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Application of Sparse grid combination techniques to low 

temperature plasmas Particle-In-Cell simulations. Part 2: 

Electron Drift Instability in a Hall thruster 

L. Garrigues
*
, B. Tezenas du Montcel, G. Fubiani, and B. Reman 

LAPLACE, Université de Toulouse, CNRS, 31062 Toulouse, France. 

Three-dimensional simulations of partially magnetized plasma are real challenges that 

actually limit the understanding of the discharges operations such as the role of kinetic 

instabilities using explicit Particle-In-Cell (PIC) schemes. The transition to high performance 

computing cannot overcome all the limits inherent to very high plasma densities and thin 

mesh sizes employed to avoid numerical heating. We have applied a recent method proposed 

in the literature [Ricketson and Cerfon, Plasma Phys. Control. Fusion 59, 024002 (2017)] to 

model low temperature plasmas. This new approach, namely the sparse grid combination 

technique, offers a gain in computational time by solving the problem on a reduced number of 

grid cells hence allowing also the reduction of the total number of macroparticles in the 

system. We have modeled the example of the two-dimensional electron drift instability which 

was extensively studied in the literature to explain the anomalous electron transport in a Hall 

thruster. Comparisons between standard and sparse grid PIC methods show an encouraging 

gain in the computational time with an acceptable level of error. This method offers a unique 

opportunity for future three-dimensional simulations of instabilities in partially magnetized 

low temperature plasmas.   

                                                 
*
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I. Introduction 

In a companion paper, we have described a new algorithm capable of accelerating Particle-

In-Cell (PIC) model in the context of low temperature plasma (LTP) discharges [1]. It is 

based on the so called “combination technique” applied to sparse grids. Instead of solving the 

PIC algorithm on a computational domain constrained in space and time by the electron 

Debye length and the inverse of plasma frequency, respectively, the new method solves the 

problem on a hierarchy of computational domain [2]. The benefits associated to that method 

come from an overall smaller number of grid cells offering a gain in computational time, 

already for two-dimensional problems. Comparisons between standard and sparse grid PIC 

simulations for capacitively coupled radio-frequency discharges have resulted in a relative 

error between the two methods of less than a few percent. Moreover, a significant gain in the 

computational time has been achieved. We have obtained a speed up of a factor of 4 

compared to the same problem resolved with the standard PIC method for 512
2
 grid cells [1]. 

The goal of this second paper is to evaluate the sparse grid PIC method in partially 

magnetized LTPs. We have chosen to apply the algorithm in the context of the Hall thruster 

modeling. A Hall thruster is utilized on board of geostationary satellites for station keeping 

[3-6]. It operates by means of an electron current which flows on the azimuthal direction of 

the cylindrical engine under the actions of an axial DC electric and radial magnetic fields. The 

magnetic field allows an efficient ionization of the propellant gas for pressure conditions on 

the order of a few mTorr by increasing the residence time of the electrons in the thruster 

channel. Its strength is chosen to trap the electrons only. Unmagnetized ions accelerated by 

the axial electric field provide the thrust.  

The Hall thruster discharge falls in the category of partially magnetized LTPs such as 

magnetrons, Penning cell, End-Hall ion source, etc. (see [7-9] and references therein for 
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details). Measurements have revealed that the low pressure and the large induced collisional 

mean free path result in the diffusion of electrons across the magnetic field which is not 

predicted by the classical theory. Partially LTPs are the source of instabilities that are 

responsible for the so-called electron anomalous transport (see [7-9] for general 

considerations about the type of instabilities found). In Hall thrusters, a specific instability 

occurs in the azimuthal (E × B) direction which is the source of a fluctuating azimuthal 

electric field and plasma density. The origin of the instability is related to the large difference 

in velocity between electrons (forced to drift in the E × B direction) and unmagnetized ions 

accelerated by the axial electric field. This instability, named “electron cyclotron drift 

instability” ECDI or “electron drift instability” EDI, is the result of the coupling between 

electron Bernstein modes and ion-acoustic waves. The dispersion relation in 2D and 3D has 

been established for the first time in the literature in the 1970’s by Gary and Sanderson (see 

[10] and references therein). The transition to a modified ion-acoustic instability has been 

experimentally investigated by Barrett et al. [11] and analytically studied by Gary and 

Sanderson [10]. More recently, Cavalier et al. [12-13] and Lafleur et al. [14-16] have solved 

the dispersion relation for typical Hall thruster conditions. 

The EDI has also been characterized using PIC simulations in a 2D plane geometry 

including azimuthal and axial directions [16-18]. The results have confirmed the existence of 

a fluctuating azimuthal electric field and plasma density in the MHz frequency-range and an 

mm wavelength-range, as predicted by theory [17-18]. Moreover, comparisons between the 

solution of the dispersion relation and PIC simulations have established the sensitivity of the 

wavelength on the electron Debye length and of the frequency of the instability on the ion 

plasma frequency, in a way similar to the modified acoustic instability. Calculations have also 

corroborated the ion-wave trapping as the mechanism responsible for the saturation of the 

instability. Seven research groups worldwide have reproduced the results of Boeuf and 
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Garrigues [17] to obtain a consensus regarding the PIC results and to discriminate against any 

artificial results arising from numerical inconsistency [18]. The details of the benchmark 

conditions can be found online on the Landmark project website [19]. In the benchmark of 

Refs [17-18], the dynamic of neutrals (and associated collisions) is not described, but a 

prescribed source term profile is imposed in order to reach a steady state in time scales of a 

few tens of microseconds (compared to a few hundreds of microseconds when the neutral 

dynamics is resolved [20-22]). We believe that the EDI benchmark constitutes the relevant 

test to check the validity of the sparse grid PIC algorithm in complex situations. In section II, 

we recall the initial conditions and input data for the benchmark. In section III, we compare 

calculation results when standard and sparse PIC methods are used. Section IV is devoted to a 

critical analysis of the results and to a discussion focusing on the speed-up. Concluding 

remarks are given in section V. 

II. Benchmark conditions 

A. Simulation domain and initial conditions 

The two-dimensional domain accounts for the axial and the azimuthal directions and 

extends to 2.5 cm in both directions to keep a square computational domain (see figure 1). 

Dimensions are indicated in Table 1. The plasma is composed of electrons and singly-charged 

xenon ions. We do not consider neutrals and related collisions. Dirichlet conditions are 

applied along the x direction with a voltage on the left boundary (anode) of 200 V and 0 V 

applied on the right boundary. Particles reaching left and right boundaries are absorbed and no 

secondary particles are emitted. Periodic boundaries conditions are used along the y direction 

meaning that one particle crossing the plane y >    (respectively y < 0) returns at a new          position (respectively         ) keeping the same velocity components and 
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axial position. This method efficiently reduces the computational time and capture 

instabilities whose wavelength is shorter than   . 

At time zero, positions of electrons and ions are uniformly distributed in the simulation 

domain along    and between   and    along   . Velocity components of electrons and ions 

are sampled from a Maxwellian distribution of initial temperatures    and   , respectively 

[23] (see Table 1 for the specifications of the initial conditions). The initial number of 

particle-per-cell Npc has been chosen based on the convergence test of Ref. [17]. For the 

standard PIC simulations, grid spacing and time step have been adjusted to resolve the 

electron Debye length      and the inverse of a fraction of the electron plasma frequency      at steady state. 

Physical parameters 

Axial length x    (cm) 2.5 

Azimuthal length y    (cm) 2.5 

Voltage Ud (V) 200 

Current density      (A/m
2
) 150 

Axial zone of injection   ,    (cm) 0.25, 1 

Axial position of cathode    (cm) 2.4 

Maximum of magnetic field    (G) 75 

Axial position of maximum of 

magnetic field 

    (cm) 

 

0.75 

Physical constants 

Electron mass    (10
-31

 kg) 9.101 

Ion mass    (10
-25

 kg) 2.1887 

Initial conditions 

Plasma density    (10
16

 m
-3

) 8 
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Electron temperature    (eV) 10 

Ion temperature    (eV) 0.5 

Initial parameters (standard PIC method) 

Grid spacing       (cm)     /512 

Time step    (s) 10
-11

 

Number of particles per cell     20 and 400 

Table 1: Physical and numerical initial parameters for the benchmark. 

 

Figure 1: Two-dimensional axial (x) azimuthal (y) simulation domain. The zone of electron-

ion pairs injection between axial positions x1 and x2 is shown in grey. Electrons are injected 

through the cathode plane (dashed lines) at axial position xc. The y-averaged electron and ion 

fluxes at the anode, through the emission plane and through exhaust are named                       and    , respectively. 
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B. Particle injection  

Since no collisions and no ionization are taken into account, an external source of charged 

particles must be considered. A prescribed and uniform ionization source term      along the   direction has been implemented using the following profile: 

                        for         

        for      or      (1) 

where          . Values of    and    are indicated in Table 1. The maximum of ion current 

density    that can be extracted at steady state is: 

                            (2), 

  being the elementary charge. By imposing   , we fix the maximum of ion current density   . In that study we have taken    to be 150 A/m
2
 (and   = 1.96× 10

23
 m

-3
 s

-1
). The ionization 

profile is given figure 2. At each time step, the number of electron-ion pairs to be injected is 

equal to         . Electrons and ions are injected at the same position         determined by 

the following relation: 

                            

         (3) 

where    and    are pseudo-random numbers uniformly distributed in the interval [0,1]. 

For current continuity purposes one can write equality of current at the anode (composed 

of a large fraction of electrons and a small fraction of ions) and at the cathode (composed only 

of electrons): 
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                (4). 

In equation (4),           , and     are respectively the flux at the anode, the electron and the 

ion fluxes at the anode, and the electron flux at the cathode (averaged along y). The electron 

flux at the cathode will be composed of a fraction entering into the channel      and a fraction 

that neutralizes the ion flux     . At steady state,      =    . To achieve this, at each time step, 

a balance of particle fluxes is calculated at the anode. If        , a quantity of electrons 

corresponding to that net balance is injected, otherwise, no electron is injected. Electrons are 

injected uniformly along    at the cathode plane (position xc). Their initial velocity is sampled 

from a Maxwellian distribution at the same initial temperature of   . Note that, contrary to 

References [17-18], we do not impose an averaged zero voltage along   direction at the 

cathode plane and the potential drop Ud is applied between right and left boundaries. 

 

Figure 2: Axial profiles of ionization source term and radial magnetic field. 

C. Radial magnetic field profile 

The magnetic field which is normal to the simulation plane has a Gaussian profile in the x 
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                            (5) 

where    is the position of the maximum of magnetic field (  = 0.75 cm) and with   = 1 for      and with   = 2 for     . The coefficients of equation (5)    ,    ,    and     can be 

analytically determined (see Appendix 1 of Ref. [17]) from the knowledge of magnetic field 

at   = 0 (     = 6 mT), at      (      = 1 mT), and fixing    =    = 0.625 cm. The 

magnetic field profile is given in figure 2. 

III. Standard vs sparse grid PIC of EDI 

We have performed two sets of PIC calculations, one with the standard method (with a 

regular grid) with    = 20 and 400, and another one using sparse grids. Initial parameters are 

given in Table 1. For the sparse grid cases, we have independently illustrated the effect of     

and the grid depth   on the results. A first series of calculations has been chosen such that    

= 512, corresponding to   = 9 (coarse grid) varying     from 400 to 2000. A second series of 

calculations have been performed with refined sparse grids for   = 11, and   = 12 (with     

= 117). The latter has been chosen to keep the computational time similar between the 

standard (with     = 400) and the sparse grid with   = 12 methods. The time step is the same 

for all the calculations. The maximum number    = 400 in the calculations with the standard 

PIC method has been retained as a convergence criteria after a deep study. Above that 

number, the differences between results are less than a few percent. We will take the results 

associated to those specific conditions as the “reference” one. 

We show in figure 3 the time evolution of the electron current      crossing the thruster 

channel that is a signature of the anomalous electron current. An (E×B) axial current can only 

be induced by the interactions between electrons and fluctuating azimuthal electric field. In 

figure 3a, at the beginning, the shape of the electron current variations is very similar for all 
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the cases. A zoom on a time window when convergence is reached reveals differences in the 

magnitude of the electron current. In figure 3b, results with the standard method show a 

current of around 2 A/m for the reference solution. Not surprisingly, reducing     in the 

standard PIC method induces a large error on the current associated with a larger fluctuating 

azimuthal electric field. This is due to the numerical noise induced by a low number of 

particles that samples the particle distribution functions. The same conclusions have been 

already obtained when parametric studies were conducted for different number of nodes and 

number of particle-per-cell in Ref. [17]. The green results of figure 3b shows that the error 

using sparse grid diminishes by half with    = 400 (which keeps the total number of particles    the same as with the standard PIC method). Increasing     to 2000 (and more) and 

keeping the same level   = 9 only slightly reduces the error. The influence of     in sparse 

calculations reveals, as for standard PIC calculations, that above a given number of particles, 

the solution found is not much affected by an increase of    . This confirms the conclusions 

of Ricketson and Cerfon [2] regarding the effect of     (for different examples than our 

study). When the grid spacing becomes thinner, the odd oscillations of current also disappear 

(for   = 11 and   = 12). As   increases the time variation of the current approaches the one 

obtained in the reference case conditions.  
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Figure 3: (a) Time evolution of electron current      for the standard and sparse PIC methods 

with different numerical parameters. (b) Same results for a time window between 30 and 40 

microseconds, after convergence. 

On axis time-averaged electron density (and associated rms fluctuations) and temperature 

profiles, together with the axial electric field are reported in figure 4. The time averaging is 

made on the last 4 microseconds with    = 160 equally distributed time shots. The rms 

electron density is calculated through the following relation: 

                                                                   (6) 

In eq. (6), the averaging along   is made on the    nodes. For standard PIC calculations, 

quantities are calculated on the nodes using bilinear projections. For comparison, profiles 

obtained with the sparse PIC approach are reconstructed using the combination technique 

detailed in Refs. [1], [2] and taken at the coincident points of the regular grid nodes. Standard 

PIC calculations with a poor statistic (   = 20) preserve the electron density, electron 

temperature and axial electric field profiles calculated with a larger number of     but fail to 

correctly represent the rms electron density fluctuations in the entire x-axis as we see in figure 

4c. The fluctuations of electron density show a rms variation of electron density of ~ 10 % at 

the peak while the rms level when the number of particle-per-cell is large enough drop to 3 % 

(see figure 4c). Electron density profile shown in figure 4a is qualitatively reproduced by the 

sparse PIC approach but differences appear for others quantities. The benefit of using the 

sparse grid approach is visible on the variation of fluctuating electron density. Calculations 

with the sparse grid PIC method with   = 9 and    = 400 show a reduced error 

comparatively to the standard PIC approach with the same total number of particles. 

Nevertheless, the position of maximum of temperature, density and axial electric field is 
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shifted by 5 mm towards the center of the discharge. Even a slight modification of the 

position of the region of azimuthal electric field fluctuations has a consequence on the local 

drop of electron conductivity. Accordingly, the region of potential drop and maximum of 

axial electric field (as well as the maximum of the electron temperature – see figure 4b) is also 

shifted. Increasing     to 2000 in the sparse PIC approach does not lead to large 

modifications of results. 

Increasing   to 11 leads to a closer agreement between standard and sparse grid PIC 

profiles. Maximum of profiles now coincide with the reference case and an even thinner 

sparse grid by increasing   to 12 shows similar profiles to the reference case.  We remark in 

Fig. 4d that the electric field is almost identical above the zone of injection of the electron 

since electron and ion currents are equal (neutralization) at convergence. The situation in front 

of the anode is different because electron and ion currents (and consequently electron and ion 

densities in the anode sheath) are not identical (see below). This difference is not inherent to 

the sparse grid PIC method but is due to the fact that charged particles current at the anode are 

the result of electron transport for electrons and relative position of source term and 

acceleration for ions. As   increases, the axial electric field strength gets closer and closer to 

the one calculated with the standard PIC method, specifically in the anode sheath. For   = 12, 

the rms electron density fluctuations are now of the same order as in the calculations with the 

reference case. Error calculations with the method presented in Refs. [1], [2] show an 

averaged error of 6.5 %, 20.7 %, 7.4 %, and 7.3 % for electron density, rms fluctuations of 

electron density, electron temperature and axial electric field, respectively. 
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Figure 4: Time-averaged axial profiles of (a) electron density, (b) electron temperature, (c) 

rms electron density fluctuations and (d) axial electric field for regular and sparse grid and 

different numerical parameters. 

To analyze the consequence of using sparse grid methods, one can compare the ion beam 

current and the ion current collected at the anode. The source term being imposed, the current 

injected along the y-direction is given by          3.75 A/m and            . We have 

reported in Table 2 the ratio of        and       . These ratios are influenced by the relative 

position of the ionization source term (fixed) and the axial electric field. We notice that for   

= 9, shifting the acceleration region towards the exhaust leads to overestimate the        ratio 

to 35 %, while for   = 12 even with a low    , this ratio tends to the reference one. 
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standard PIC    = 400 -    = 1.04×10
8
    0.07 0.93 

standard PIC    = 20 -    = 5.24×10
6
    0.20 0.80 

sparse PIC  = 9 -    = 400 -    = 5.24×10
6
    0.34 0.66 

sparse PIC  = 9 -    = 2000 -    = 2.62×10
7
    0.35 0.65 

sparse PIC  = 11 -    = 117 -    = 7.54×10
6
    0.16 0.84 

sparse PIC  = 12 -    = 117 -    = 1.68×10
7
    0.13 0.87 

Table 2:        and        ratio averaged between 30 and 40 microseconds calculated with 

standard and sparse PIC methods for different numerical parameters.  

We have plotted 2D profiles of ion density at the same time after convergence in figure 5. 

Fig. 5a corresponds to the reference case using the standard PIC approach, with    = 400. 

From Fig. 5b to 5d sparse grid PIC results are shown with   = 9 and     = 400, and for   = 

11 and   = 12 with     = 117. In Figures 5b, 5c, and 5d, the ion profile has been 

reconstructed with the combination technique [1], [2] and shown at coincident grid nodes. 

Regardless  , the shape of ion density is qualitatively similar to the one calculated with the 

standard PIC method. Comparing figures 5a and 5b reveals that amplitude of ion density 

variation is in the same order but the wavelength of the instability is 35 % larger than the 

reference case (see below). Figure 5c shows that an increase of levels ranging from   = 9 to   = 11 (and from 17 to 21 sub-grids, respectively) allows us to reproduce accurately the ion 

density profile in amplitude, the wavelength calculated with the sparse grid being a bit larger 

(by 25 %). A continuous increase of   to 12 reduces the difference in the wavelength to a 

difference of solely 5 % (fig. 5d). 



15 

 

 

Figure 5: 2D profiles of ion density with (a) standard PIC,     = 400, (b) sparse grid PIC,   = 

9 and     = 400, (c) sparse grid PIC,   = 11 and     = 117 and (d) sparse grid PIC    = 12 

and     = 117, using combination technique. Twenty color levels equally spaced are used, 

with maximum of (a) 2×10
17

 m
-3

, (b)  2.2×10
17

 m
-3

, (c) 2×10
17

 m
-3

, (d) and 2.2×10
17

 m
-3

. 

The FFT along the y direction integrated between x = 0.4 cm and at x = 0.6 cm of the ion 

density is plotted in figure 6. As   increases, the dominant mode is shifted toward the one 

calculated by the standard PIC method (  ~ 8000 rad/m). More interestingly, the effect of the 

reduction of the noise using sparse PIC approach is clearly visible on the spectrum. Focusing 

on   > 20 000 rad/m, a comparison between the standard and sparse PIC methods (for   = 9) 

and     = 400 shows a reduction between one to two orders of magnitude of the FFT white 

noise signal. 

0 0.5 1
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Figure 6: Fast Fourier Transform of the ion density along the y direction. The signal is 

integrated between x = 0.4 cm and at x = 0.6 cm. Same conditions as in figure 3.  

The mechanism associated to the saturation of the instability is the ion wave trapping [14-

17]. Ions are trapped by the azimuthal electrostatic wave leading to a broadening of the ion 

velocity distribution function (IVDF) and the appearance of population of high energetic ions. 

We have compared the influence of sparse grid PIC approach on the shape of the IVDFs. 

Figure 7 shows the IVDF integrated in time (same sampling as on-axis profiles of figure 4) 

and for two locations. The first position is downstream the peak of magnetic field and close to 

the maximum of ionization source term. At that position, the electron density and the 

amplitude of oscillations are the highest. The second position is located in the acceleration 

region where the EDI is convected. We notice that the sparse grid PIC simulations are capable 

to reproduce what the standard PIC approach gives in terms of ion wave trapping. 

Specifically, when   = 12, the IVDFs look very similar to the ones obtained with the standard 

PIC method. Very interestingly, the tail of the distribution is well reproduced by sparse grid 

PIC simulations. 
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Coming back to the theory of ion-wave trapping [14-17], the maximum of ion velocity in 

the azimuthal direction can be written as the sum of the phase and trapped velocities                    , where the                 -    being the ion sound speed and                   ,    and    are charge and ion mass, respectively, and       the rms level of 

electric potential field fluctuations. At x = 0.5 cm (fig. 7a), in the region where the ions are 

generated at rest and axial electric field is very small, the electron temperature is almost the 

same for all the calculations and around 25 eV (see fig. 3b) and        = 3.5×10
4
 m/s.       at that specific position is the same with, ~ 1 V, for both the standard and sparse grid 

PIC simulations when   = 12. The trapping velocity is hence 1.7×10
4
 m/s. This simple 

estimation gives a maximum velocity reached by the ions of      ~ 5×10
4
 m/s in agreement 

with results of figure 7a.  

At x = 2.1 cm, the electron temperature varies between 10 to 20 eV and       between 1.5 

and 2.5 V, leading to a maximum velocity      between 4.2×10
4
 m/s and 4.8×10

4
 m/s, which 

is an underestimation of the maximum ion velocity shown in fig.7b. Nevertheless, in that 

region the azimuthal drift velocity induced by high axial electric and radial magnetic fields is 

small and the EDI is certainly the result of non-local phenomena induced by the convection of 

the instability. Comparisons between the theoretical solution of the modified ion acoustic 

instability and using the standard PIC approach taking data at that specific position have 

shown also a deviation in that region [18]. Importantly, sparse PIC approach with refined grid 

meshes is capable of capturing the IVDF and ion wave trapping phenomena. 
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Figure 7: Time-averaged ion velocity distributions as a function of the azimuthal velocity 

integrated along the azimuthal direction (a) at x = 0.5 cm ± 0.1 cm and (b) at x = 2.1 cm ± 0.1 

cm. Same conditions as in figure 3. 

IV. Discussion 

In the context of Hall thrusters, theoretical studies confirmed by the standard PIC 

simulations have revealed that the Fast Fourier Transform of the spectrum of the density 

fluctuations generates a spectrum following a dispersion relation that can be derived from a 

modified ion acoustic instability [14-17]. In particular, the wavelength of the dominant mode 

of the instability is ~ 9    . For standard PIC calculations, at the maximum of plasma density 

(x = 0.5 cm),         ~ 0.5, implying that around 20 points are needed to properly capture the 

shape of the EDI. The understanding of the effect of   requires a robust numerical analysis 

and is let for future studies. Obviously switching from   = 9 to   = 12 allows us to capture 

gradient along the x and y directions with more precision. We can only state that the 

simulation results are certainly low-pass filtered taking   = 9. This affects the wave signal by 

modifying dominant modes. This filtering effect can be reduced as the level   is increased. 

In the calculations performed, Poisson equation is solved independently on each of the 

sparse grids, and the combination technique being used to calculate the electric field at the 
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particle positions to push them. This is the method used in Ref. [1]. Ricketson and Cerfon [2] 

have discussed a possible alternative that consists in computing charge densities on the sparse 

grid nodes (using the standard bilinear interpolation functions), then to perform a projection 

on the regular grid nodes through the combination technique, and to solve Poisson equation 

on the regular grid. They argue that using this hybrid approach would reduce the error-grid 

based in the calculation of the electric field. It seemed interesting to test that “hybrid” method 

in future calculations. The drawback of the latter is the reduction of the speed-up due to the 

resolution of the Poisson equation on the regular grid [2]. We also did not vary the time step 

in the simulations preserving the resolution of a fraction of the inverse of electron plasma 

density. The question of the Courant-Friedrichs-Lewy (CFL) condition when sparse grid cell 

changes and becomes smaller is also let for future analysis and studies. 

All the simulations have been carried out on the Calmip supercomputer with 5 × Skylake 

node (Intel Xeon Gold 6140 bi-processors at 2.30 GHz with 18 cores), using Intel compiler 

version 18.2.199 and IntelMPI version 18.2. The choice of number of nodes has been 

conducted to optimize the reference case but no particular efforts have been made to 

independently optimize other calculations. Nevertheless, it can be instructive to see if there is 

any advantage to use sparse PIC technique to reduce the computational time. We show in 

figure 8 the computational time normalized to the reference case (standard approach, 512
2
 and     = 400). Interestingly, keeping the same number of particles-per-cell offers an advantage 

of using sparse PIC technique (gain of factor ~ 6.5). Keeping   = 9 and increasing     

penalizes the computational time and does not lead to better results. Finally, the generation of 

more sub-grids leads to an increase of the computational time. The run time of sparse grid 

calculations with   = 12 and     = 117 is the same as in the standard case although the total 

number of particles is reduced by a factor 6.5 (see figure 8). This drawback could be 

addressed by future optimization strategies. 
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We have also carefully looked at the time spent in the sparse PIC subroutines. To 

summarize, compared to calculations with the standard PIC technique, the time spent to 

resolve Poisson equation drops since the total number of cells is reduced while the time 

necessary to compute the charges on the nodes and the different sub-grids increases. This is 

consistent with our previous analysis [1]. For   = 12 and     = 117, the time spent to 

compute the charges is almost the same than the time spent to push particles explaining a 

computational time almost identical to the standard PIC approach. Taking the ratio of number 

of cells between the sparse grid method (for   = 12) and the regular grid method for    = 

512 gives 1.8 in our 2D conditions. Same strategy employed for 3D simulations gives a ratio 

of ~ 70 meaning that using the same approach for future 3D problems would certainly offer a 

speed-up significantly larger than for 2D simulations. 

 

Figure 8: Speed up (normalized to the reference case, standard method 512
2
 and     = 400) as 

a function of total number of particles    for the different approaches. 

V. Conclusions 

We have used the sparse grid PIC algorithm with the combination technique to 

demonstrate the applicability of the method to capture the EDI in a Hall Thruster. Focusing on 
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previous published benchmarks, comparisons between standard PIC and sparse grid methods 

have been realized. In the calculations with the standard method, the number of grid points 

has been chosen to respect constraints on mesh size-to-electron Debye length ratio (        ~ 

0.5, at maximum of plasma density). Clearly, the construction of the system of grids from the 

same   power as the standard method (precisely,  = 9 corresponding to 2
9
 ×2

9
 grid points for 

the regular grid mesh) offers the advantage of a large speed-up ~ 6.5, but comparisons only 

agree with a certain margin. Increasing     in the sparse PIC approach does not reduce the 

error, meaning that the results tend to be independent of     above a certain limit. This has 

been observed for the standard PIC simulations in the same context [16] and for sparse grid 

PIC results in other simulations [1], [2]. 

One way to reduce the error is to construct a hierarchy of sparse grids from a larger  . 

Doing this, we observe a reduction of the error to typically 20 % for a speed-up of typically 3. 

Increasing   of one additional level still reduces the error to 7 %, but no gain in 

computational time is reached. Further analyses are needed to provide a clear explanation of 

such effects. Smaller mesh sizes increase the numerical resolution of the gradients in the 

plasma parameters which results in a reduction of the grid-based error associated with the 

combination technique. Keeping the same strategy for future 3D simulations with   = 12 will 

offer a gain in the number of cells for the sparse grids of around 70 compared to only 1.8 for 

2D. Moreover, the high performance computing techniques for 3D simulations of this new 

type of explicit scheme have to be revisited (such as the optimizations of charge deposition, of 

methods to solve Poisson’s equation using sparse matrixes with different geometrical aspects, 

etc.). 
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