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Introduction

The purpose of thu paper is to ahoy how sparse Gaussian elimination is applied to the

numerical simulation of petroleum reservoirs. ’ Our emphasis will be on this particular

application, somewhat in the style of (10], rather than on theoretical or implementation

questions, which are treated in other papers in this series, (3J and (4]. ” In particular,

vs shall present the work and computing—time requirements of sparse Gaussian elimination

for some typical problems of reservoir simulation . 
--

In many reservoir simulation problems, we seek the solution of a system of

nonlinear parabolic partial differential equations describing multiphase flow in two or

three space dimensions. In this paper, we restrict our attention to two—dimensional

probleas.* The most coonon technique is to approximate the domain by a rectilinear mesh

or grid and to approximate the partial differential equations by five—point difference

equations together with suitable linearizations. The result is a sequence of systems of

linear equations

A x b  (1)

where entries in the matrix A and the vector b vary from time step to time step. A

simulation problem may involve up to a thousand or more such systems.

In reservoir simulation, systems of the form (1) have usually been solved with

iterative rather than elimination methods. This was thought to save both time and

storage. But selecting an efficient iterative method, optimal acceleration parameters,

and a good stopping criterion is sometimes difficult and expensive. Moreover, recently we

have found that in some situations iterative method. will not converge to an acceptable

solution within a reasonable number of iterations because of the increasing complexity of

simulation problems.

Classical elimination methods , though inefficient in terms of both speed and

* See (8] and [10] for computational results for coarse three—dimensional grid problems.
Sparse Gaussian elimination for fine three—dimensional grids is prohibitively expensive

(2 ,31.
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storage , have avoided these difficulties and have always yielded satisfactory solutions .

Recently, sparse matrix techniques have greedy improved the computing speed and storage

efficiency of elimination methods. snd they have become an important tool in reservoir

simulation.

The computing mesh in reservoir simulation is customarily numbered row by row or

column by column (the grid row ordering) . Depending on the derivation of the difference

equations, the system (1) can be in one of the two forms described below.

Q!
~
cpe 1: in this case, x represents unknown reservoir pressures at the grid points.

A is a diagonally dominant ban d matrix , which is usually nonsymmetric, although its

incidence matrix is symmetric . As an example , a 3x 4 grid and a corresponding matrix A are

shown in Figure 1.

X X  X

X X X X

X X  X

~ 
4 7 ID X X X X

I 1 X X X X  X

2 ~ Is Iii X X X X

T~~~1 X X X

3 s 
~~

j i7 X X X X X

X X X X

X X X

X X X X

X X

Figure 1:
Type 1 ?‘strix from a 3x4 Grid .

7
~
ype 2: In this case , x represents unknown reservoir pressures and/or fluid

uturat ton s (volumetric fractions) at the mesh points. If the unknowns at each grid point

are numbered consecutively,  th e elements of A cluster in blocks as in Figure 2. Some of

the matrix entries within each block may be zero. Both A and its incidence matrix are

usually nonsy etric , and A ic not always diagonally dominant , although pivoting is not

required for numerical stability. This type of matrix will be referred to as a block

matrix.

~ 

~:L: 
~~~~~~~~~~~~~ - -- - -~~~-- - -~--—~~~~~~



-3-

i, ;v i 1-i ~ii~~’

~
l N I N N N  I I N~
I N N , , .  l i i

.1 N N I 
~ • N I I I N N

I N I I N N I N N  N N N

~~~~~~~~~~~~~~~~~~ N NI

* 1 1 1 1’  A l l

- N N N N N I  I N N

_~~~~ _ : I N N , N N  N N I

~~ 
N I :  N * * N I N  ~~~~

; N N N  I N N N N N  N A N -

I : ‘ N I I N N N  N N N

N N A N N N N N N ~ N N N *
* N N  . N N I N N N N N N  N N N

* I X  N I N I  N N N  N I N N 1

: 1 1 * . N N N N I N  . N N N

I N N  N N N N N I

I I I  , N N N N N X  I N N

I I I . N N 1 . 1  X N  N k X

N N N , N N N N N N  I N N

I N N  ‘ I I N N N N I I *  N I X

N a N  . N N I N N N N N N  N , ,

N I N  I N N N N
~~~~~I N N  N I N

N A N  
~~~~~~

N
~~~~~

N I  
- - 

N N *

I N N  N N N X N N  N I l ,

1.
1
..
! I. * 1  N I  * N N N N .

I N N , 
- 

: a
~~~~~

N I N k

N I N  I N N - i N N

N I N  N N N N N N

I I N I ’ N N N N N N N I N

I N I I N N N N N N N N

_I_ N N  
- 

N N N N I I N N N

.1 N N I N A N  N N
‘ N N N N N N N I N

N N N N N N

Figure 2:
Type 2 (Block) Matrix from a 3x4 Grid

The application of sparse matrix techniques to reservoir simulation consists of two

steps. first, we renumber or reorder the grid to minimize the fill—in during elimination

and to minimize the number of arithmetic operations involving nonzeroes. This reordering

is equivalent to a sywnetric permutation of the matrix A of the form PAP
t 

where P is the

permutation matrix corresponding to the reordering of the grid. Second , we solve the

permuted system using Gaussian elimination where we store and operate on only the

nonzeroes of A plus the new nonzeroes that occur during elimination . In our experience

with reservoir simulation, the grids are relatively coarse because of the lack of detailed

geological data describing the reservoir or because of the need f or onYy “engineering”

estimate. of the unknowns . Hence , vs will assume that in—core storage is not a critical

issue and will emphasize an implementation designed for maximum efficiency with respect to

computing time rather than computer storage. For a discussion of related implementations

N

N-

- . - ‘.- -..
-

.-.‘- .-- -- .a
~ 

.‘.. - ‘ - ‘.- • 
. . -, 

~~~~~ ~~~~
.... .— -- 

~~~~~~~
-
~~~~~~~~

-- - -  
~~~~~

—--  -
~~~~



-4-

designed to optimize storage rather than speed , see [4j .  We will first  describe the

ordering techniques and second present the sparse matrix algorithms that we have foun d

effective in reservoir simulation.

Order ing Schemes

For Type 1 matrices is has been our experience that the alternate diagonal (AD) and the

minimum degree (MD) orderings described below y ield good results . The application of the

alternate diagonal ordering to reservoir simulation was f irst  reported in [8]. Instead of

numbering a two—dimensional grid row by row, it numbers the grid along alternate diagonals

An example of this ordering and the corresponding matrix are shown in Figure 3.

I X X

N X I

I X X X I

I S 4 Ii 
X X X X

1 1 X X  I

1 3 10 16 
x x x

I X X X  I

2 ~ 5 . 112 X X X  X

X X I X  N

X X X

X X  I

Figure 3:
Alternate Diagonal Ordering and Its Type 1 Matrix

The application of the minimum degree (MD) ordering scheme to reservoir simulation

was discussed in [10]. The general idea is that at any stage of the elimination procedure

we select as p ivo t row that row with the fewest nonzero off—diagonal elements. In case

of a tie, we select any row from the tie. In the minimum degree ordering, we can start

L with a matrix that corresponds to either the grid row ordering or the alternate diagonal

ordering. (The only effect is to modify the breaking of ties.) The latter sometimes

A
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results in as many as 15% fewer multiplications than the former.

For Type 2 matrices, we have found that it is convenient and effective to number

the grid or permute the matrix blocks according to one of the schemes above. The relative

positions within each block are unchanged.

Work Requirement

We de fine the work requirement as the numbet of multiplications and divisions requi red to

solve the system (1) by sparse elimination. For Type 1 linear systems, the work

requirement of the alternate diagonal ordering was given in [8]. For large two-dimensional

grids with dimensions I and J (I � .1) , the work requirement with AD ordering is

~~~~ 
J
4

(2)

while for large lxi squares it is

4
(3)

The AD ordering is not asymptotically optimal, since the work required with an optimal

ordering scheme is O(I
~
) for two—dimensional square grids (6]. In practice, however, the

AD ordering works fairly well.

We do not know of any fo rmulas for calculating the work required with the minimum

degree ordering. The observed work requirement for several typical problems will be given

later. This ordering seems to work as well as or better than the alternate diagonal

ordering.

The wovk requirements with various orderings for some rectangular grids are given

in Table 1. CR, AD, and MD designate respectively- the grid row, alternate diagonal, and

minimum degree orderings. We observe from this table that reordering the grid

substantially reduces the work requirement, with the greatest reduction for square grids.
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Grid Grid
Dimensions Ordering Row Algori thm Dimensions Ordering Row A lgorithm

10110 Ga 11,696 10*20 CR 24,896
AD 5,504 AD 13,504
MD 4 ,936 MD 13,562

30*30 CR 855 ,096 20*60 CR 541,796
AD 261,104 AD 255 ,604
MD 189,276 MD 232 ,372

50*50 CR 6,458,496

AD 1,809 ,504
MD 1,149,772

Table 1:
Work Requirements for Type 1 Equations

Reordering is less effective in reducing the work requirement of elongated rectangular

gr ids , though such grids - require considerably less work than square grids with the same

number of grid points .

Table 2 shows the work requirement of three two-dimensional grids from actual

reservoir simulation problems. These grids are characterized by irregular boundaries as

shown in Figures 4, 5, and 6. Clearly reordering is also effective in reducing the work

Sinu~lation Grid Number Work Requirement
Problem Dimensions of Equations CR 

- 

AD MD

1 8x69 390 20,726 15,218 16,110

2 23*37 507 174,974 62 ,430 51,766

3 55*72 2 ,347 -7,200 ,000 2 ,037 ,432 709 ,442

Table 2:
Work Requirements for Type 1 Equations

Simulation Problems 1, 2 , and 3

. .
~~~~~~~~~~~~~~ ~

ffiM
~

ffl1
~
i4ffl I

Figure 4:
Simulation Problem 1, 8*69, 390 Equations
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Figure 5:
Simulation Problem 2, 23x37, 507 Equations

Figure 6:
Simulation Problem 3, 55x72, 2,347 Equations

requirement for such grids. In simulation problem 3, the AD ordering reduces the work

requirement by a factor of about 4, and the MD ordering reduces it by a factor of about 10.

For Type 2 systems, suppose there are k unknowns per mesh point. The simplest way

of applying sparse matr ix techniques to the system (1) is to assume that each block of

matrix A has dimensions kxk and contains k
2 nouzeroes. The work requirement for a Type 2

matrix in this simple situation is then approximately equal to k
3 times that of the Type 1

matrix based on the same ordering.

As an example, we give the work requirement for a block matrix A arising from

reservoir simulation problem 4 with a 7*9 grid as shown in Figure 7. There are three
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Figure 7:
Simulation Problem 4, 7*9, 189 Equations

unknowns per mesh point resulting in a system with 189 equations. If each block of A is

assumed to be dense, then A has 2,547 nonzeroes and the work requirement is 91,640 for the

GR ordering; 52,290 for the AD ordering; and 51,894 for the MD ordering (Table 3).

Nonseroes Alternate Minimum
m A  Grid R~~ Diagona l Degree

2,547 91,640 52,290 51,89h

1,061 15,213 11,611 17,767

Table 3:
Work Requirements for Simulation Prob lem 4

Actua lly each block of A may contain fewer than nine nonzeroes. In this example, A has

only 1,061 actual nonzeroes at the start of the simulation, and the number gradually

increases to 2,547 nonzeroes in the limit, as the number of t ime steps becomes very large.

The work requirement corresponding to 1,061 nonzeroes in A is 15,213 for the CR ordering,

11,611 for the AD ordering, and 17,767 for the MD ordering (min imum degree with respect to

the grid). By using a good grid ordering and taking into account all the zeroes in A , the

work requirement is substantially reduced from 91,640 to 11,611. Thus, it is advantageous

to account for the change in the number of nonzeroes in A during simulation , when an 
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efficient code is available to do so.

Sparse Matrix Codes

The basic sparse matrix coding techniques have been described in [1] and [7]. We have

found the symbolic and numeric (SYMFAC—NUMFAC) factorization technique to be extremely

efficient in solving the linear equations in reservoir simulation. A subroutine SYMFAC is

used to generate pointers to the nonzeroes of the triangular factors L and U of the LU

factorization of A. Given these pointers, a subroutine NUMFAC is used to factor A (or to

convert it to U). A version of SYMFAC—~
flThffAC that is par ticularly well suited for

reservoir simulation has been developed here at Yale [51.

For Type 1 linear systems, we apply SY?WAC once per simulation grid and N1JMFAC once

each tine step. In the case of Type 2 linear systems there are two options. First, we

can assume that the matrix blocks (see Figure 2) contain only nonzeroes. (The incidence

matrix is symmetric as a result.) This allows us to apply SYMFAC or-’e per grid and N1JMFA C

once per tine step as before . Second, we can take into account the zeroes within the

matrix blocks at each tine step . Then we must apply both SYMFAC and NUMFAC at every time

step. The relative advantage of the two options depends on the relative quantities of

zeroes and nonzeroes in the matrix blocks and the relative efficiency of the SYMFAC and

the NUMFAC subroutines. As a general rule, it would pay to assume that all the matrix

blocks are dense for the first time step just to find Out the cost of NUMFAC for this case;

at subsequent time steps, one would take into account zeroes within the matrix blocks

until the combined cost of SYMFAC and NUMFAC exceeded the cost of NUMFAC assuming the

dense blocks.

We have made a series of computer timing studies to determine the CPU time

requirements of the Yale code when applied to reservoir simulation problems. The computer

used for the timing studies was an IBM 370/158 with virtual storage. The timing runs were

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
a- 
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made without background job s to avoid interference . The programs were compiled by using

the IBM FORTRAN IV Level K Extended Compiler , with OPT — 2. Selected single precision

floating point instruction speeds for thc 370/158 are given in Table 4. Table 5 gives the

Average floating Point

Inst rw~tion Ins truction Speed in Microseconds

Add 2.0 
-

Load 0.70

Multiply 2.0

Store 0.88

Table 4:
Selected Average Instruction Speeds on the IBM 370/158

NTJMFAC
Nonzeroea

Grid 
~~~~ 

Work SYMFAC 2¼me per M4lt iply

30*30 8,915 189,276 .62 sec 1.8 sec 9.4 usec

50*50 33,961 l,l49,7~
2 2.2 sec 10. sec 9.1 usec

20*60 11,701 232,372 .78 sec 2.2 sec 9.6 usec

55*72 26 ,514 709 ,442 1.8 sec 6.6 sec 9.3 usec

7*9 913* 11,611 .10 sec .14 sec 12. 
~sec

7x9 2 ,664 51,894 .23 sec .49 sec 9.4 
~
sec

Table 5:
CPU Time Requirement of SYMFAC and NUMFAC

CPU time requirement of the Yale codes for several typical cases of Type 1 and Type 2

matrices. In each case , we used the best of the three grid orderings . Note that except

for the smallest system, the Yale code requires about 9.5 microseconds per multiplication

for NUMFAC. while a band algorithm using the grid row ordering requires about 7.2

microseconds per multiplication. The band algorithm, which does not do any pivoting, is

the most efficient of the codes we tested in terms of CPU time per multiplication. But

overall the Yale NUMFAC code is considerably faster. For example, it is approximately

* Nonzeroes of L is 1,355.
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eight times faster in the case of the 55*72 grid in simulation problem 3. This favorable

comparis on is due to the reduced number of multiplications (a factor of about ten) .

The computer time required to reorder the grid is unimportant relative to the time

required to perform the numeric elimination , since in mos t cases the grid is reordere d

only once and the system (1) is solved many times in a simulation study. Typically, the

computer time to reorder the grid is 0.5 to 4.0 times that required for one numeric

elimination.

Storage requirements for sparse elimination are discussed in (4]. It should be

noted that the storage required increases very rapidly with increasing grid dimensions.

See Table 5 for the actual number of nonzeroes In U for the test problems .

Since we are solving a time—dependen t problem and are primarily concerned with

speed and not storage, we use a SYMFAC subroutine that returns pointers to the noozeroes

of L and U and a NUMFAC subroutine that returns the numeric values of U only. If we were

more concerned about storage (because of hardware limitations) , we could use the SYMFAC

subroutine described in [9], which retu rns the “compressed” pointers for the nonzeroes of

L and U. Or , going one step f urther , we could use the TRKSLV subroutine described in (4 1,

which combines the SYMFAC and NUMFAC subroutines and requires storage for only the

“compressed” pointers and numeric values for the nonzeroes of U.

Conclusions

1. Sparse Gaussian elimination Is a powerful engineering tool that can be used to solve

economically many systems of linear equations arising in reservoir simulation.

2. Reordering significantly reduces the number of multiplications required for elimination.

For a Type 1 matrix , when a two—dimensional grid is nearly squa re , the minimum degree

order ing is signif icantly bette r than the alternate diagonal ordering. The improvement

F 

is further enhanced If the grid is irregularly shaped.
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3. Sparse Gaussian elimination can be considerably faster than band elimination algorithms .

For a 55*72 grid with 2,347 equations, the Yale code reduces computing time by a factor

of eight over a band elimination algorithm .
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