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Abstract - This paper presents two sparsity-based eigenvalue 
techniques - simultaneous iterations and the modified Arnoldi 
method - and their application to the small signal stability analysis 
of large power systems. 
Simultaneous iterations and the modified Arnoldi method are two 
recently developed methods for large, sparse unsymmetrical eigen- 
value problems, and have been reported as very efficient in com- 
puting the partial eigensolution of several types of matrices, such 
as stochastic ones. It is shown in this paper that they can also be 
applied successfully to the matrices derived for small signal stabil- 
ity studies of power systems. An algorithm utilizing these two 
methods is proposed for calculating the eigenvalues around a fixed 
point which can be placed at will in various parts of the complex 
plane. The sparsity is fully preserved in the algorithm by using the 
augmented system state equations as the linearized power system 
small signal model and performing the corresponding sparsity- 
oriented calculations. Several applications of the algorithm are dis- 
cussed and illustrated by numerical examples. 
The proposed methods and algorithm have been tested on two test 
systems with 20 and 50 machines respectively. The results show 
that they are suitable for the eigenanalysis of large power systems. 
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INTRODUCTION 

The evaluation of the small signal stability of power systems 
requires the calculation of the eigenvalues of a very large unsym- 
metrical and nonsparse matrix. The well-known QR method is 
robust and converges fast [l] but cannot be implemented with 
sparsity techniques, so that its application is limited to relatively 
small power systems. On the other hand, for a large power system 
with thousands of state variables, it is usually required to calculate 
only a specific set of eigenvalues with certain features of interest, 
for example, local mechanical modes, inter-area modes, etc. 
Therefore, significant effort has been expended to develop or apply 
new methods with the following three basic properties: 
(a) Sparsity techniques can be used 
(b) A specific set of eigenvalues can be found efficiently 
(c) Mathematical robustness is guaranteed, i.e. good conver- 

gence characteristics and numerical stability. 
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Among these (a) is of utmost importance since it provides the pos- 
sibility to handle large power systems. Several sparsity-based 
methods have been proposed in recent years. PEALS [2] is mainly 
aimed at the computation of slow inter-area oscillatory modes; the 
S-Method [3 ]  is most efficient for finding the unstable modes; 
STEPS [4] can be used for computing the eigenvalues belonging to 
a small study zone; [5 ]  gives an implementation of the inverse 
iterations. In addition to these methods, [6] and [7] also report spe- 
cial methods to solve the eigenvalue problem of large power sys- 
tems. 

This paper presents two sparsity-based eigenvalue techniques 
- simultaneous iterations and the modified Amoldi method - and 
their application to the small signal stability analysis of large 
power systems. These two methods are mathematically well- 
developed and both have been proved to be very efficient in com- 
puting the dominant eigenvalues of large, sparse, unsymmetrical 
matrices [8,9]. The former is an extension of the classical power 
method with a tactically designed interaction analysis which 
makes the method converge reliably. The latter is a method similar 
to the well-known Lanczos method, but more reliable by having 
better numerical properties after introducing appropriate 
modifications. Both simultaneous iterations and the modified 
Amoldi method are successful in the eigenanalysis of power sys- 
tems, as will be illustrated by various numerical examples. 

For the small signal stability analysis, an algorithm is pro- 
posed to make the eigenvalue problem of power systems fit the 
two methods mentioned above. The sparsity is fully preserved in 
the algorithm by using the augmented system state equations as the 
linearized power system small signal model and performing the 
corresponding sparsity-oriented calculations. A simple spectral 
transformation - fractional transformation - is then applied to the 
augmented state matrix to make dominant the eigenvalues around 
a specified shift point, so that a group of eigenvalues near the shift 
point can be computed by either of the two methods. This algo- 
rithm is most suitable for calculating a desired number of eigen- 
values nearest to or all eigenvalues within certain distance from 
the shift point. For example, if the local mechanical modes are of 
interest, shift points with typical frequencies between 1 to 2 Hz 
can be used to sequentially calculate the eigenvalues in this area. 

Two test systems with 20 and 50 machines respectively have 
been chosen to test the performance of the proposed methods and 
algorithm. Comparisons are also made for the two eigenvalue 
methods with other formerly used techniques. Some means for 
improving the methods as well as experience with the application 
of the algorithm are discussed and illustrated by numerical exam- 
ples. 

SOLUTION METHODS 

Sparsity-Based Eigenvalue Techniques 
Since the eigenanalysis of modem power systems deals with 

matrices of very large dimension, sparsity techniques play a key 
role in the analysis. A survey of the available sparsity-based eigen- 
value techniques for general unsymmetrical matrices results in the 
following four methods: 
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(a) 
(b) Simultaneous iterations 
(c) Arnoldi method 
(d) Lanczos method. 
The application of (a) to the eigenanalysis of power systems is 
reported in [4] and [5 ] .  A proposal of using (b) on vector and array 
processors is presented in [lo] which, however, does not contain 
numerical results. (d) has also been applied to this problem in [3] 
and [l 11. We note that (a) is good only for computing one eigen- 
value, or at most a few with deflation, and this is not satisfactory in 
most cases. (d) is a very successful method for the symmetrical 
eigenvalue problem, but has serious flaws in the case of unsym- 
metrical eigenvalue problems as, for example, the phenomenon of 
'breakdown' as pointed out in [12] and also experienced by the 
authors (see Appendix 1 for a brief discussion of the block Lanc- 
zos method). On the other hand, as far as we know, (b) has not 
been tried on ordinary computers for the eigenanalysis of power 
systems, and (c) has never been applied to these problems, but 
both (b) and (c) have been used successfully in some other applica- 
tions such as the partial eigensolution of stochastic mamces. Since 
they have generally better numerical properties, it seems that they 
may be the best candidates for the eigenanalysis of power systems. 
This is the reason why we choose them as solution methods in this 
study. 

It is interesting to note that all four methods mentioned above 
belong to a class of methods known as the Krylov method [13] in 
which the Krylov subspace { x Ax . . . Ai-'x ] is used to 
approach the dominant invariant subspace of a matrix A .  There are 
two important and useful features for these methods. First, they 
are all aimed at finding a few of the dominant eigenvalues of A 
(here dominance refers to largeness in modulus). This corresponds 
to the requirement that usually only a few of the eigenvalues are 
needed in the eigenanalysis of large power systems, although some 
transformation is necessary to make the required eigenvalues dom- 
inant. Second, in these methods the only operation involving A is 
the matrix-vector multiplication Ay. Therefore, it is not necessary 
to form A explicitly, provided that A y  can be calculated easily. 
This allows us to use the augmented system state equations to 
preserve the full sparsity of the problem. 

Power method and inverse iterations 

Simultaneous Iterations 
The method of simultaneous iterations was originally pro- 

posed in [14] for the symmetrical eigenvalue problem. The exten- 
sion of the method to general real unsymmetric matrices is first 
found in [15], and then fully analyzed in [16] and in [8] which also 
provides a practical algorithm of the lopsided simultaneous itera- 
tions. Although the matrices dealt with in the above references are. 
all real, the method is also applicable to general complex matrices, 
as demonstrated below. 

Let A E  CnX" have eigenvalues hi, with 

1x11 2 112.21 2 . . .  2 Ih,l 

and 
Aa 0 

' = [ O  A d  

where Aa = diag( hl . . . h, ) and Ab = diag( hm+l . . . h, 1. 
Denote the matrix of the right eigenvectors of A by 

Q = [ Q a  Q b I = [ q l  . . .  qm Iqm+1 . . .  q n I  
where qi is associated with hi. Then we have 

AQa = QaAa and AQb = QbAb (1) 

Assuming that we start with rn independent trial vectors 

U = [ u 1  U 2  . . .  U,] E cnXm 
perform the multiplication 

V = A U  (2) 

(3) 

Since U may be represented by 

where C,E Cmm and CbE C(n-m)xm are coefficient matrices, it is 
clear that 

U = Q a c a  + QbCb 

v = A U  = Q,Aaca + QbAbCb (4) 

Note that in eqn.(4) the first term is more dominant than in eqn.(3), 
i.e. the components of Qb have been somehow washed out in v. 
To further refine the eigenvalues in Aa, an interaction analysis is 
introduced by defining 

G = U H U  UHQaCa ( 5 )  

H = uHv = UHQ,A,C, 

and 

(6) 
where the superscript H means conjugate-transpose. Assuming that 
UHQa is non-singular, we obtain 

G-l H = C , ~ ( U ~ Q , ) - ~  U ~ Q , A , C ,  = ci1 A ~ C ,  (7) 

GB = H  ( 8 )  

CUB = AaCa (9) 

or, if B is the solution of 

then we have 

which implies that A, and C, contain the approximate eigenvalues 
and left eigenvectors of B. If P is the matrix of the right eigenvec- 
tors of B ,  

P = c,' 
then 

w = V P  Qah, + QbAbCbCi' (10) 
gives an improved set of right eigenvectors of A .  Taking W as the 
new set of trial vectors, the above process can be iterated until all 
required eigenvalues are found. It can be readily shown (see, for 
example, [ 161 for a similar proof of the simultaneous bi-iteration 
method) that this method is convergent for the first i eigenvalues of 
A if 

lhil > Ih,+l I (11) 

for i = 1, 2, . . . , rn and the convergence rate for hi is 
I1,+1 I I lhil. 

Locking Device 
It may be noticed that matrix G in eqn.(5) is symmetrical 

positive definite. Therefore, the Cholesky decomposition can be 
used to solve eqn.(8). Moreover, when one eigenvalue (say, the ith 
one) has converged, the first i rows and columns of G will not 
change in all subsequent calculations, and the Cholesky decompo- 
sition of G up to the ith step will also remain unchanged. Thus we 
can 'lock' the decomposed matrix G up to the ith row and column, 
and only perform the Cholesky decomposition from the (i+l)th 
step. This is the so-called 'locking device' which helps to improve 
the efficiency of the algorithm. 

Guard Vectors 
In practice, i f s  dominant eigenvalues of A are required, an rn 

larger than s is usually used in this method to obtain better conver- 
gence rate and to ensure the convergence of all s eigenvalues if 

I h, I = I h,+l I .  The additional vectors are named guard vectors in 
181. A practical question is how to decide the number of guard vec- 
tors so as to have the best computational efficiency. Unfortunately, 
there is no theoretical answer available. The only way to explore 
this is by numerical tests. Some calculations have been done on 
our test systems for this problem. The results are reported later, in 
the section on numerical results. 
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Fast Iteration Cycles 
In [ 8 ]  the idea of fast iteration cycles is introduced and 

proved to be very efficient for a variety of large, sparse matrices. It 
is basically the iteration procedure (2) with the interaction analysis 
omitted for a number of iterations. For power system problems, 
however, it seems less attractive since the multiplication in eqn.(2) 
is quite expensive for large systems and, more seriously, the suc- 
cessive multiplications will force the vectors in U to become 
dependent so that the matrix G is no longer positive definite, which 
will make the subsequent calculations very inefficient (this did 
happen in our test calculations). For this reason, the fast iteration 
cycles are not considered in our algorithm. 

General Procedure 

gram, as a summary of the discussions on simultaneous iterations. 
We give the following algorithm which we used in our pro- 

Set up the initial trial vectors U’ with independent columns; 
let i = 1 
Calculate Vi by eqn.(2) 
Calculate G i  by eqn.(5) and factorize it by the Cholesky 
decomposition 
Calculate H i  by eqn.(6) 
Solve for B from eqn.(g) 
Perform full eigenanalysis for B by the QR method, obtain- 
ing the eigenvalues Ab = diag( h ’ ~ ~  . . . h l ~ ,  ) and the 
associated right eigenvectors PI 
Compare A i  with Ab-’ ( AS = 0). If all required eigenvalues 
have been found, exit; otherwise go on to the next step 

Calculate the new trial vectors Ui+’ by eqn.(lO) 
Let i = i + 1 and go to (b) to perform the next iteration 

Modified Arnoldi Method 
The Arnoldi method was first uresented in 1171. However. - -  

because of its poor numerical properties, it was not successful 
before implementing several modifications to it [9]. The main 
problems of the original Arnoldi method are loss of orthogonality 
and slow convergence if a number of dominant eigenvalues is 
needed. The latter entails in most cases the need for the full 
eigenanalysis of a relatively large Hessenberg matrix, which is 
expensive. These problems can be solved by using the complete 
reorthogonalization and the iterative process described in [9]. 

The Amoldi method presented in [9] is also for general real 
matrices. The following extends it to general complex matrices 
with discussions on two modifications. 

Let A E  Cnm and v E C” the starting vector with IIv 1112 = 1. 
The subsequent orthonormal vectors are produced by the recursive 
formula 

hi+l, ivi+l = ( I - v ~ v ~ ) A V ~  i = 1, . + . ,  m (12) 

. . . vi 1. where hi+l,i is chosen such that llvi+l 112 = 1, and Vi = [ v 
From eqn.(l2) we can obtain 

where hi’= VyAvi E Ci. For all m equations assembled, eqn.(l3) 
becomes 

A v ~  = Vihi’+hi+l,ivi+l (13) 

AV, = VmHm+hm+l,mvm+leZ (14) 
where e: = [ 0 . . . 0 1 ] and H, is an upper Hessenberg matrix 
with the ith column equal to 

hi ’ 

(15) 

Eqn.(l4) can be approximated by dropping the second term 
on the right hand side. Thus, 

AV, = V,H, (16) 
which implies that the eigenvalues of H, are the approximations 
of the eigenvalues of A. Clearly, the error depends on h,+l,, 
which vanishes when m = n. In fact, as m increases, eigenvalues of 
H, with largest and smallest modulus will gradually converge to 
the eigenvalues of A. This is the well-known property of the Lanc- 
zos method, which also holds here. The approximate eigenvectors 
of A can be readily found as 

w = V,P (17) 

where P is the mxm matrix of the right eigenvectors of H,. 

Reorthogonalization 
It has been found that the original Arnoldi method as men- 

tioned above has numerically poor behavior because of the loss of 
orthogonality for the vector series vi after a number of iterations. 
The natural remedy for this problem is to reorthogonalize every 
newly-produced vector vi+l.  A modified Gram-Schmidt method 
[18] is used for this purpose, in which we simply replace eqn.(l2) 
by the iterative process 

(18) up+1 = (I - ViV? )up k = 1, 2, . . . 
with uf = Avi. This process continues until 

for some k = k,. Then we take 

hi+l,i = I I U y  112 (20a) 

In [9] a scheme of incomplete reorthogonalization was pro- 
posed. From our experience, however, it is not of great benefit 
because, first, by using the iterative Amoldi method a small m is 
used, and second, the reorthogonalization scheme (18)-(20) is very 
efficient so that in most cases only one iteration is enough. 

Iterative Arnoldi Method 
Since the original Arnoldi method converges usually for rela- 

tively large m, the complete eigenanalysis of a Hessenberg matrix 
of large dimension is necessary. To reduce the order of the 
Hessenberg matrix, the iterative Arnoldi method is introduced. Let 
m be fixed at a moderate value. We perform the original Arnoldi 
method with reorthogonalization to obtain the eigenvalue and 
eigenvector approximations hi and wi for i = 1, . . . , m. Then we 
repeat the same method but using a new starting vector, for exam- 
ple the one recommended in [9]: 

S 

V I  = a C I I ( A  -hi1 ) w i  112wi (21) 

where a is a scalar to normalize v l  and s is the number of eigen- 
values to be found. The iteration continues until all required 
eigenvalues are found. It can be shown (see Appendix 2) that 
eqn.(21) is equal to 

where a’ is again a normalizing scalar, P* = [ p1 . . . ps  I and 
jT = [ Ip, 1 I Ip, I I T .  Here pi is the ith right eigenvector of 
H ,  and pmi is the last element of pi. 

With the iterative Arnoldi method we will have the problem 
of choosing a proper m. Recommendations are given later by the 
numerical results which are based on our test systems. 

i=l 

v 1 =  a’v,P*jJ (22) 

1 . . 
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U? 

General Procedure 
In what follows, we give the algorithm for the modified 

Arnoldi method in which both the complete reorthogonalization 
and the iterative process are used. 

1 

Set up the starting vector v ; let V 1 = v and i = 1 
Calculate ut = A V ~ ;  let k = 1 
Calculate U:+' by eqn.(l8) 
If the condition (19) is satisfied, go on to the next step; other- 
wise let k = k + 1 and go to (c) 
Calculate hi+l,i and vi+l by eqn.(20a) and (20b) 
Calculate hi ' = VYAvi and form hi by eqn.( 15) 
If i = m, matrix H has been formed and go on to the next step; 
otherwise let Vi+l = [ Vi vi+l 1. i = i + 1 and go to (b) 
Perform full eigenanalysis for H by the QR method. If all 
required eigenvalues have been found, exit; otherwise go on 
to the next step 
Calculate the new starting vector v 1 by eqn.(22); let V = v 1 ,  
i = 1 and go to (b) 

APPLICATION TO POWER SYSTEMS 

Power System Modeling 
The linearized power system model for the small signal sta- 

bility analysis is easy to derive (for example, see [l]). However, 
since the state matrix of a power system is in general not sparse, 
the direct construction of the state matrix would be impossible for 
large systems. Various schemes have been proposed to implement 
sparsity techniques [2] ,  [ 3 ] ,  [4], [5]. Here we adopt the method of 
141 in which the augmented system state equations are used: [:I =[;: a] [:I (23) 

where x is the vector of the state variables and V is the vector of 
the system voltages. J A ,  J B ,  Jc and JD are sparse matrices which 
depend on the system parameters and the operating point. It can be 
seen that the state mamx A may be formed from eqn.(23) as 

A = J~ - JB J E ~  J~ (24) 

which is only of theoretical significance in this work. 

Spectral Transformation 
For the smali signal stability analysis of power systems, two 

types of the eigenvalues are of special interest: the weakly-damped 
local mechanical modes with frequencies between 0.8 to 2.0 Hz 
and inter-area modes with frequencies between 0.1 to 0.6 Hz. 
Unfortunately, these eigenvalues are usually much smaller in 
modulus than other eigenvalues (for example, the fast damped 
local modes), so that most of the sparsity-based eigenvalue algo- 
rithms can not be applied directly. The solution of this problem is 
to apply a spectral transformation to the original state matrix to 
shift the required eigenvalues so that they become dominant in 
modulus. The simplest way to do this is to use the fractional 
transformation 

A,  = ( A  -h,I)-' (25) 
which transforms the eigenvalue hi of A to 

h . - -  1 
hi -h, r l  - 

where h, is a fixed shift. It is easy to verify that the transformation 
(25)  transforms the eigenvalues of A within the unit circle centered 
at h, to the eigenvalues of At outside the unit circle at the origin. 
Thus, if the eigenvalues around some point k, (say a fixed fre- 
quency) are required, the shift 1, can be used in eqn.(25) to mag- 

nify the eigenvalues near Lr. Sparsity-based eigenvalue techniques 
can then be applied to the transformed matrix A, to find these dom- 
inant eigenvalues. 

We would like to make a short comment here for the Cayley 
transformation used in [3]. An advantage of the Cayley transfor- 
mation is that the transformed matrix At (or matrix S as in [3]) 
remains real, while for the fractional transformation it becomes 
complex in general. However, this will not substantially increase 
the storage requirement for the latter. For example, if we consider 
a system with 1200 buses, 1400 lines, 300 machines and 3000 state 
variables, the increase of the storage is about 370 KB for double 
precision calculations, which can easily be handled by modern 
computers. On the other hand, by using the Cayley transformation 
all complex eigenvalues will be calculated twice for each conju- 
gate pair, and the real eigenvalues around the origin may also have 
to be calculated, even if only slow oscillatory modes are of 
interest. Therefore, the fractional transformation can provide more 
flexibility and better computational efficiency. 

Practical Implementation 
To apply the two eigenvalue techniques described in this 

paper, we only need to provide the matrix-vector product Ay, or 
Ary = ( A  - hrl )-'y if the transformed matrix A, is considered. The 
corresponding calculation in terms of the augmented state matrix 
is then to solve the equation 

for x. An algorithm for solving the above equation with the spar- 
sity techniques is given in Appendix 2 of [4]. 

Numerical Results 

Description of the Test Systems 
Two test systems are employed in order to examine the per- 

formance of the above two sparsity-based eigenvalue techniques 
applied to the eigenanalysis of large power systems. In each sys- 
tem, a 9th order model is used for the synchronous machine and its 
control systems. Loads are represented by constant impedances. 
The first system, T77, has 77 buses, 20 machines and 180 state 
variables, and the second one, T169, is a 169 bus, 50 machine sys- 
tem with 450 state variables. Complete eigenanalyses by the QR 
method have been performed for both systems to make sure the 
results from the new methods are correct. Fig. 1 and Fig. 2 show 
the eigenvalue distributions of the two systems (in both figures, 
eigenvalues with the real parts less than -30 and with negative ima- 
ginary parts are omitted). 

! I  I 
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g-1  E 
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Fig. 2 - Eigenvalue Distribution of T169 

The results by the QR method show that 177 is stable with all 
eigenvalues having negative real parts, and T169 is unstable with 
two unstable modes (eigenvalues): 0.089017 and 1.389242. 

All calculations reported in this paper were performed with 
double precision (error tolerance = lo-' ) on an IBM4361 com- 
puter running CMS. 

0: s = 1  

Guard Vectors 
The effect of guard vectors in simultaneous iterations is 

explored mainly on T77 by using a shift h, = -O.l+jll.O and 
sequentially calculating up to 5 eigenvalues nearest to hl. The 5 
calculated eigenvalues are: -0.291205+j 11.181740, -0.299078+ 
j 1 1.55841 1, -O.273586+j 10.0698 16, -0.820126ej 1 1.686807 and 
-0.956709+j9.957278. The CPU times for these calculations are 
shown in Fig. 3 where s is the number of eigenvalues found in 
each calculation. It can be seen from the figure that for small s (i.e. 
only a couple of required eigenvalues), guard vectors are not help- 
ful in improving the computational efficiency. For medium s, how- 
ever, one guard vector seems the best. Several calculations on 
T169 indicate that one guard vector results in the optimal CPU 
time in most cases, however, two or more guard vectors are neces- 
sary to reach convergence within a proper number of iterations 
when (a) a large number of eigenvalues ( > 5 ) are required and (b) 
the shift point ht is in an area where eigenvalues are densely distri- 
buted. In general, we recommend that one guard vector be used for 
s < 5, and two for s 2 5. For the case when both a large number of 
eigenvalues are required and h, is in the area densely filled with 
eigenvalues (such as the area of inter-area modes), one should con- 
sider three or more guard vectors. 

Order of the Hessenberg Matrix 
To determine the proper order of the Hessenberg mamx 

defined in the modified Arnoldi method (i.e. the iterative Arnoldi 
method with complete reorthogonalization), we use the same sys- 
tems as in the above section. The CPU times are given in Fig. 4 
where s is again the number of eigenvalues found in each calcula- 
tion, and the horizontal axis is the order of the Hessenberg matrix 
minus s (or the 'net additional order'). We see from the figure that 
the additional order is necessary to avoid divergence andor slow 
convergence. The computational efficiency is basically the same 
over a wide range after the initial slow convergence period (i.e. 
after an additional order of about 4). This slow convergence 
period varies for different numbers of eigenvalues required and 
also depends on the system size. From our experience, a value of 
10 to 20 for the additional order is appropriate in most cases: 
smaller value for fewer required eigenvalues and smaller systems. 

4 0: 5 = 2  

A- 4: s = 4  /' $1 n: s = 3  

/ :: .: s = 5  
Y 

C O  

I 

No. o f  Guara vec tc rs  

Fig. 3 - Effect of Guard Vectors 
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Fig. 4 - Effect of Order of the Hessenberg Matrix 
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Fig. 5 - Comparison of the Two Methods 
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Comparison of the Two Methods 
A comparison of the two methods - simultaneous iterations 

and the modified Arnoldi method - is made from Fig. 3 and Fig. 4 
by taking the optimal CPU time for each s. The results are shown 
in Fig. 5. It is clear that, in this example the modified Arnoldi 
method has an overall faster computational speed than simultane- 
ous iterations. This is because in simultaneous iterations the 
Krylov subspace is directly constructed on the basis of 
( x Ax . . . A'-'x ), but in the modified Arnoldi method it is 
spanned on an orthogonal base which is superior. Therefore, in 
general the modified Arnoldi method is faster than simultaneous 
iterations at the price of more storage requirement because of the 
complete reorthogonalization and the additional order. Hence, for 
very large power systems, simultaneous iterations become more 
attractive than the modified Arnoldi method due to storage restric- 
tions. 

the inter-area modes. Both figures clearly indicate that two circles 
have covered the most weakly-damped inter-area modes, so that 
our purpose is fulfilled. 

Comparisons with Other Methods 
Comparisons were also attempted for the two eigenvalue 

methods with other formerly used methods. The inverse iterations 
with deflation can find up to 3 eigenvalues for the above problems 
within 500 iterations. However, its speed is nearly 2.7 times slower 
than of simultaneous iterations for the case when 3 eigenvalues are 
found. A block Lanczos algorithm similar to the one in [3] was 
tried to solve the same problems, but due to the severe numerical 
problems the methood did not converge. Two main difficulties 
were encountered: very rapid loss of orthogonality for the Lanczos 
vectors and 'breakdown' (see Appendix 1). The conclusion is that 
the methods presented here are more reliable and efficient. 

Calculation of Local Mechanical Modes 
In most applications of the eigenanalysis of modem power 

systems, two types of eigenvalues are of special interest: the 
weakly-damped local mechanical modes and inter-area modes. We 
first focus on the weakly-damped local mechanical modes which 
have typical frequencies of 0.8 to 2.0 Hz. For T77 we use two shift 
points with small negative real parts and frequencies around the 
two ends of the typical frequency range, i.e., h,l = -0.l+j6.28 and 
ht2 = -O.l+j12.57. Both eigenvalue methods are applied to com- 
pute the first 10 eigenvalues for each shift point and they give the 
same results. Fig. 6 shows the distribution of the complex eigen- 
values of T77, in which the eigenvalues within each of two circles 
are found in the calculations. Since there are two eigenvalues 
within the intersection of the two circles, we consider that all 
required eigenvalues have been found. From the figure we see that 
indeed all local mechanical modes with frequencies from 0.76 to 
2.05 Hz have been circled. For T169, we can repeat the whole pro- 
cedure, as shown in Fig. 7. However, with two shift points, we see 
that there is a frequency gap in which no eigenvalue has been 
found (this can be seen by noting that the highest frequency in the 
hI1 circle is 1.3 Hz and the lowest frequency in the ht2 circle is 
1.65 Hz, so the frequency gap is 0.35 Hz). Therefore, we add an 
additional shift point h,3 =-0.l+j9.42 in the middle between hil 
and ht2 and compute the first 10 eigenvalues near ht3. Now we see 
from Fig. 7 that the three circles cover most of the local mechani- 
cal modes with frequencies from 0.6 to 2.34 Hz, and the omitted 
local mechanical modes are all fast-damped ( 5 2 0.22). 

Calculation of Inter-area Modes 
We now turn to the second type of interesting eigenvalues - 

the weakly-damped inter-area modes which have typical frequen- 
cies of 0.1 to 0.6 Hz. We use again two shift points with small 
negative real parts and frequencies of 0.2 and 0.5 Hz (here a 
slightly higher frequency of 0.2 Hz is used to avoid as much as 
possible the convergence to real eigenvalues). The results for both 
test systems are in Fig. 8 and Fig. 9 respectively, which are 
magnified from Fig. 6 and Fig. 7 to show the portion containing 

i 

Fig. 6 - Oscillatory Modes of T77 
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Fig. 8 - Inter-area Modes of T77 Fig. 9 - Inter-area Modes of T169 

Calculation of Unstable Modes 
If a power system is unstable due perhaps to improper param- 

eters or the chosen operating point, it is desirable to calculate the 
unstable modes of the system. Basically, we can use the same pro- 
cedure as described in the above two sections, except that the shift 
points should be placed in the right half of the complex plane with 
positive real parts and appropriate frequencies. Real unstable 
modes can be found by simply using a real shift point. For exam- 
ple, the two real unstable modes of T169 can easily be obtained by 
using the shift point hi = 1.0. Note that if a system contains 
unstable local mechanical modes and/or unstable inter-area modes, 
the procedure in the above two sections can probably find them 
since from Fig. 6 to 9 we see that each circle covers also portions 
of the unstable area. Therefore, the calculation of unstable modes 
can be considered to some extent as part of the calculation of the 
local mechanical and inter-area modes. 
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[7] Y. Obata, S .  Takeda, and H. Suzuki, "An Efficient Eigen- 
value Estimation Technique for Multimachine Power System 
Dynamic Stability Analysis", IEEE Trans. Vol. PAS- 100, No. 
1, pp. 259-263, January 1981. 
W.J. Stewart and A. Jennings, "A Simultaneous Iteration 
Algorithm for Real Matrices", ACM Trans. on Mathematical 
Software, Vol. 7, No. 2, pp. 184-198, June 1981. 

CONCLUSIONS 

The paper has presented two sparsity-based eigenvalue tech- 
niques - simultaneous iterations and the modified Amoldi method 
- and their application to the small signal stability analysis of large 
power systems. From the principles of the methods and the numer- 

[8] 

results reported, the following conclusions can be drawn: 
Both methods have reliable convergence characteristics and 
are successful in the eigenanalysis of large power systems 
Generally speaking, the modified Arnoldi method is faster 
than simultaneous iterations, while the latter needs less 
storage space 
The algorithm based on the methods is suitable for calculat- 
ing a specific group of eigenvalues (including multiple ones) 
such as the weakly-damped local mechanical modes and 
inter-area modes. In particular, the fractional transformation 
is very efficient in shifting the required eigenvalues to permit 
application of the above methods 
The program can be fully automated since it does not require 
any initial guess of eigenvalues. The selection of the nature of 
desired eigenvalues is achieved by the placement of the shift 
points 
Since the methods and the associated algorithm do not have 
any restriction in the modeling of power system components, 
any detailed models can be implemented in the program to 
make the results more practical. 
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APPENDICES 

Appendix 1 - Block Lanczos Algorithm 
Let A E C " ~ ,  and XIEC"" and Y ~ E C " ~  the starting 

matrices, with the conditions that the columns in both X I  and Y1 
are independent and det(YyX1) # 0. The following recursive for- 
mula produces the bi-orthogonal matrix series 
{ X I ,  X 2 ,  ' ' ' ,  x k + l  1 and { y1, y 2 ,  ' '  ' ,  y k + l  1: 

(A-la) x k + l  = A X k - X k a k - X k - l  Pk-1 

Y k + l  = A T y k  - Y k a ' k  - Y k - 1  P'k-1 (A-lb) 

where, 

a k  = ( Y f X k ) - '  ( Y f m k )  

Pk-1  = ( Y f - l x k - l ) - '  ( y f - l m k )  

a ' k  = ( x f y k ) - l  ( X f A T Y k )  

P Ik-1 = (xf-1 Yk- l ) - '  ( X f - l A  T y k )  

In the above equations, T means transpose and H means 
conjugate-transpose. The bi-orthogonal condition implies that 
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where 

Tk = 

~ 

. . .  

A [ X I  X 2  . . .  X k ] = [ x l  X 2  . . .  X k ] T k  (A-5) 
i.e. the columns of [ X 1  X 2  . . . x k  ] define an invariant sub- 
space for A. Eqn.(A-4) can also be approximated by eqn.(A-5) if 
x k + l  is small, and then some iterative procedure (such as the one 
used in the modified Amoldi method) can be used to refine the 
dominant eigenvalues of A .  We note that r = 2 in the above algo- 
rithm corresponds to the method in [3]. 

There exist two main problems in the above block Lanczos 
algorithm. First, the bi-orthogonality which is fundamental for the 
algorithm is very rapidly lost on a finite-precision computer due to 
the round-off errors. The complete reorthogonalization for over- 
coming this problem needs both matrix series 
[ X I ,  X z ,  . . .  ,x ) and { Y 1 ,  Y 2 ,  . . .  ,Yk ). Second, if 

then the algorithm is terminated without giving any information 
about the invariant subspace of A .  The algorithm must be restarted 
with the new starting mamces, but it is still uncertain whether or 
not the breakdown will occur again. In this sense, the Lanczos 
method for the unsymmetrical eigenvalue problem is not reliable, 
and also not economical if complete reorthogonalization is going 
to be used. 

y k + l  = 0, or d e t ( Y k + l X k + I )  B = 0 (this is the so-called breakdown), 

X l  P 1  

I a2 . 
I . .  

. . .  
. .  . 

. ak-1 pk-1 

a k  

SO if X k + l  = 0, eqn.(A-4) is reduced to 

Appendix 2 - Derivation of Equation (22) 
We proceed with equation (21): 

S 

(A-6) v 1 = a II (A - hi I ) wi 112 wi 
i=l  

Since by eqn.( 17) 

wi = v*pi ('4-7) 

(A-8) 

and by definition 

(If, - h i I ) p i  = 0 
we have 

II(A - h ; I ) w i  112 = I I ( A V m - h i V m ) p i  112 

= 11 ( v m 1 f m + h m + l , m v m + 1 e i  - h i V m ) p i  112 

= Ihm+l,m 1 IPmi I (A-9) 
where Ipmi I = I I. Let a' = a/ I hm+l,m I (if I hm+l,m I = 0, 
then all hi and wi are the exact eigenpairs of A ) .  Substituting 
eqn.(A-9) into eqn.(A-6) yields 

v1 =a'f:IpmiIvmpi=a'vmP*p (A-10) 
i= l  

where P * = [ p l  . . .  p s ]  and jT=[ IpmlI . . .  Ip,I I T ,  
Eqn.(A-10) is the same as eqn.(22). 
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