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The use of Particle-In-Cell (PIC) algorithm with explicit scheme to model low temperature 

plasmas is challenging due to computational time constrains related to resolving both the 

electron Debye length in space and the inverse of a fraction of the plasma frequency in time. 

One recent publication [Ricketson and Cerfon, Plasma Phys. Control. Fusion 59, 024002 

(2017)] has demonstrated the interest of using a sparse grid combination technique to 

accelerate explicit PIC model. Simplest plasma conditions were considered. This paper is the 

demonstration of the capability and the effectiveness of the sparse grid combination technique 

embedded in the PIC algorithm (hereafter called “sparse PIC”) to self-consistently model 

capacitively coupled radio frequency discharges. For two-dimensional calculations, the sparse 

PIC approach is shown to accurately reproduce the plasma profiles as well as the energy 

distribution functions compared to the standard PIC model. The plasma parameters obtained 

by these two numerical methods differ by less than 5 % while a speed up in the executable 

time between 2 and 5 is obtained depending on the set-up. 
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I. Introduction 

Particle-In-Cell (PIC) simulations provide a general description of plasmas through a 

kinetic description of charged particles. They have been extensively described in text books 

[1-3] and review articles (e.g. [4-8]). In the domain of low temperature plasmas, they are 

preferably used when the mean free path of electrons becomes larger or in the order of the 

size of the plasma discharge. They are widely employed in the context of capacitive [9-12], 

inductively coupled [13], magnetron [14-15], magnetic field barrier [16-20], nanosecond 

pulse [21-22], and streamer [23-25] discharges. 

An explicit scheme that uses charged particle properties at previous time step to calculate 

electromagnetic field characteristics at next time step is rather straightforward but time 

consuming since the smallest electron scales in space and time must be resolved for stability 

reasons. Consequently, severe constrains exist on the grid spacing ∆𝑥 (that must be smaller 

than the electron Debye length 𝜆𝐷,𝑒) and the time step ∆𝑡 (smaller than a fraction of the 

inverse electron plasma frequency 𝜔𝑝,𝑒), avoiding numerical heating [1], [17]. Note that the 

Courant-Friedrichs-Lewy (CFL) condition is naturally satisfied when both constrains are 

respected. For a typical discharge size of 5 centimeters length during 10 s with an electron 

density and a temperature of 10
18

 m
-3

 and 3 eV, respectively, the numerical parameters must 

be small as ∆𝑥 ~ 10 m and ∆𝑡 ~ 1 ps, leading to 5 000 cells in one direction and 10 million 

of time steps. In 3D, the number of cells increases to 1.25×10
11

. The use of a finite number of 

computational particles to statistically sample the charged particle distribution functions can 

also affect the accuracy of the obtained solution [17]. The addition of a Monte Carlo 

procedure to treat collisions can deteriorate the plasma properties. To maintain the effect of 

physical collisions dominant, Okuda and Birdsall [26], and Turner [27] show that the 

numerical collision frequency must be smaller than 10
-4

×𝜔𝑝,𝑒. That fixes a minimum number 
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of particles in a Debye sphere to make negligible the effect of non-physical collisions due to 

the numerical particle discreteness. Taking for example 100 computational particles per cell 

and per species, 500 000
d
 particles per species must be followed, d being the number of 

direction. Even on massively parallel machines, high plasma densities in three dimensional 

geometries are difficult to simulate without weeks or months of computational time.  

 To alleviate the constrains on the numerical parameters, a sub-cycling method can be 

implemented. It consists in assuming that the motion of the ions may be disregarded during a 

few time steps while satisfying the constrains related to the electron dynamics [28]. The gain 

in computational efficiency remains limited (a factor of two when one ion specie is 

considered). A density scaling method (reducing the initial plasma density by a constant 

factor larger than 1) has also been proposed. The solution in the quasineutral region is 

identical, but the sheath description is affected since its thickness is proportional to the 

electron Debye length and is hence enlarged for a lower plasma density. The limited scaling 

factor is linked to the fact that the sheath properties can be changed (e.g. becoming collisional 

– the sheath thickness becomes larger than collisional mean free path, and/or magnetized - the 

sheath thickness becomes larger than particle gyroradius - if not before). For example, this 

method has been successfully used to model the operation of the BATMAN source designed 

to produce and extract negative ions for the neutral beam injector of ITER [16]. A factor of 6 

× 10
4
 (~ 10

13
 m

-3
 in the simulation compared to 6 × 10

17
 m

-3
 in the real source) has been 

employed in the 3D simulations of the ion source associated with a computational domain of 

192 × 128 × 256 grid nodes that makes a simulation running time acceptable (54 days on 6 

processors). The adaptive mesh refinement method (together with an adaptive particle 

management algorithm) has also been considered in 3D models of streamer propagation to 

reduce computational time [23].  
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In the context of the acceleration of PIC simulations, first implicit methods have been 

implemented in the 80’s, in a time where the architecture of processors was not able to 

perform calculations in parallel. They are based on the calculations of electromagnetic fields 

and particle motions at the same time. Stability constrains (and associated discretization 

parameters) can be relaxed when the resolution of the electron Debye length and plasma 

frequency are not necessary to capture long-wavelength and low-frequency phenomena 

(plasma expansion, instabilities, MHD, etc.). The issue stems from the non-linear coupling of 

particles and field equations. The difficulty is overcome by a linearization of the system of 

equations introducing fluid moments - momentum and mass – as in the Implicit Moment 

Method [29], or through a linearization of the shape functions used for the deposition of 

charges and current densities onto the grid in the Direct Implicit Method [30]. Most of the 

time, constrains in time step and grid spacing are relaxed by a factor of ~ 10. Nevertheless, 

the predictor-corrector scheme in the Direct Implicit Method requires solving two times the 

pusher of particles, the most expansive procedure of the PIC algorithm. Moreover, the matrix 

providing the electric field is time dependent, requiring at each time step a costly matrix 

factorization if a direct solver is used. A Fast Fourier Transform method can advantageously 

be used when periodic boundary conditions are employed [31]. Finally, fully implicit methods 

have recently been addressed by Chen and co-workers [32] and Markidis and Lapenta [33] for 

both electrostatic and electromagnetic PIC models. The particle equations of motion and the 

field equations system are differenced implicitly and non-linearly solved by means of a 

sequence of linear problems. The algorithm is stable for any choice of the time step 

irrespective to the electron stability constrains as in the explicit method. The particle pusher is 

however sophisticated. Since particles may cross several cells in a time step, their motion 

needs to be decomposed by cells in order conserve the total energy in the system. The 
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efficiency of fully implicit method is limited by that of the preconditioner used to invert the 

matrix [34]. 

Another critical issue related to the number of computational particles required to properly 

sample the physical system is the question of computer memory usage. Obviously, a one 

dimensional PIC model with for instance a total of 500 000 macroparticles per species is easy 

to manage on a computer in term of memory. This number grows in 2D and 3D so that the 

total number of particles can become large enough to exceed the maximum memory resources 

available on the even most performant computers. Ricketson and Cerfon have proposed to 

apply the so called “sparse grid” combination method to accelerate PIC simulations by 

reducing the number of cells in the simulation domain and consequently the total number of 

macroparticles [35]. An increase of the grid cell sizes allows to reduce the statistical noise in 

the simulation without increasing the total particle number They have verified this new 

approach with three benchmarking tests encountered in plasma physics (linear and nonlinear 

landau damping in 3D and diocotron instability in 2D). These benchmarks remain limited 

with regard to different characteristics generally encountered in plasmas. Purely periodic 

boundary conditions are systematically applied, with ions at rest defining a neutralizing 

background, and collisions are disregarded. Our purpose is to assess the merit of the sparse 

grid PIC-MCC technique in the context of low temperature plasma calculations. This includes 

the simulation of the motions of all charged particles (including ions), collisions (including 

ionization to self-sustain the discharge), as well as non-trivial boundary conditions such as 

metallic walls. In this article (part one), the results derived from the sparse grid method are 

compared to the plasma profiles provided by the standard PIC-MCC algorithm for 

configurations typically encountered in representative computations of capacitive discharges. 

A work of verification between different PIC models has already been addressed for one 

dimensional simulation of capacitive discharges [10]. These results will serve as reference 
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cases for the benchmark investigated within the present work. In the companion paper (part 

two), the same verification will be performed in an E × B magnetized discharge [36]. The rest 

of the paper is organized as follows. Section II is devoted to the adaptation of the sparse grid 

combination technique in the context of PIC-MCC models. In section III, verification and 

estimation of the limit of the sparse PIC method will be addressed for capacitive discharges. 

In section IV, the gain in computational efficiency is outlined. Main results are finally 

summarized in section V.  

II. Sparse grid combination technique applied to PIC algorithm 

Sparse grid methods aim at reducing the complexity of discrete problem by breaking the 

exponential increase of the number of degrees of freedom with respect to the dimensionality 

of the problem. For classical discretization on uniform Cartesian grid meshes, with 𝑀 degree 

of freedom in each direction, the total number of unknowns is indeed proportional to 𝑀𝑑, 𝑑 

being the dimensionality of the problem. The purpose of sparse grid techniques is to compute 

approximation of a function on a hierarchy of anisotropic grids with a coarser resolution, 

hence reducing the total number of degrees of freedom. A combination of approximation 

carried out on the different anisotropic grids allows the reconstruction of the solution of the 

initial Cartesian mesh with a comparable approximation to a classical interpolation performed 

directly from the 𝑀𝑑 degrees of freedom carried out by a Cartesian grid [37]-[39]. For 

standard piecewise linear interpolation functions, the number of degrees of freedom of sparse 

grids is decreased to 𝑀 log(𝑀)𝑑−1 while the precision of the reconstructed numerical 

approximation is proportional to ℎ2 log(𝑀)𝑑−1 (in 𝐿2 and 𝐿∞ norms). This means that the 

second order precision expected on a Cartesian grid with a mesh ℎ is recovered with a 

significant gain regarding the computational efficiency for problems with a large 

dimensionality (𝑑 > 1). 
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Sparse grid methods have been used in fluid mechanics for the resolution of Navier-Stokes 

equation [40-41], quantum mechanics for the resolution of Schrödinger equation [42], plasma 

physics for the resolution of the gyrokinetic Vlasov equation [43], [44], and financial 

mathematics for the resolution of the Black-Scholes equation [45]. In sub-section A, we recall 

the basics of the sparse grid combination technique and we refer to Ref. [34] for the 

background (and references therein for more details about the mathematics). In sub-section B, 

the standard PIC algorithm is enhanced to take benefits from the sparse grid combination 

technique. In sub-section C, elements of parallelization and optimization are outlined. 

A. Grid definition and combination technique 

Different sparse grids may be defined (see [46] for more details), this work being devoted 

to the combination technique, only the sparse grids specific to this class of numerical 

approximation are detailed in the sequel. The number of cells in each direction is assumed to 

be defined as 𝑀 = 2𝑁 with a corresponding number of nodes equals to 2𝑁 + 1. For 

simplicity, the description of the method will be specified for a two-dimensional problem (x 

and y directions) and a Cartesian initial grid with a uniform mesh width in both directions ℎ𝑥 = ℎ𝑦 = ℎ = 2−𝑁. Let us denote HI,J the Cartesian grid with depth 𝐼 and 𝐽 and mesh widths ℎ𝑥𝐼 = 2−𝐼 and ℎ𝑦𝐽 = 2−𝐽, where 𝐼 and 𝐽 are strictly positive. The sparse grid approximation UN 

on the regular Cartesian grid HN,N can be obtained via a linear combination of numerical 

approximations UI,J computed on the coarser meshes HI,J [47] with: 

𝑈𝑁 = ∑ 𝑈𝐼,𝐽𝐼+𝐽=𝑁+1 − ∑ 𝑈𝐼,𝐽𝐼+𝐽=𝑁  (1). 

As mentioned before, the recombined numerical solution provides an approximation with an 

accuracy comparable to that of obtained on uniform Cartesian mesh. Specifically, the error of 

sparse grid approximation is proportional to ℎ2 log(𝑀)𝑑−1 to be compared to ℎ2 for standard 

piecewise linear interpolation on a grid with a mesh size ℎ. This marginal deterioration of the 



8 

 

precision is balanced by a substantial improvement of computational efficiency. The 

combination technique becomes very advantageous for large depth 𝑁. In sparse grids, the 

total number of cells 𝐺sparse summing all the cells for which 𝐼 + 𝐽 = 𝑁 + 1 and 𝐼 + 𝐽 = 𝑁 

(for 2D problems) is equal to: 

𝐺sparse = 𝑁2𝑁+1 + (𝑁 − 1)2𝑁 = 2𝑁(3𝑁 − 1) (2), 

growing slower with 𝑁 than 𝐺r = 2𝑁 × 2𝑁 the total number of cells for a regular grid. The 

ratio 𝐺r 𝐺sparse⁄  as a function of depth 𝑁 is plotted in figure 1. For 𝑁 = 9 (𝑀 = 512), the 

reduction of the number of cells is close to 20. 

 

Figure 1: Total number of cells for the Cartesian mesh (with a mesh size 2−𝑁)  divided by its 

sparse grids hierarchy counterpart 𝐺r 𝐺sparse⁄  as a function of the depth N. 

B. Sparse grid PIC algorithm  

In the standard electrostatic PIC algorithm, particles are defined in phase-space through 

positions and velocities while the electric field components (and applied magnetic field 

components if any) are defined on the nodes of the computational grid [1-5]. Assuming at the 

beginning of the ∆𝑡 cycle a given profile of electric field (and eventually magnetic field), new 
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positions and velocities of particles have to be calculated. Since particles are defined 

continuously in space while electromagnetic fields being defined at discrete locations, an 

interpolation is used to assign the electromagnetic force acting on particles at their positions. 

The implementation of a center leap-frog scheme with the Boris algorithm [2] to advance 

particles involves the use of an offset of ∆𝑡 2⁄  between position and velocity. Boundary 

conditions are applied to particles (losses and/or emission at the walls). If collisions occur in 

the discharge volume, a Monte Carlo procedure is added in the cycle. The most efficient in 

computation time is the null collision method [5]. To displace the particles under the new 

electrical force acting on them, the electric potential profile is computed from Poisson’s 

equation (Gauss’s Law 𝜀0∇. 𝐄 = 𝜌 combined with the scalar definition of electric potential ∅, 𝐄 = −∇∅): 

∆∅ = − 𝜌𝜀0 = − 1𝜀0 ∑ 𝜌𝛼𝛼  (3), 

where 𝜌 is the net charge density calculated from the sum over all the charge densities 𝜌𝛼 of 

specie 𝛼. In equation (3), ∅ is calculated on the grid nodes from the source term 𝜌. The latter 

is evaluated on a given grid node using the charge carried by the macroparticles in the 

neighboring cells. Classically, the charge of a particle is weighted to the nearest nodes via the 

shape functions. These are called b-spline functions and correspond to different orders of 

precision (order 0, the charge is assigned on the nearest grid point), order 1 (with a linear 

spline to the closest grid points), order 2 (quadratic splines), etc. The most common function 

used in the standard PIC method in 2D is a piecewise bilinear spline shape (also called Cloud 

In Cell). 

Following the formal analysis conducted by Ricketson and Cerfon [35] a sparse grid 

approximation of charge density𝜌𝑁,𝛼 (𝛼 denoting the particle species) may be reconstructed 

on the regular grid using Eq. (1): 
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𝜌𝑁,𝛼 = ∑ 𝜌𝐼,𝐽,𝛼𝐼+𝐽=𝑁+1 − ∑ 𝜌𝐼,𝐽,𝛼𝐼+𝐽=𝑁  (4). 

Note that computing the electrostatic potential thanks to eq. (3) with 𝜌𝑁,𝛼 as a source term 

requires the numerical resolution of the Poisson’s equation on the initial mesh (with hence a 

large number of cells) and is therefore as time consuming as the standard PIC method. We 

have hence adopted a different strategy (also detailed in ref. [35]) to benefit from the 

advantage of the sparse grid combination technique by resolving Poisson’s equation on each 

of the 2𝑁 − 1 sub-grids (2𝑁 − 1  corresponding to the total number of sub-grids that are 

constructed from a depth 𝑁in the maximum-norm based grid). Due to the reduction of the size 

of linear systems solved on each of the sparse grids, a substantial gain in numerical efficiency 

is achieved. The electric field at the particle position is calculated using Eq. (1) directly 

recombined from combination from electric fields calculated by linear interpolation on each 

of the 2𝑁 − 1 sub-grids. The cycle of calls to subroutines in the sparse PIC algorithm is 

sketched in figure 2. The initialization, integration of equations of motions, boundary 

conditions and collisions are strictly identical to the ones of the standard PIC approach. For 

Dirichlet boundary conditions, the electric field component normal to the walls is obtained 

from a linear extrapolation of electric field component at forward points [17]. As previously 

mentioned, the charge deposition (in order to calculate 𝜌𝐼,𝐽,𝛼) together with Poisson’s equation 

routine are calculated on each of the sub-grids. The calculation of Poisson’s equations has 

also to be performed on each of the sub-grids, while the electric field is reconstructed at the 

particle location by combination. 
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Figure 2: Sparse PIC algorithm. The indices 𝑙  and 𝛼 refer to a given particle 𝑙 of specie 𝛼. 

C. Parallelization and optimization strategies 

As in standard PIC simulations, we have adopted a hybrid parallelization taking the 

advantage of distributed memory (with Message Passing Interface (MPI) libraries) between 

cores and shared memory (using Open Multi-Processing (OpenMP) programming with 

FORTRAN) between threads [16-17], [20]. Macroparticles are ascribed initially equally 

between MPI and OpenMP threads (so called “particle decomposition technique”); the entire 

simulation domain is accessible by each threads. A sorting algorithm is implemented where 

macroparticles are ordered per grid cell, allowing a sequential access to the computer memory 

in the pusher subroutine [48]. Calling the sorting algorithm each between 10 to 50 iterations 

in the PIC cycle is a good compromise between gain (with respect to memory access) and 

losses (time devoted to the sorting) in computing time.  

The Single Instruction Multiple Data (SIMD) capability of modern architecture processors 

offers the opportunity of performing vectorization, meaning that, for data stored contiguously 
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in memory, the processor is able to perform an arithmetic operation to multiple operands at 

once. Vectorization does not demand supplementary instructions to push particles because 

additions and multiplications are performed by accessing different arrays but with the same 

index. This is no longer the case in the calculations of the charge densities or electric-field at 

particle position since different indexes - corresponding to nodes (𝑖, 𝑗), (𝑖 + 1, 𝑗), (𝑖, 𝑗 + 1), (𝑖 + 1, 𝑗 + 1), around the cell (𝑖, 𝑗) - must be accessed. The charge deposition and electric 

field interpolation routines have been rewritten from the scalar to vectorized version (through 

the SIMD directive provided from OpenMP 4.0), as proposed by Vincenti et al. [49]. To 

improve the vectorization efficiency, the particle list is divided into blocks of 64 to 256 

particles. Operations are performed block by block instead of elements by elements to 

optimize the cash reuse [49-50]. This technique has not been used for the standard PIC 

calculations since the time passed in those routines is negligible (see below).  

In this work, the elliptic Poisson’s equation is solved with the PARDISO (Parallel Sparse 

Direct Linear Solver) subroutine included in the Intel®Math kernel Library (Intel®MKL) 

[51]. PARDISO is an easy-to-use direct solver based on a LU decomposition. Explicit PIC 

schemes takes the advantage of time-independent matrix coefficients in the Poisson solver 

and hence a unique factorization must be done only once during initialization. In the sparse 

grid PIC algorithm, 2𝑁 − 1  matrixes are initialized and solved in parallel using the threads 

on core 0. Each thread within core 0 is assigned to the resolution of one of the 2𝑁 − 1   

Poisson’s equations. The computational time required for the resolution of the Poisson system 

is therefore proportional to the size of the largest system carried out by the sparse grids: 2𝑁+1 

(rather than 22𝑁). The matrix factorization is proportional to 23(𝑁+1)/2 while the resolution of 

the triangular systems stemming from the factorization is proportional to (𝑁 + 1)2𝑁+1 and is 

hence insignificant [52]. In total, the time passed to solve Poisson’s equation becomes 

negligible (see below).  
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III. Sparse PIC modeling of capacitive discharges 

Applying sparse PIC techniques in the context of capacitive discharges allows us to 

explore the potentiality and the limits of the method when sheaths are present (this not done in 

Ref. [35]). The capacitive coupled discharges also offer the opportunity to test boundary 

conditions varying in time, and collisions (including ionization to self-sustain the discharge). 

We have taken the conditions of the benchmark published by Turner and co-workers [10] as 

reference for simulations set-up and for comparing results. Calculations have also the 

convenience to be representative of “real” experimental conditions. In sub-section A, 

conditions and benchmark description are recalled. Results are analyzed in sub-section B. 

A. Input data and benchmark description 

The original work of Turner defines a one-dimensional discharge along the x direction with 

a distance between the two electrodes of 𝐿𝑥 = 6.7 cm. For two cases, we use periodic 

boundary conditions in the y direction to model the 1D benchmark with a 2D system. The 

neutral gas is helium at a temperature of 300 K, and the neutral density is uniform and fixed in 

space and in time. The left electrode is grounded, while the voltage varies sinusoidally at a 

frequency of 13.56 MHz on the right electrode (V = 0 at the beginning of the simulation). 

Particles interacting with electrodes are absorbed, and secondary electrons emitted under 

charged particle impacts on the electrodes are not considered. Along the periodic direction, a 

particle whose y coordinate crosses 𝐿𝑦 (respectively 0) has a new y coordinate equal to 𝑦 − 𝐿𝑦 

(respectively 𝑦 + 𝐿𝑦) with same velocity components. In a third case, a real 2D system is 

modeled applying zero potential on walls (grounded electrodes) except on the right electrode 

where the voltage varies sinusoidally at a frequency of 13.56 MHz. For that specific case, all 

charged particles interacting with electrodes are absorbed (secondary emission is also not 

considered). 
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The discharge is composed of electrons and singly charged He ions. Collisions occur 

between charged particles and He neutral gas. For electron-neutral collisions, the cross 

sections compiled by Biagi [53] are considered. They are composed of elastic momentum, one 

ionization and two excitation levels cross sections. After ionization, the residual energy is 

equidistributed between the primary and secondary electrons. After collisions, isotropic 

scattering in the center of mass are performed. For ion-neutral collisions, cross sections are 

taken from the work of Phelps [54], they include isotropic and backward scattering 

components (both in the center of mass frame). To avoid any difference in the simulation 

results due to varying functions used to fit cross sections, reference 1 of the work of Turner et 

al. [10] provides the electronic files of the tabulated cross sections. For intermediate values, a 

linear interpolation is used. The time step and grid spacing have been chosen to resolve the 

electron plasma frequency and electron Debye length, respectively, to fulfill the stability 

criteria of the explicit PIC method, as discussed in introduction. The time step for collisions is 

the one used for the transport of particles. Initially, an identical number of ions and electrons 

representing a uniform plasma density are introduced in the computational domain. Velocities 

of charged particles are sampled from a Maxwellian distribution at a given temperature [17]. 

Initial conditions and parameters are specified in Table 1. 

In the original study of Turner and co-workers, four cases varying neutral densities and the 

voltage amplitudes have been examined. We have chosen to illustrate two of the four cases 

(Case 1 and Case 4 in [10], respectively named Case A and Case B in our study) plus a third 

case (Case C) whose conditions are close to Case A. Our choice is dictated by the analysis of 

the modeling capabilities of the sparse PIC method in two different situations: a case where 

the plasma density is low, the sheath thickness large and the electron energy distribution 

(EEDF) close to a Maxwellian, and a case where the plasma density is large, the sheath 

thickness thin and the EEDF far from a Maxwellian. For Case B, to limit computational time 
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with the standard PIC method, the number of grid points along y has been taken to 4 (and 𝐿𝑦 

= 0.05234 cm, accordingly to maintain ∆𝑥 = ∆𝑦). The main difference between Cases A and 

C is related to boundary conditions as mentioned earlier. 

Physical parameters Case A Case B Case C 

Electrode distance 

along x 

𝐿𝑥 (cm) 6.7 6.7 6.7 

Distance along y 

standard/sparse PIC 

𝐿𝑦 (cm) 6.7/6.7 0.05234/6.7 6.7/6.7 

Neutral density N (10
20

 m
-3

) 9.64 321 19.28 

Neutral temperature 𝑇𝑁 (K) 300 

Frequency f (MHz) 13.56 

Voltage V (V) 450 120 150 

Physical constants Case A Case B Case C 

Electron mass 𝑚𝑒 (10
-31

 kg) 9.101 

Ion mass 𝑚𝑖 (10
-27

 kg) 6.67 

Initial conditions Case A Case B Case C 

Plasma density 𝑛0 (10
14

 m
-3

) 2.56 3.84 2.56 

Electron temperature 𝑇𝑒 (K) 30 000 

Ion temperature 𝑇𝑖 (K) 300 

Initial parameters (regular grid) Case A Case B Case C 

Grid spacing - 

standard PIC 

∆𝑥 = ∆𝑦  𝐿𝑥/128=𝐿𝑦/128 𝐿𝑥/512=𝐿𝑦/4 𝐿𝑥/128=𝐿𝑦/128 

Grid spacing - 

sparse PIC 

∆𝑥 = ∆𝑦  𝐿𝑥/128=𝐿𝑦/128 𝐿𝑥/512=𝐿𝑦/512 𝐿𝑥/128=𝐿𝑦/128 
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Time step ∆𝑡 (s) (400 f)
-1

 (1600 f)
-1

 (400 f)
-1

 

Number of particles 

per cell 

𝑁pc 512 64 512 

Boundary conditions Case A Case B Case C 

Left wall Grounded Grounded Grounded 

Right wall RF RF RF 

Top wall Periodic Periodic Grounded 

Bottom wall Periodic Periodic Grounded 

Table 1: Physical and numerical initial parameters for the benchmark. 

B. Results 

For each of the two cases, we have performed 2D calculations for the standard and sparse 

PIC algorithms and calculate the numerical error (the accuracy compared to the reference 

case) for profiles and the electron energy distribution function. The so-called reference cases 

correspond to conventional 2D PIC calculations with periodic boundary conditions simulating 

the configuration of the one-dimensional benchmarks of Tuner and co-workers (indicated in 

Table 1) for Cases A and B. In Case C, a real 2D problem is resolved. In the rest of the paper, 

due to periodic conditions along the y direction, only one-dimensional profiles of quantities 

along the x direction at mid-distance along y will be shown for Cases A and B. We have 

decided to focus our comparisons on the ion density and ionization profiles, and on the 

electron energy distribution functions. Physical and numerical characteristics in the center of 

the discharge are also indicated. Benchmark results of Turner et al. [10] will also be recalled. 

After convergence, for Case C, two-dimensional profiles of ion density and electron energy 

distribution functions will be shown, as well as plasma characteristics in the center of the 

discharge. Cases A and C include a large number of particles-per-cell (𝑁pc) and consequently 

one can test the influence of the total number of particles in the system in the Sparse PIC 
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method. Case B (higher plasma density) requires a more refined grid. Since stability 

constrains have been taken with a margin ∆𝑥 𝜆𝐷,𝑒~⁄ 0.5 (see Table 2), it offers an opportunity 

to investigate different depths of sparse grids. To calculate the accuracy, we apply the method 

of Ricketson and Cerfon [35] by calculating for a quantity 𝜑 the error 𝜖(𝜑) through the 

following relation: 

𝜖(𝜑) = ‖𝜑−𝜑ref‖𝐿2‖𝜑ref‖𝐿2 = √∫|𝜑−𝜑ref|2du∫|𝜑ref|2du  (5), 

where  𝜑ref is the reference solution taken from the 2D standard PIC calculations. Integrals 

whose elements are equally spaced are taken in space or energy. 

The first set of results corresponds to Case A. 128 cells on the regular grid indicates a 

depth of 𝑁 = 7. The number of sub-grids in the sparse grids hierarchy is equal to 13. The 

simulations with the regular grid have been performed with 𝑁pc = 512, as in 1D benchmark, 

leading to 𝑁T = 8.38×10
6
 particles in total. We have performed sparse PIC simulations with a 

total number of particles ranging initially from 2.57×10
5
 to 8.38×10

6
 which corresponds to 𝑁pc between 100 and 3280.  The case with 𝑁pc = 3280 is chosen keep the total number of 

particles identical to the one in the standard 2D PIC calculations. In figure 3, time-averaged 

axial profiles of ion density and ionization rates are shown. For comparison, physical and 

numerical characteristics in the center of the discharge are indicated in Table 1. The time and 

space averaged EEDF (represented by the normalized probability distribution function and 

plotted in such a way that a Maxwellian distribution would appear as a straight line) is shown 

figure 4. 
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Figure 3: Test-Case A: Time-averaged axial profiles at mid-distance along y of (a) ion density 𝑛𝑖  and (b) ionization rate 𝑅𝑖 at steady state. One-dimensional results are taken from Ref. [10]. 

The error bars indicate the standard deviation from an extended study presented in Ref. [10]. 

For each computational case, the initial total number 𝑁T  and the number of particles per cell 𝑁pc are indicated. Sparse PIC results correspond to 𝑁 = 7. 
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 standard 1D 𝑁pc = 512 

standard 2D 𝑁pc = 512 

sparse 2D 𝑁pc = 3280 

sparse 2D 𝑁pc = 512 

sparse 2D 𝑁pc = 100 𝑛𝑖 (10
15

 m
-3

) 0.140 0.142 0.139 0.143 0.141 𝑘𝐵𝑇𝑒 (eV) 9.36 8.98 8.86 8.85 8.96 ∆𝑥 𝜆𝐷,𝑒⁄  0.27 0.28 same resolution as standard grid 𝜔𝑝∆𝑡 0.121 0.122 0.121 0.123 0.121 

Table 2: Test-Case A: Physical and numerical characteristics at steady state in the center of 

the discharge. Sparse PIC results correspond to 𝑁 = 7. 

 

Figure 4: Test-Case A: Time and space averaged energy probability function at steady state. 

The data are normalized such that ∫ √𝜀𝑓(𝜀)𝑑𝜀∞0  = 1. For each computational case, the initial 

total number 𝑁T  and the number of particles per cell 𝑁pc are indicated. Sparse PIC results 

corresponds to 𝑁 = 7. 

The comparison between the 1D and 2D standard PIC models results with a regular grid 

shows similar profiles (almost within the margin obtained by error bar displayed for the 1D 

case) not only in the center of the discharge but also in the sheath regions. Modeling a one-

dimensional discharge with a 2D model using periodic boundary conditions while using the 
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same number of 𝑁pc - as in the 1D case - results in a larger numerical noise, but the overall 

difference is less than a few percent for the plasma parameters. We will not discuss in details 

the physics interpretation of the discharge as it is out of the scope of this work; note that at 

low pressure, the EEDF in a capacitively coupled radio frequency discharge is close to a 

Maxwellian and the electron power dissipation is almost uniform. Additional information can 

be found in Ref. [10]. 

Error (%) 

 sparse 2D 𝑁pc = 3280 

sparse 2D 𝑁pc = 512 

sparse 2D 𝑁pc = 100 𝑛𝑖  0.15 0.4 0.6 𝑅𝑖 0.12 0.18 0.2 𝐸𝐸𝐷𝐹 0.35 0.27 3.2 

Table 3: Test-Case A: Differences between standard and sparse PIC results. Sparse PIC 

results corresponds to 𝑁 = 7. 

The close agreement between the two methods is evident when looking at Table 3 where 

the error (calculated via eq. (5)) considering the 2D PIC model with a regular grid as the 

reference solution is reported. The time-averaged axial profiles of either ion densities or 

ionization source terms in figures 3 and 4 are nearly identical. More interestingly, the sparse 

PIC algorithm is able to capture the EEDF with a large precision up to 6 orders of magnitude. 

Obviously, a larger difference appears in the tail of the distribution composed of an electron 

population at extremely high energy (but marginal in numbers). This is related to the total 

number of particles in the simulation.  

One interesting conclusion from that first comparison is that keeping the same number of 

particle-per-cell 𝑁pc between the sparse and standard PIC methods seems a good strategy to 
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keep a high degree of precision. Keeping the same 𝑁pc in the sparse PIC algorithm reduces 

considerably the total number of particles in the system (especially since the depth 𝑁 is high, 

see figure 2) and hence the computational time (see discussion in section IV). 

We have modeled a second capacitively coupled radiofrequency discharge operating at a 

pressure higher by a factor 30 (Case B). The latter corresponds to another 1D simulation of 

Tuner et al. [10]. Our simulation is again in 2D with periodic boundary conditions along y. 

Conditions for Case B are listed in Table 1. We have studied the influence of the depth 𝑁 

which we varied from 9 (i.e., 512 regular grid cells with ∆𝑥 𝜆𝐷,𝑒~⁄ 0.5 see Table 2) to 7 (128 

cells and ∆𝑥 𝜆𝐷,𝑒~⁄ 2), keeping the initial number of particle-per-cell 𝑁pc to 64. The number 

of sparse grids in the hierarchy is either 17 for 𝑁 = 9 or 13 when 𝑁 = 7, respectively. As for 

Case A, we have successively plotted in figures 5 the time-averaged profiles for the ion 

density and ionization rate along the mid plane of the discharge, as well as the space and time 

averaged EEDF in Figure 6. Main discharge characteristics in the center of the discharge are 

given in Table 3. The differences between standard and sparse grids are indicated in Table 4. 
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Figure 5: Test-Case B: Time-averaged axial profiles at mid-distance along y for (a) ion 

density 𝑛𝑖  and (b) ionization rate 𝑅𝑖  at steady state. One-dimensional results are taken from 

Ref. [10]. The error bars indicate the standard deviation from an extended study presented in 

Ref. [10]. Sparse PIC results correspond to depth varying from 𝑁 = 9 to 𝑁 = 7. For each 

computational case, the initial number of particles per cell 𝑁pc is fixed to 64 and the initial 

total number 𝑁T  is also given. 

 

Figure 6: Test-Case B: Time and spaced averaged energy probability function at steady state. 

The data are normalized such that ∫ √𝜀𝑓(𝜀)𝑑𝜀∞0  = 1. For each computational case, the initial 
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number of particles per cell 𝑁pc is fixed to 64 and the initial total number 𝑁T  is also given. 

Sparse PIC results correspond to depth varying from 𝑁 = 9 to 𝑁 = 7. 

Physical and numerical characteristics 

 standard 1D 

 

standard 2D 

 

sparse 2D 𝑁 = 9 

sparse 2D 𝑁 = 8 

sparse 2D 𝑁 = 7 𝑛𝑖 (10
15

 m
-3

) 2.57 2.50 2.53 2.54 2.59 𝑘𝐵𝑇𝑒 (eV) 3.65 3.71 3.61 3.60 3.56 ∆𝑥 𝜆𝐷,𝑒⁄  0.47 0.46 ~0.5 ~1 ~2 𝜔𝑝∆𝑡 0.131 0. 130 0. 131 0. 131 0. 132 

Table 4: Test-Case B: Physical and numerical characteristics at steady state in the center of 

the discharge. The initial number of particles per cell 𝑁pc is fixed to 64. 

Error (%) 

 sparse 2D 𝑁 = 9 

sparse 2D 𝑁 = 8 

sparse 2D 𝑁 = 7 𝑛𝑖  1.3 1.7 3.4 𝑅𝑖 1.6 1.55 1.6 𝐸𝐸𝐷𝐹 3.8 4.6 5.6 

Table 5: Test-Case B: Differences between standard and sparse PIC results. The initial 

number of particles per cell 𝑁pc is fixed to 64. 

From a general view, we notice different behavior between the two illustrated cases. In 

Case B, the plasma density is larger and more uniform in the discharge center and the peak of 

ionization is concentrated in the sheath regions (see figure 5). Additional data from Ref. [10] 

show that the power absorption and dissipation are more locally balanced in the sheath region 
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in Case B. At a higher pressure, more inelastic processes take place leading to a non-

Maxwellian distribution of the EEDF. 

The error margin has been obtained at coincident axial grid points using eq. (5) and is 

reported in Table 5. Obviously, the agreement between the two methods is good (less than 3.5 

% difference) for the ion density and ionization profiles.  One notable result is that reducing 

the number of levels (from 9 to 7) keeping 𝑁pc the same does not deteriorate two much the 

error. This, is certainly due to the fact that at the limit where 𝑁 = 7, ∆𝑥 𝜆𝐷,𝑒~⁄ 2. Similarly the 

difference in the EEDF profiles is also quasi-independent of 𝑁. The advantage in 

computational time consumption will be discussed in the next section. 

Case C corresponds to real 2D conditions with grounded electrodes except on the right 

electrode where the RF signal is applied. The pressure is two times higher than Case A, 

maintaining a plasma density close to Case A. A number of grid points of 128 in each 

direction is capable to resolve the electron Debye length (see Table 6). In figure 7, we 

illustrate a comparison between standard and sparse PIC methods about the ion density at 

steady state. The sparse PIC method is able to properly capture the ion density drop in front of 

the electrodes (as well as the electron density drop, not shown). These results highlight the 

capability of sparse PIC algorithms to capture the sheaths in 2D complex configuration with a 

high accuracy. The EEDF calculated with the two algorithms and integrated over all the 

volume are shown in figure 8. Again, the agreement between the two methods is excellent. 

The error calculation reported in Table 7 is less than 1.8 % for 𝑛𝑖 and 0.1 % for the EEDF for 

same 𝑁pc. Reducing 𝑁pc with the sparse PIC approach maintains a high precision in the 

calculations.  
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Figure 7: Test-Case C: 2D time-averaged axial profiles of ion density 𝑛𝑖  at steady state, (a) 

standard conditions with 𝑁pc= 512, (b) sparse with 𝑁pc= 512 and (c) sparse with 𝑁pc= 100. 

Maximum of ion density: 2.2 × 10
14

 m
-3

. Sparse PIC results correspond to 𝑁 = 7. 

 

 

Figure 8: Test-Case C: Time and space averaged energy probability function at steady state. 

The data are normalized such that ∫ √𝜀𝑓(𝜀)𝑑𝜀∞0  = 1. For each computational case, the initial 

total number 𝑁T  and the number of particles per cell 𝑁pc are indicated. Sparse PIC results 

corresponds to 𝑁 = 7 
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 standard 2D 𝑁pc = 512 

sparse 2D 𝑁pc = 3280 

sparse 2D 𝑁pc = 512 

sparse 2D 𝑁pc = 100 𝑛𝑖 (10
15

 m
-3

) 0.212 0.213 0.214 0.217 𝑘𝐵𝑇𝑒 (eV) 6.89 6.90 6.91 6.88 ∆𝑥 𝜆𝐷,𝑒⁄  0.39 same resolution as standard grid 𝜔𝑝∆𝑡 0.151 0.151 0.152 0.153 

Table 6: Test-Case C: Physical and numerical characteristics at steady state in the center of 

the discharge. Sparse PIC results correspond to 𝑁 = 7. 

 

Error (%) 

 sparse 2D 𝑁pc = 3280 

sparse 2D 𝑁pc = 512 

sparse 2D 𝑁pc = 100 𝑛𝑖  1.55 1.8 2.44 𝐸𝐸𝐷𝐹 0.07 0.1 0.5 

Table 7: Test-Case C: Differences between standard and sparse PIC results. Sparse PIC 

results corresponds to 𝑁 = 7. 

IV. Computational efficiency 

Two types of clusters have been used with different Intel architectures and compilers 

versions: 

- Case A and Case C, Laplace supercomputer, 2 × Haswell per node (Intel Xeon CPU 

E5-2699A v4, 2.40 GHz, 22 cores), with Intel compiler version 17.0.1.132 and 

IntelMPI version 17.0. 
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- Case B, Calmip supercomputer, 2 × Skylake per node (Intel Xeon Gold 6140, 2.30 

GHz, 18 cores), with Intel compiler version 18.2.199 and IntelMPI version 18.2. 

Standard and sparse PIC calculations have been performed on the same architectures and 

compiler versions, without considering an optimization of the number of processors used 

according to the method. Note that one node has been used for Case A and Case C and 5 

nodes for Case B. Figure 9 is showing the speed up for the sparse compared to the standard 

PIC algorithm to reach the same physical time (time window of 5 s). Results for Case A and 

Case C being close, only Case A result are shown. For Case B, to do a comparison in same 

conditions than standard PIC method, sparse PIC simulations have been performed with 𝑁𝑥=𝑁𝑦=512 (with a simulation time of 300 s). Also in Case B, calculations for 𝑁𝑥=𝑁𝑦=128 

have been performed with standard PIC method to compare executional times with sparse PIC 

method for same 𝑁pc. Keeping the same total number of particles 𝑁T in the sparse and 

standard PIC models results in a calculation with a slower execution time in the former (see 

the point at the right-hand-side and bottom side of Fig. 9). This is the results of a larger 

number of computations in the case of the sparse algorithm. A clear benefit is observed when 

the number of particles per cell is identical for a given depth 𝑁. The speedup increases from 

about 2 to 5 for a number of grid points 𝑁g ranging between 128
2
 (𝑁 = 7) to 512

2
 (𝑁 = 9) as 

shown in Fig. 9, respectively. 
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Figure 9: Speedup measured by dividing the execution time of the sparse by the one of the 

standard PIC method. For Case A (blue color), the depth is kept at 𝑁 = 7 in both models while 𝑁pc is varied from 3280 to 100 in the sparse PIC. 𝑁pc = 512 in the standard PIC calculation. 

For Case B (in red), the depth varies from 𝑁 = 9 to 𝑁 = 7 and 𝑁pc is set at 64 in both 

algorithms. 

Note that the speedup is expected to be significantly larger in 3D as the ratio 𝐺r 𝐺sparse⁄  is 

more favorable [35]. We show in figure 10 a comparison between the ratio of the number of 

cells used in the standard PIC versus the sparse PIC for 2D and 3D domains as a function of 

depth 𝑁. For instance, 𝑁 = 9 (𝑀 = 512), the reduction of the number of cells is around 20 in 

2D and ~ 1000 in 3D. 
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Figure 10: Comparison of the total number of cells for the Cartesian mesh (with a mesh size 2−𝑁)  divided by its sparse grids hierarchy counterpart 𝐺r 𝐺sparse⁄  as a function of the depth N 

for 2D and 3D domains. 

The computational gain is in general lower than the one estimated from a simple ratio of 

the number of grid cells between the standard and sparse grid method (see figure 1). It is 

hence instructive to consider the time passed in subroutines in order to understand the actual 

bottlenecks associated with the implementation of the sparse PIC algorithm. Figure 11 shows 

the comparison between the sparse and standard PIC technique for the same number of 

particles per cell. The subroutine PUSH includes the interpolation of the electric field at 

particle position and the push of particles. The subroutine CHARGE denotes the charge 

deposition on grid nodes and the reduction to calculate the total charge on each node summed 

over the OpenMP and MPI threads. The subroutine POISSON covers the electric potential 

calculation and the calculation of the electric field components using second order accurate 

finite difference schemes. The subroutine COLLISION corresponds to the Monte Carlo 

procedure to model collisions between charged particles and neutral atoms. In Fig. 11, 

whatever the method, we observe a reduction of the time passed in PUSH for both algorithms 
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and an increase of the time spent in COLLISION when comparing Case A and Case B. This is 

due to number of particles 𝑁T  inside the simulation domain in Case B together with an 

increase of the collision rates because the neutral density is higher. Comparatively to the 

standard method, a larger fraction of the computational time is dedicated to the charge 

deposition onto the 2𝑁 − 1 sub-grids (even if the total number of nodes is less than with the 

regular grid algorithm).  Using sparse grids, the reduction of the total number of grid nodes 

induces a significant gain in computational time for the Poisson solver; the execution time 

becomes negligible in our case (more than 50 % of the time spent in the POISSON subroutine 

is devoted to the calculation of the electric field components from the potential profile). 

Lastly, comparatively to the standard method, a larger fraction of computational time is 

dedicated to the charge deposition onto the nodes of the 2𝑁 − 1 grids of the sparse hierarchy. 

Note that our model has not been fully optimized yet in terms of parallelization.  

 

Figure 11: Time spent in subroutines. For standard PIC calculations and for Case A, 𝑁g = 

128
2
 and 𝑁pc = 512 and for Case B  𝑁g = 512

2
 and 𝑁pc = 64. For sparse grids: Case A, 𝑁 = 7 

(𝑁g = 128
2
) and 𝑁pc = 512, while for Case B,  𝑁 = 9 and 𝑁pc = 64. 
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V. Conclusions 

This paper addresses the issue of PIC algorithm acceleration using sparse grids and its 

application to model low temperature plasmas. The novel method is based on the construction 

of a hierarchy of mostly anisotropic grids (i.e., with rectangular cells in 2D) whose total 

number of cells is significantly reduced compared to one unique computational domain 

defined by cells of squared shape as in the standard PIC technique. The reduction factor 

(defined as the number of cells in the sparse divided by the ones in the standard PIC 

algorithms) increases with the dimensionality of the problem. Plasma parameters are 

reconstructed at a given location inside the simulation domain using the so-called 

combination technique. The novel PIC algorithm is very similar to the standard one on a 

regular grid and the same parallelization approaches can be efficiently implemented. 

The PIC sparse grid combination technique has been successfully used in the context of 

open-boundary problems where ions are at rest and collisions omitted [35]. The goal of this 

paper was to verify the capability of the new method to resolve gradients encountered in the 

sheath region in front of electrodes in low temperature plasma discharges. We have modeled a 

benchmark of a one-dimensional capacitively coupled radiofrequency discharges which was 

already published in the literature. We considered two extreme test cases: the first one 

corresponds to a low pressure discharge for which the EEDF is a Maxwellian. Comparisons 

between standard and sparse grid PIC calculations showed a strong capability for the latter to 

reproduce the plasma characteristics with a high degree of accuracy; the difference in the ion 

density and ionization source term profiles where of the order of 0.4 %. Furthermore, the 

EEDF can be captured with an error on the whole distribution of less than 0.5 % with a 

resolution of six orders of magnitude. These results have been obtained keeping the same 

number of particle-per-cell in both algorithms. Reducing 𝑁pc in sparse grid calculations does 

not degrade considerably the error (less than 0.6 % for the profiles and 3.5 % for the EEDF) 
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offering a gain in computational time. The noise level is typically smaller compared to the 

standard PIC estimates. The second case corresponds to a larger pressure and a large deviation 

of EEDF from Maxwellian is observed. Comparisons between the two methods have been 

realized reducing the depth 𝑁 of grids keeping 𝑁pc identical to the standard method. The 

relative error for ion density and ionization profiles was to be less than 3.5 %. The difference 

in the EEDF calculation (down to 6 orders of magnitude) is less than 6 %. Finally, for 

conditions close to Case A, we have considered a real 2D problem using non symmetrical 

Dirichlet conditions for the electric potential. Again, using the sparse PIC algorithm, the 

EEDF can be retrieved with a large precision and an accuracy of 0.1 % for the same 𝑁pc. 

When 𝑁pc is kept the same as in the standard PIC method and the depth constructed from 

the number of grid nodes on the regular grid, the gain of computational time is important, 

between 2 and 5, for Case A (or Case C) and B, respectively. A detailed analysis of the time 

spent in subroutines has shown a strong reduction of the execution time for the Poisson 

solver. The charge deposition to calculate the particle densities is slower with the sparse PIC 

but our subroutine was not fully optimized.  This work was a first step to prove the 

applicability of the sparse PIC technique to plasmas bounded by absorbing walls (i.e., with a 

sheath which develops in front of the latter), periodic boundary conditions, time varying 

electrode potentials which impact the EEDF and the inclusion of a complex physical-

chemistry. The next step will be to reproduce similar results in 3D where the computational 

gain is expected to be substantial compared to the standard PIC approach. In a companion 

paper, we have applied the sparse grid combination technique to the context of partially 

magnetized low temperature plasmas [36] where both plasma instabilities and an anomalous 

electron current are present. 
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