaches (DT) and ensemble ML techniques (AdaBoost and RF)
were used to accomplish the study’s objectives, with Python scripting via the Anaconda
Navigator package. To run DT, AdaBoost, and RF models, the tool Spyder (version 4.3.5)
was chosen. These algorithms are often used to anticipate desired outcomes based on
input variables. These algorithms, among other things, are capable of forecasting the
temperature effect, strength properties, and durability of materials [51,52]. Throughout the
modeling phase, nine input variables and one output variable (i.e., CS) were employed.
The R2 value for the projected result reflected the validity/precision of all models. The
R2 represents the extent of divergence; a value close to zero suggests higher divergence,
but a value close to one shows that the model and data are almost completely suited [14].
The sub-sections below detail the ML techniques applied in this research. Additionally, to
validate models, statistical and k-fold analysis and error assessments are carried out on
all techniques, involving root-mean-square error (RMSE), mean absolute percentage error
(MAPE) and mean absolute error (MAE). Moreover, sensitivity analysis is employed to
discover the effect of each input parameter on the outcome estimation. The flowchart in
Figure 3 depicts the research strategy.
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2.2.1. Decision Tree

DTs are created by the development of algorithms that divide a dataset into branch-like
portions. These portions combine to create an upturned tree, which begins with a root node
at the top [53]. Figure 4 demonstrates an illustration of such a tree with five nodes and six
leaves. As seen in the figure, a DT tree can contain both uninterrupted and isolated features.
Correlations between the object of analysis and the input fields are used to produce the
decision rule for branching or segmenting underneath the root node. After establishing
the link, one or more decision rules specifying the relationships between the inputs and
targets can be produced. Decision rules reliably estimate the values of new or unknown
observations that include input values but not targets. The errors are computed at each
division point, and the variable with the lowest fitness function value is chosen as a split
point, followed by the procedure for the other variables.

2.2.2. AdaBoost

The AdaBoost approach is the most often used ensembled ML algorithm from the
boosting group of ensembled ML techniques. AdaBoost’s distinguishing characteristic is
that it utilizes the initial training data to construct a weak learner, after which it modifies
its distribution of training data depending on its projection performance in the following
turn of weak learner training. Remember that the training samples with less forecast
precision from the previous stage will be given more attention in the following phase. After
that, the weak learners are then coupled with a strong learner by applying a variety of
weights to form a final combination [39]. AdaBoost is simple to implement. In general, it
consists of four stages: (i) data collection; (ii) development of a strong learner; (iii) testing or
confirmation of the learner; and (iv) use of the learner for engineering challenges. Clearly,
the second step is important to the AdaBoost algorithm. As mentioned previously, it
consists of two components: a framework for integrating weak learners into a strong one
and a regression learning algorithm for producing the weak learner from the training data.
The weak learner is generated using the decision tree (DT) algorithm [39], and the weak
learners are combined using the median of the weighted weak learners. Figure 5 illustrates
the flow diagram for this technique.
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2.2.3. Random Forest

RF is implemented via the random split selection on bagging DTs [54]. Figure 6
illustrates the production and process of the RF model schematically. Every tree in the
forest is constructed using a randomly chosen training set, and each split within each tree is
built using a randomly selected subset of input variables, resulting in a forest of trees [55].
The addition of this unpredictability boosts the tree’s diversity. The forest is entirely
composed of fully-grown binary trees. The RF method has been exceedingly effective as a
common-purpose classification and regression tool. The technique, which combines the
predictions of several randomized DTs, has shown higher precision in circumstances where
the quantity of variables exceeds the quantity of observations. Moreover, it is adaptive to
both large-scale and ad hoc learning tasks, returning metrics of different importance [54].



Polymers 2022, 14, 1074 8 of 21Polymers 2022, 14, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 6. Schematic representation of random forest algorithm [54]. Reprinted with permission 
from ref. [54]. Copyright 2019 Elsevier Ltd.  

3. Models Results 
3.1. Decision Tree Model 

Figure 7 illustrates the results of the DT model for the CS of GPC. Figure 7a shows 
the link between experimental and projected outcomes. The DT technique generated 
results with a satisfactory level of accuracy and a small disparity between experimental 
and predicted outcomes. The R2 of 0.83 confirms the satisfactory performance of the DT 
model in forecasting the CS of GPC. The dispersion of predicted and error values for the 
DT model is represented in Figure 7b. The error values were analyzed, and it was 
determined that the minimum, average, and highest values were 0.00, 7.02, and 36.59 
MPa, respectively. Additionally, the percentage distribution of error values was 
determined, and it was discovered that 37.4% of values were less than 3 MPa, 38.5% were 
between 3 and 10 MPa, and only 24.2% were above 10 MPa. Additionally, the dispersion 
of error values implies that the DT model performs satisfactorily. 

Figure 6. Schematic representation of random forest algorithm [54]. Reprinted with permission from
ref. [54]. Copyright 2019 Elsevier Ltd.

3. Models Results
3.1. Decision Tree Model

Figure 7 illustrates the results of the DT model for the CS of GPC. Figure 7a shows
the link between experimental and projected outcomes. The DT technique generated
results with a satisfactory level of accuracy and a small disparity between experimental
and predicted outcomes. The R2 of 0.83 confirms the satisfactory performance of the DT
model in forecasting the CS of GPC. The dispersion of predicted and error values for
the DT model is represented in Figure 7b. The error values were analyzed, and it was
determined that the minimum, average, and highest values were 0.00, 7.02, and 36.59 MPa,
respectively. Additionally, the percentage distribution of error values was determined, and
it was discovered that 37.4% of values were less than 3 MPa, 38.5% were between 3 and
10 MPa, and only 24.2% were above 10 MPa. Additionally, the dispersion of error values
implies that the DT model performs satisfactorily.
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3.2. AdaBoost Model

Figure 8 depicts the AdaBoost model’s findings for estimating the CS of GPC. The
relationship between experimental and anticipated outcomes is depicted in Figure 8a.
The AdaBoost approach produced output with higher precision and the least amount of
divergence between actual and anticipated outcomes. With an R2 of 0.90, the AdaBoost
model is quite accurate at forecasting the CS of GPC. Figure 8b illustrates the dispersion
of predicted and error values for the AdaBoost model. The training set’s lowest, average,
and maximum error values were determined to be 0.00, 5.20, and 20.40 MPa, respectively.
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The error distribution was 46.2%less than 3 MPa, 35.2% between 3 and 10 MPa, and only
18.7% greater than 10 MPa. The distribution of error values indicates the AdaBoost model’s
higher precision in forecasting outcomes.
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3.3. Random Forest Model

Figure 9a,b demonstrate an assessment of the RF model’s experimental and estimated
results. Figure 9a depicts the link between experimental and estimated findings, with an R2

of 0.90 signifying that the RF model has a comparable precision to the AdaBoost model in
estimating the GPCs CS. Figure 9b shows the dispersal of experimental, expected, and error
values for the RF model. The lowest, average, and highest error values were determined
to be 0.06, 5.33, and 23.45 MPa, respectively. The error distribution was 47.3% less than
3 MPa, 34.1% between 3 and 10 MPa, and only 18.7% larger than 10 MPa. These reduced
error values demonstrate the RF model’s higher exactness than the DT model and similar
accuracy to the AdaBoost model.
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4. Validation of Models

Statistical and k-fold analysis approaches were used to validate the models. The
k-fold technique is frequently used to ascertain a technique’s validity [42], during which
relevant data are arbitrarily scattered and divided into 10 classes. As seen in Figure 10,
nine groups will be used to train the model, while one group will be utilized to validate
it. Approximately 75% of the data was utilized for training the models, whereas 25% was
utilized to assess the models that were employed. When the errors (MAE and RMSE)
are low and the R2 value is high, the model is more accurate. In addition, the operation
ought to be reiterated ten times to achieve a reasonable conclusion. This extensive effort
contributes significantly to the model’s remarkable accuracy. Furthermore, as shown in
Table 2, all models were statistically evaluated in terms of errors (MAE, MAPE, and RMSE).
These assessments also confirmed the AdaBoost and RF model’s higher accuracy as a result
of their lower error readings when compared to the DT model. The predictive performance
of the techniques was determined statistically using Equations (1)–(3), which were acquired
from previous studies [38,56,57].

MAE =
1
n

n

∑
i=1
|Pi − Ti| (1)

RMSE =

√
∑

(Pi − Ti)
2

n
(2)

MAPE =
100%

n

n

∑
i=1

|Pi − Ti|
Ti

(3)

where n = sum of data samples, Pi = predicted values, and Ti = experimental values from
the data set.
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Table 2. Statistical assessments of the models employed in this study.

Model MAE (MPa) MAPE (%) RMSE (MPa)

Decision tree 7.016 16.020 10.432
AdaBoost 5.199 12.302 7.467

Random forest 5.325 12.420 7.602

In order to figure out how well the k-fold cross-validation worked, MAE, MAPE,
RMSE, and R2 were calculated, and their values are provided in Table 3. The DT model’s
MAE values ranged from 7.02 to 19.78 MPa, with an average of 11.08 MPa. When comparing,
the MAE values for the AdaBoost model ranged between 5.20 and 14.68 MPa, with an
average of 8.68 MPa. As for the AdaBoost model, the MAE values were between 5.33 and
18.47 MPa, with an average of 8.97 MPa. Similarly, the average MAPE for DT, AdaBoost,
and RF models was noted to be 17.04%, 13.16%, and 13.47%, respectively. The average
RMSE values for the DT, AdaBoost, and RF models were 15.89, 11.18, and 11.94 MPa. On
the other hand, the average R2 values for DT, AdaBoost, and RF models were 0.59, 0.67,
and 0.65, respectively. The AdaBoost and RF models with the lower error values and the
higher R2 values are more accurate in forecasting the CS of GPC when compared to the
DT model.

Table 3. Outcomes of k-fold analysis.

K-Fold
Decision Tree AdaBoost Random Forest

MAE MAPE RMSE R2 MAE MAPE RMSE R2 MAE MAPE RMSE R2

1 16.03 18.70 21.92 0.60 8.70 13.25 13.04 0.43 10.70 12.97 13.43 0.54
2 7.02 16.93 11.57 0.76 5.65 12.30 8.01 0.49 5.33 13.76 8.09 0.72
3 9.15 16.03 10.94 0.20 6.56 14.03 8.16 0.79 5.54 14.88 8.37 0.64
4 11.76 17.21 10.43 0.70 8.18 12.55 8.43 0.67 8.06 13.66 11.40 0.52
5 7.31 16.02 12.41 0.59 6.11 12.98 7.47 0.90 5.34 12.90 7.85 0.77
6 12.96 16.55 17.07 0.37 12.94 14.45 14.34 0.57 9.85 13.77 13.82 0.53
7 7.72 18.67 19.58 0.72 9.50 13.66 12.06 0.60 9.43 12.42 15.56 0.74
8 10.92 16.03 15.26 0.41 9.33 13.08 14.33 0.86 11.12 14.02 13.93 0.34
9 8.15 17.22 16.50 0.72 5.20 12.95 7.68 0.74 5.80 13.79 7.60 0.79

10 19.78 17.02 23.23 0.83 14.68 12.35 18.28 0.61 18.47 12.50 19.31 0.90

5. Sensitivity Analysis

The intention of this assessment is to ascertain the effect of input parameters on
GPC’s CS predicting. The expected outcome is greatly affected by the input variables [14].
Figure 11 demonstrates the impact of the inputs on the CS estimate of GPC. The investi-
gation determined that fly ash was the most important constituent, accounting for 26.37%
of the total, followed by GGBS at 14.74% and NaOH molarity at 13.12%. The remaining
input variables, on the other hand, contributed less to the forecast of GPC’s CS, with
NaOH accounting for 11.60%, the water/solids ratio accounting for 9.52%, fine aggregate
accounting for 7.53%, gravel 4/10 mm accounting for 6.48%, gravel 10/20 mm accounting
for 5.84%, and Na2SiO3 accounting for 4.80%. Sensitivity analysis generated outcomes
related to the number of input parameters and data points employed to construct the
models. The influence of an input parameter on the technique’s output was determined
using Equations (4) and (5).

Ni = fmax(xi)− fmin(xi) (4)

Si =
Ni

∑n
j−i Nj

(5)

where fmax(xi) and fmin(xi) are the peak and bottom of the expected result on the ith
output, respectively, whereas other input variables are maintained constant at their mean
values. Si is the achieved contribution proportion for a particular variable.
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6. Discussions
6.1. Comparison of Machine Learning Models

The objective of this study was to contribute to the existing study area regarding the
implementation of contemporary approaches for estimating the CS of GPC. This type of
research will aid the building industry by developing rapid and cost-effective solutions
for material property prediction. Additionally, by utilizing these strategies to promote eco-
friendly construction, the adoption and use of GPC in construction will be accelerated. Since
GPC may be made from waste materials containing aluminosilicates, its use in construction
will have a number of advantages, as seen in Figure 12. This study demonstrates how ML
methods can be employed to anticipate the CS of GPC. Three ML techniques were used
in the study: one individual (DT) and two ensembled (AdaBoost and RF). Each technique
was examined for accuracy in order to discover which is the most efficient predictor. The
AdaBoost and RF models produced more exact results with an R2 of 0.90, compared to the
DT model, which yielded an R2 of 0.83.

Furthermore, all models’ accuracy was validated using the statistical k-fold analysis
approach. The fewer error values in the model, the more precise it is. The higher accuracy
of AdaBoost and RF models towards the prediction of outcomes is also reported by other
researchers [39,58,59]. Feng et al. [39] noticed the superior performance of the AdaBoost
model compared to individual models, including ANN and support vector machine (SVM),
based on higher R2 and lower error values. Similarly, Farooq et al. [59] compared the
performance of RF with ANN, GEP, and DT techniques and reported the higher precision of
the RF model than the others with an R2 of 0.96. However, determining and recommending
the optimal ML model for forecasting outcomes through a variety of areas is complicated,
as the performance of a model is greatly reliant on the input parameters and quantity of
data points utilized to execute the algorithm. The previous studies concluded that up to
300 data points and a minimum of 8 input variables could result in the higher precision of
the ML models [56,60]. Hence, the data set retrieved for the current investigation is suitable
for the ML model’s best performance.
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The ensembled ML algorithms commonly exploit the weak learner by generating sub-
models that may be trained on data and adjusted to optimize the R2 value. The dispersion
of R2 values for the AdaBoost and RF sub-models is shown in Figure 13. The minimum,
average, and highest R2 values for AdaBoost sub-models were 0.854, 0.876, and 0.900,
respectively. Similarly, the minimum, average, and highest R2 values for RF sub-models
were 0.872, 0.892, and 0.900, respectively. These results demonstrate that both the AdaBoost
and RF sub-models have comparable values and a high degree of precision in forecasting
GPC’s CS. Additionally, a sensitivity analysis was done to ascertain the effect of all inputs
on the expected CS of GPC. The model’s performance might be affected by the input
parameters and the dataset’s size. The sensitivity analysis determined how each of the
nine input characteristics contributed to the projected output. Fly ash, GGBS, and NaOH
molarity were determined to be the three most significant input variables.
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6.2. Comparison of Experimental and Predicted Results

To compare the experimental and predicted results for all the models employed in
this study, Figures 14–16 are generated for 91 mixes. The intention of this comparison was
to determine the deviation of the predicted results from the experimental results for the
validation of the employed models in estimating the CS of GPCs. This analysis revealed
that for the DT model, the deviation from the experimental results was between 0.00 and
36.59 MPa, with an average of 7.02 MPa. Furthermore, for 34 mixes, the deviation from the
experimental results was less than 3 MPa, from 3 to 10 MPa deviation was noted in 35 mixes,
and above 10 MPa deviation was noted in 22 mixes (Figure 14). This showed a moderate
deviation of the predicted results compared to the experimental results for the DT model.
A similar comparison for the AdaBoost model revealed that the deviation of the results was
in the range of 0.00 to 20.40 MPa with an average of 5.20 MPa. Additionally, for 42 mixes,
the deviation was less than 3 MPa. Deviation from 3 to 10 MPa was observed in 32 mixes,
and deviation greater than 10 MPa was observed in only 17 mixes (Figure 15). This showed
the higher precision of the AdaBoost model compared to the DT. Similarly, the RF model
results were like the AdaBoost in estimating the CS of GPCs. The deviation among the
experimental and predicted results was in the range of 0.06 to 23.45 MPa, with an average
of 5.33 MPa. For 43 mixes, the deviation of the results was less than 3 MPa; deviation from
3 to 10 MPa was observed in 31 mixes, and deviation higher than 10 MPa was observed
in only 17 mixes (Figure 16). This analysis further validated the comparable accuracy of
the AdaBoost and RF model with higher accuracy than the DT model. Additionally, the
higher accuracies of the AdaBoost and RF models was confirmed since, for around 81.3%
of mixes, the deviation of the predicted results from the experimental was less than 10 MPa.
However, the DT model performed less accurately in estimating the CS of GPCs than the
AdaBoost and RF models, as more deviation of results was noted among the experimental
and predicted results. Hence, this study recommends the application of AdaBoost and RF
models for the prediction of the CS of GPCs.



Polymers 2022, 14, 1074 17 of 21

Polymers 2022, 14, x FOR PEER REVIEW 18 of 23 
 

 

36.59 MPa, with an average of 7.02 MPa. Furthermore, for 34 mixes, the deviation from 
the experimental results was less than 3 MPa, from 3 to 10 MPa deviation was noted in 35 
mixes, and above 10 MPa deviation was noted in 22 mixes (Figure 14). This showed a 
moderate deviation of the predicted results compared to the experimental results for the 
DT model. A similar comparison for the AdaBoost model revealed that the deviation of 
the results was in the range of 0.00 to 20.40 MPa with an average of 5.20 MPa. Additionally, 
for 42 mixes, the deviation was less than 3 MPa. Deviation from 3 to 10 MPa was observed 
in 32 mixes, and deviation greater than 10 MPa was observed in only 17 mixes (Figure 15). 
This showed the higher precision of the AdaBoost model compared to the DT. Similarly, 
the RF model results were like the AdaBoost in estimating the CS of GPCs. The deviation 
among the experimental and predicted results was in the range of 0.06 to 23.45 MPa, with 
an average of 5.33 MPa. For 43 mixes, the deviation of the results was less than 3 MPa; 
deviation from 3 to 10 MPa was observed in 31 mixes, and deviation higher than 10 MPa 
was observed in only 17 mixes (Figure 16). This analysis further validated the comparable 
accuracy of the AdaBoost and RF model with higher accuracy than the DT model. 
Additionally, the higher accuracies of the AdaBoost and RF models was confirmed since, 
for around 81.3% of mixes, the deviation of the predicted results from the experimental 
was less than 10 MPa. However, the DT model performed less accurately in estimating 
the CS of GPCs than the AdaBoost and RF models, as more deviation of results was noted 
among the experimental and predicted results. Hence, this study recommends the 
application of AdaBoost and RF models for the prediction of the CS of GPCs. 

 
Figure 14. Comparison of experimental and predicted results for the decision tree model. 

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

C
om

pr
es

si
ve

 s
tre

ng
th

 (M
Pa

)

Mix number

Experimental Predicted

Figure 14. Comparison of experimental and predicted results for the decision tree model.

Polymers 2022, 14, x FOR PEER REVIEW 19 of 23 
 

 

 
Figure 15. Comparison of experimental and predicted results for the AdaBoost model. 

 
Figure 16. Comparison of experimental and predicted results for the random forest model. 

7. Conclusions 
The intention of this research was to employ both individual and ensemble machine 

learning (ML) algorithms to anticipate the compressive strength (CS) of geopolymer 
composites (GPCs). To forecast outcomes, one individual technique, decision tree (DT), 

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

C
om

pr
es

si
ve

 s
tre

ng
th

 (M
Pa

)

Mix number

Experimental Predicted

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

C
om

pr
es

si
ve

 s
tre

ng
th

 (M
Pa

)

Mix number

Experimental Predicted

Figure 15. Comparison of experimental and predicted results for the AdaBoost model.
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7. Conclusions

The intention of this research was to employ both individual and ensemble machine
learning (ML) algorithms to anticipate the compressive strength (CS) of geopolymer com-
posites (GPCs). To forecast outcomes, one individual technique, decision tree (DT), was
used, as well as two ensemble techniques, AdaBoost and random forest (RF). The following
conclusions have been drawn as a result of this research:

• Ensemble ML approaches (AdaBoost and RF) performed better than the individual
ML technique (DT) at predicting the CS of GPCs, with the AdaBoost and RF models
performing with a similar degree of precision. The correlation coefficients (R2) for the
AdaBoost, RF and DT models were 0.90, 0.90, and 0.83, respectively.

• Statistical checks and k-fold analysis verified the model’s performance. Furthermore,
these checks also confirmed the comparable accuracy of the AdaBoost and RF models.
The lower deviation (MAE, MAPE, and RMSE) of the predicted results and higher R2

values of the ensembled models validated their higher precision.
• The comparison of the experimental and predicted results further validated the higher

accuracy of AdaBoost and RF models due to less deviation of the predicted results
than the experimental results. On the other hand, the deviation of the DT model’s
results was higher than the AdaBoost and RF models and is less recommended for
estimating the CS of GPCs.

• Sensitivity analysis revealed that fly ash, ground granulated blast furnace slag, and
NaOH molarity have a greater influence on the model’s outcome and account for
26.37%, 14.74%, and 13.12% of the contribution, respectively. However, NaOH, wa-
ter/solids ratio, fine aggregate, gravel 4/10 mm, gravel 10/20 mm, and Na2SiO3
contributed 11.60%, 9.52%, 7.53%, 6.48%, 5.84%, and 4.80%, respectively, to the predic-
tion of the outcome.

• This type of research will aid the construction sector by enabling the development of
quick and cost-effective methods for predicting material strength. Additionally, by
promoting eco-friendly construction using these strategies, the acceptance and use of
GPC in construction will be expedited.
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This study proposes that in upcoming studies, the number of data points and results
should be enhanced by experimental research, field trials, and other numerical evaluation
techniques (e.g., Monte Carlo simulation). Additionally, to improve the models’ respon-
siveness, environmental parameters (e.g., elevated/low temperature and humidity) and a
detailed description of the raw materials could be incorporated as input factors. Addition-
ally, data from the literature should be retrieved and arranged in such a manner that the
influence of different kinds of activators and precursors on the strength of GPCs can be
determined using ML techniques.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14061074/s1, Table S1: Data used for modeling.
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