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Remote sensing was not envisioned a century ago when the 
American Society of Agronomy was formed. However, 

individuals at that time used their eyes and understanding of 
plants to provide qualitative assessments of vegetative char-
acteristics, vigor, color, and so forth. � e development of 
sensors to measure spectral re� ectance or emittance created 
opportunities to quantitatively describe agronomic parameters 
and during the past 100 yr the application of remote sensing 
to agronomic problems created new methods for improved 
management of crops. Use of the visible and near-infrared por-
tions of the electromagnetic spectrum for remote sensing have 
their roots in pioneering work by William Allen, David Gates, 
Harold Gausman, and Joseph Woolley, who provided much 
of the basic theory relating morphological characteristics of 
crop plants to their optical properties (Gates et al., 1965; Allen 
et al., 1969; Gausman et al., 1969a; Woolley, 1971; Allen et 
al., 1973; Gausman, 1973, 1974; Gausman et al., 1971, 1974; 
Gausman, 1977). High resolution spectral signatures of natural 

and cultivated species were presented as sources of information 
about normal plant growth and conditions caused by nutri-
ent de� ciency, pests, and abiotic stresses (Gausman and Allen, 
1973; Gausman and Hart, 1974; Gausman et al., 1975a, 1976, 
1978, 1981; Peynado et al., 1980). Research on the contribu-
tions of plant canopy architecture, solar illumination conditions 
and soil re� ectance and emittance has further re� ned remote 
sensing as a tool for research and applications to agronomic 
problems (Suits, 1972; Tucker, 1977; Bauer et al., 1986; Liang, 
2004). A summary of the progress in remote sensing applied 
to agriculture was recently published in a collection of articles 
in Photogrammetric Engineering and Remote Sensing (volume 
69). Sensor techniques were described by Barnes et al. (2003), 
hydrometeorological applications detailed by Kustas et al. 
(2003), crop management applications by Pinter et al. (2003), 
crop yield assessment by Doraiswamy et al. (2004), applications 
to rangeland assessment and management by Hunt et al. (2003), 

ABSTRACT

Remote sensing has provided valuable insights into agronomic management over the past 40 yr. � e contributions of individu-

als to remote sensing methods have lead to understanding of how leaf refl ectance and leaf emittance changes in response to leaf 

thickness, species, canopy shape, leaf age, nutrient status, and water status. Leaf chlorophyll and the preferential absorption at 

diff erent wavelengths provides the basis for utilizing refl ectance with either broad-band radiometers typical of current satellite 

platforms or hyperspectral sensors that measure refl ectance at narrow wavebands. Understanding of leaf refl ectance has lead to 

various vegetative indices for crop canopies to quantify various agronomic parameters, e.g., leaf area, crop cover, biomass, crop 

type, nutrient status, and yield. Emittance from crop canopies is a measure of leaf temperature and infrared thermometers have 

fostered crop stress indices currently used to quantify water requirements. � ese tools are being developed as we learn how to use 

the information provided in refl ectance and emittance measurements with a range of sensors. Remote sensing continues to evolve 

as a valuable agronomic tool that provides information to scientists, consultants, and producers about the status of their crops. 

� is area is still relatively new compared with other agronomic fi elds; however, the information content is providing valuable 

insights into improved management decisions. � is article details the current status of our understanding of how refl ectance and 

emittance have been used to quantitatively assess agronomic parameters and some of the challenges facing future generations of 

scientists seeking to further advance remote sensing for agronomic applications.

Application of Spectral Remote Sensing 
for Agronomic Decisions

J. L. Hatfi eld,* A. A. Gitelson, J. S. Schepers, and C. L. Walthall

J.L. Hatfi eld, USDA-ARS National Soil Tilth Lab., 2110 University Blvd., 

Ames, IA 50011; A.A. Gitelson, CALMIT, School of Natural Resources, 

Univ. of Nebraska, Lincoln, NE 68583; J.S. Schepers, USDA-ARS Soil and 

Water Conservation Unit, 120 Keim Hall, Univ. of Nebraska, Lincoln, NE 

68583; C.L. Walthall, USDA-ARS, National Program Staff, 5601 Sunnyside 

Ave., Beltsville, MD 20705. Received 30 Dec. 2006. *Corresponding author 

(jerry.hatfi eld@ars.usda.gov).

Abbreviations: Anth, anthocyanin; ARVI, atmospherically resistant 

vegetative index; BRDF, bidirectional refl ectance distribution function; Car, 

carotenoids content; Chl, chlorophyll; CWSI, Crop Water Stress Index; 

DisALEXI, Disaggregation Atmosphere–Land Exchange Inverse; DVI, 

Difference Vegetative Index; ET, evapotranspiration; GLAI, green leaf area 

index; GPP, gross primary production; LAD, leaf angle distribution; LAI, 

leaf area index; NDVI, Normalized Difference Vegetative Index; NDWI, 

Normalized Difference Water Index; NIR, near infrared; NRI, Normalized 

Refl ectance Index; NN neural network; OSAVI, Optimized soil-adjusted 

vegetative index; PRI, Photochemical Refl ectance Index; PVI, Perpendicular 

Vegetative Index; RT, radiative transfer models; RT-NN radiative transfer–

neural network; SAIL, scattering by arbitrarily inclined leaves; SAVI, soil-

adjusted vegetative index; SDD, stress degree day; SIPI, structure-insensitive 

pigment index; SPAD, Soil–Plant Analyses Development; STD, standard 

deviation; SWIR, short-wave infrared; TSAVI, Transformed Soil Adjusted 

Vegetative Index; VF, vegetation fraction; VIs, vegetative indices; WDI, Water 

Defi cit Index.

Hatfield, Gitelson, Schepers & Walthall in Agronomy Journal (2008) 100: S-117-S-131. DOI: 10.2134/agronj2006.0370c.

sgardner2
Stamp



S-118 Ce lebrate the Centenn ia l  [A Supp lement to Agronomy Journa l ]  �  2008

water quality assessment by Ritchie et al. (2003), and sensor 
development and correction methods was prepared by Moran et 
al. (2003). Another recent review of the application of remote 
sensing methods to dryland crops was developed by Hat� eld et 
al. (2004). � ese articles provide a summary of e� orts in more 
detail than is possible in this article, and the reader is referred to 
those e� orts for more thorough reading.

Instrumentation re� nements and development of relation-
ships between re� ectance and plant responses have expanded 
our ability to quantify agronomic parameters. � e basic princi-
ples of leaf and plant canopy re� ectance have been incorporated 
into vegetative indices relating speci� c waveband combinations 
to various plant characteristics. Leaf emittance is related to leaf 
temperature, which has been extensively used to quantify plant 
stress and improve water management. Remote sensing uses 
more than visible, near-infrared, and thermal bands. Other por-
tions of the electromagnetic radiation spectrum—for example, 
short-wave infrared (SWIR) and microwave—have been 
applied to agricultural problems. � is article details the current 
status of our understanding of how re� ectance and emittance 
have been used to quantitatively assess agronomic parameters 
and some of the challenges facing future generations of scien-
tists seeking to further advance remote sensing for agronomic 
applications.

Advances in the application of remote sensing principles 
to agronomy were made possible by � rst understanding the 
spectral responses of individual leaves and then applying that 
knowledge to canopies. Although, we tend to use vegetative 
indices (VIs) as commonplace tools for crop assessment today, it 
is instructive to � rst develop an understanding of the processes 
that occur at the leaf level and the information content of these 
signals. � roughout this article we link canopy level responses 
to re� ectance and emittance as measured by passive systems. 
As it is not possible to cover every aspect of remote sensing, 
our focus will be on remote sensing of information useful for 
addressing agronomic applications.

ASSESSMENT OF LEAF PIGMENTS AS THE 
BASIS OF REMOTE SENSING

Knowledge of leaf and canopy re� ectance has fostered devel-
opment and applications of remote sensing for agriculture. 
Central to applications of remote sensing to agriculture are 
fundamental observations of the plant leaf and the extensions of 
these relationships to the canopy.

Leaves contain chlorophyll, Chl a and Chl b, as essential 
pigments for the conversion of light energy to stored chemi-
cal energy. � e amount of solar radiation absorbed by a leaf is 
a function of the photosynthetic pigment content. � us, Chl 
content can directly determine photosynthetic potential and 
primary production (e.g., Curran et al., 1990; Filella et al., 
1995). Additionally, Chl gives an indirect estimation of the 
nutrient status as considerable leaf N is incorporated in Chl 
(Filella et al., 1995; Moran et al., 2000). Leaf chlorophyll con-
tent is closely related to plant stress and senescence (Hendry et 
al., 1987; Merzlyak and Gitelson, 1995; Peñuelas and Filella, 
1998; Merzlyak et al., 1999; Carter and Knapp, 2001).

Carotenoids as chlorophylls are the main pigments of green 
leaves. Several speci� c physiological functions have been attrib-
uted to carotenoids because of their unique physicochemical 

and photophysical properties: a structural role in the organiza-
tion of photosynthetic membranes; participation in light har-
vesting, energy transfer, quenching of chlorophyll excited states 
and singlet oxygen; and interception of deleterious free oxygen 
and organic radicals. Changes of leaf carotenoid content and 
their proportion to Chl are widely used for diagnosing the phys-
iological state of plants during development, senescence, accli-
mation, and adaptation to di� erent environments and stresses 
(e.g., Demmig-Adams et al., 1996; Young and Britton, 1990).

Anthocyanins are water-soluble vacuolar pigments of higher 
plants abundant in juvenile and senescing plants. Signi� cant 
accumulation of anthocyanins in plant leaves is o� en induced as 
a result of environmental stresses, for example, strong sunlight, 
UV–B-irradiation, low temperature, drought, wounding, bacte-
rial and fungal infections, N and P de� ciencies, herbicides, and 
pollutants (e.g., Chalker-Scott, 1999). Since anthocyanins serve 
as indicators of stress for many plant species, their detection and 
quantitative assessment provides information about response 
and adaptation of plants to environmental stresses.

Traditionally, pigment analysis is conducted using wet chemi-
cal leaf extraction methods with organic solvents and spectro-
photometric determination in solution (e.g., Lichtenthaler, 
1987). � is extraction technique, long considered the standard 
method for Chl assessment, requires destructive sampling (thus 
preventing developmental studies of single leaves) and is time 
consuming.

Hand-held Chl absorbance meters, of which several are avail-
able, measure leaf transmittance at two wavelengths in the red 
(~660 nm) and near infrared (NIR; ~940 nm). � e theoreti-
cal principles of these meters are described by Markwell et al. 
(1995). � e application of re� ectance spectroscopy to the esti-
mation of leaf pigment content has recently received consider-
able attention. Vegetation indices that combine re� ectance from 
a few spectral bands have been developed for pigment retrieval 
(e.g., Curran et al., 1990; Gitelson and Merzlyak, 1994, 1996; 
Gitelson et al., 1996a, 1996b; Blackburn, 1998; Datt, 1998; 
Adams et al., 1999; Gamon and Surfus, 1999). � e indices are 
based on knowledge of the re� ectance properties of leaf bio-
chemical components. More complete reviews of the practical 
and theoretical considerations of re� ectance spectroscopy are 
given by Curran et al. (1990); Gamon and Surfus (1999); and 
Le Maire et al. (2004). Compared with hand-held Chl meters, 
which yield a single index value, re� ectance spectroscopy o� ers 
a wealth of information. Besides Chl, the many wavelengths of 
re� ectance spectroscopy provide the basis for calculating the 
content of other pigments. However, a key problem is selec-
tion of an appropriate index from among the vast array of those 
available.

Chlorophyll Content
Remote sensing tools have been constructed on the principal 

that pigment content strongly a� ects leaf absorption spectra 
(Fig. 1). With increased Chl content, visible wavelength absorp-
tion increases, reaching more than 90% in the blue (400–500 
nm) region by both chlorophylls a and b and carotenoids and 
the red (~670 nm) region where both chlorophylls absorb. 
Speci� c absorption coe�  cients of pigments are high for blue 
and red wavelengths, (e.g., Heath, 1969; Lichtenthaler, 1987) 
and the depth of light penetration into the leaf is very low 
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(Kumar and Silva, 1973; Cui et al., 1991; Vogelmann et al., 
1991; Vogelmann, 1993; Fukshansky et al., 1993; Merzlyak 
and Gitelson, 1995). As a result, even low amounts of pigments 
are su�  cient to saturate absorption. For yellowish-green leaves 
when Chl exceeds 100 mg m–2, total absorption can exceed 
90%, depth of light penetration drastically decreases, and a fur-
ther increase of pigment content does not cause increased total 
absorption (Fig. 1). � us, the relationship of absorption vs. total 
Chl reaches a plateau, and absorption becomes virtually insensi-
tive to further Chl increases (e.g., � omas and Gausman, 1977; 
Gausman, 1984; Chappelle et al., 1992; Buschmann and Nagel, 
1993; Gitelson and Merzlyak, 1994, Gamon and Surfus, 1999). 
� e closer the wavelength is to the main absorption wavelength 
of pigments (blue or red), the lower the Chl content at which 
saturation of absorption vs. Chl relationship appears.

For the green (~550 nm) and red edge (~700 nm) regions, 
the absorption coe�  cient of chloro-
phylls in extract is very low and seldom 
exceeds 6% of that for blue and red (e.g., 
Lichtenthaler, 1987); however, green 
leaves absorb more than 80% of inci-
dent light in these spectral ranges (e.g., 
Moss and Loomis, 1952; Heath, 1969; 
Gausman et al., 1969b; Gausman and 
Allen, 1973; Gitelson and Merzlyak, 
1994). For green and red edge wave-
lengths, depth of light penetration 
into the leaf was found to be four- to 
six-fold higher than for the blue and 
red (e.g., Fukshansky et al., 1993; Fig. 
2 in Merzlyak and Gitelson, 1995). 
� erefore, sensitivity of absorption to 
Chl content is much higher in these 
spectral regions than for the blue and 
red.

Visible wavelength leaf re� ectance 
decreases with increasing leaf green-
ness/Chl content (Fig. 2). While leaf 
color may vary from yellow-green to dark-green, 
blue re� ectance is virtually insensitive to leaf green-
ness, typically remaining below 7%. With increases 
of Chl from 50 to 100 mg m–2 (yellow to yellow-
green leaves), red re� ectance decreases and when 
Chl > 100 mg m–2, red re� ectance does not change 
much with further increases of Chl (Fig. 3). Only 
re� ectance in the green and the red edge ranges are 
sensitive to the whole range of Chl variation (Fig. 
3); the standard deviation of re� ectance (STD) has 
the highest values in the green between 530 and 
590 nm and in the red edge around 710 nm (Fig. 2). 
Re� ectance varies slightly in the NIR mainly due to 
leaf internal structure and thickness changes.

� us, common spectral features of leaf absorption 
and re� ectance are: (i) minimum sensitivity to pig-
ment content in the blue between 400 and 500 nm 
and in the NIR; (ii) both absorption and re� ectance 
of leaves with moderate to high Chl are essentially 
insensitive to Chl content in the red absorption band 
of chlorophyll a near 670 nm; (iii) the green and red 

Fig. 1. Absorption spectra of maize leaves.

Fig. 2. Reflectance spectra of maize leaves and standard deviation of reflectance.

Fig. 3. Reflectance in the blue, green, red, red edge, and NIR ranges plotted vs. 
total Chl content in maize leaves.
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edge re� ectances are related very closely hyperbolically for a 
wide range of leaf greenness (Chappelle et al., 1992; Gitelson 
and Merzlyak, 1994); and (iv) the highest sensitivity of re� ec-
tance and absorption to pigment variation is in the green from 
530 to 590 nm and in the red edge around 700 nm (Fig. 1, 2, 3, 
and 4).

� ese fundamental spectral features of absorption and 
re� ectance are widely recognized (� omas and Gausman, 
1977; Gausman, 1984; Chappelle et al., 1992; Buschmann and 
Nagel, 1993; Gitelson and Merzlyak, 1994, 1996, Gitelson et 
al., 1996a, 2003a) and are why algorithms for nondestructive 

chlorophyll retrieval are not based on Chl 
maximum absorption wavelengths. Indices 
composed of Chl maximum absorption 
wavelengths would rapidly saturate, even with 
low chlorophyll concentrations. Moreover, 
other pigments also absorb in the blue region 
(e.g., Blackburn, 1998; Gitelson et al., 1996a, 
2002a; Mariotti et al., 1996). � ese wave-
lengths place a severe limitation on their exclu-
sive use to quantify plant response to stress.

Use of green and red edge wavelengths 
avoid saturation and the accompanying loss 
of sensitivity to Chl, and are usually preferred 
because re� ectances are more sensitive to 
moderate to high chlorophyll content. Indices 
based at these spectral bands were proposed 
and used to estimate Chl content in the leaves 
of various plant species (Chappelle et al., 
1992; Gitelson and Merzlyak, 1994, 1996; 
Gitelson et al., 1996a, 1996b, 2003a; 1999; 
Lichtenthaler et al., 1996; Gamon and Surfus, 
1999; Sims and Gamon, 2002; Richardson et 
al., 2002; Le Maire et al., 2004).

Carotenoids and Anthocyanin Content
Carotenoids content (Car) estimation is more di�  cult than 

Chl estimation. Chappelle et al. (1992) used ratio analysis of 
re� ectance spectra to � nd a spectral band sensitive to pigment 
content. � ey recommended using a ratio R760/R500, where 
R760 and R500 are the re� ectances at 760 and 500 nm, respec-
tively, as a quantitative measure of Car. Blackburn (1998) sug-
gested that the optimal waveband for Car estimation is located 
at 470 nm and used so-called the pigment-speci� c ratio R800/
R470 and a pigment-speci� c normalized di� erence (R800 – 
R470)/(R800 + R470) for Car content retrieval. Penuelas et al. 

(1995) proposed using a structure-insensitive 
pigment index (SIPI) = (R800 – R445)/(R800 
– R680). Sims and Gamon (2002) tested the 
above indices and have found none provided 
a signi� cant correlation across the whole 
range of carotenoid/chlorophyll ratios. Total 
carotenoid content was closely related to 
total Chl content and the Chl indices were 
the best predictors of total Car content (Fig. 
5). However, within the general relationship 
between Car and Chl there was substantial 
variation of the Car/Chl ratio. � ey recom-
mended the Photochemical Re� ectance 
Index (PRI) = (R570 – R531)/(R570 + R531) 
(Gamon et al., 1992) as a proxy of Car/Chl 
ratio.

For anthocyanin (Anth) estimation, 
Gamon and Surfus (1999) used a ratio of 
red to green re� ectances R600–700/R500–600. 
However, Sims and Gamon (2002) con-
cluded, “estimation of carotenoid and 
anthocyanin contents remains more di�  cult 
than estimation of chlorophyll content.” A 
problem with estimating pigment content 

Fig. 5. Relationships between estimated and actually measured Chl content in maize 
leaves using chlorophyll Indices CIred edge = (RNIR/Rred edge) – 1 and CIgreen = (RNIR/
Rgreen) – 1 where green band is between 540 and 560 nm and red edge band is be-
tween 705 and 725 nm (Gitelson et al., 2003a, 2005).

Fig. 4. Root mean square error of Chl estimation using chlorophyll index in the form 
CIλ = (RNIR/Rλ – 1) in maize leaves plotted vs. wavelength λ when leaf Chl ranged from 
10 to 800 mg/m2.
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using two-band indices is that a two-band index is confounded 
by other factors such as absorption by other pigments and leaf 
scattering, which also in� uence apparent leaf re� ectance at the 
two wavelengths.

A new approach to estimate total Chl, Car, and Anth content 
in higher plant leaves was developed and tested for leaves from a 
number of crop and tree species (Gitelson et al., 2003a, 2006a). 
Conceptual model relates re� ectances in three wavebands to 
content of the pigment content of interest (Cpigment).

[R(λ1)–1  – R(λ2)–1] × R(λ3) ∞ Cpigment

Re� ectance in the � rst band λ1 was maximally sensitive to 
pigment of interest: Chl in the red edge around 700 nm (for 
Anth-containing and Anth-free leaves) and green around 550 
nm for Anth free leaves (Gitelson et al., 2003a), Car at 510 nm 
(Gitelson et al., 2002a), and Anth at 550 nm (Gitelson et al., 
2001). However, R(λ1) was also a� ected by absorption by other 
pigments and leaf scattering. Re� ectance R(λ2) was maximally 
sensitive to absorption by other pigments; thus, the di� erence 

R(λ1)–1 – R(λ )–1 was related closely to the 
pigment of interest but a� ected by leaf scatter-
ing. � e third re� ectance R(λ3), where λ3 was 
in the NIR range, was closely related to leaf 
scattering. Tuning spectral bands in accord 
with spectral properties of pigment of inter-
est, optimal spectral bands λ1, λ2, and λ3 were 
found for each pigment estimate (Table 1).

VEGETATIVE INDICES
Vegetative indices have been developed 

to relate re� ectance from leaves or canopies 
with canopy characteristics. � ere are a range 

of VIs that have been developed during the past 40 yr. Hat� eld 
et al. (2004) summarized the development of VIs and their 
application to crop canopies. Many of the common ones are 
listed in Table 2 and the application of these will be summarized 
in the next section. At the canopy level, the changes of canopy 
re� ectance are the largest in the near-infrared wavelengths 
throughout the growing season due to increase of biomass and, 
thus, scattering, whereas the visible portions of the spectrum 
show less, but signi� cant, seasonal variation that relates to 
absorption of light by photosynthetic and photoprotective 
pigments (Fig. 6). Development of VIs can be traced back to 
Jordan (1969), who related the ratio of NIR (800 nm) to red 
(675 nm) re� ectance (NIR/RED) to LAI. As a re� nement, 
Tucker (1979) proposed a Di� erence Vegetative Index (DVI) 
as NIR-RED as a measure of vegetation changes over large areas 
and increased the con� dence that VIs could be e� ectively used 
for large-scale assessment of crop canopies. Many of the cur-
rent VIs are based on broad wavebands closely associated with 
the four LANDSAT satellite multispectral scanner wavebands. 
Jackson and Huete (1991) stated that the purpose of VIs was 

Table 1. Spectral bands for retrieving pigment content from leaf reflectance spectra 
using the model [R(λ1)–1 – R(λ2)–1] × R(λ3) ∞ Cpigment. For Anth-free leaves (Anth 
< 3 mg m–2), both the green and red edge bands can be used as λ1 while for Anth-
containing leaves only red edge band can be used as λ1. For carotenoids estimation 
both the green and red edge bands can be used as λ2.

Pigment λ1 λ2 λ3

Chlorophylls, Anth-free Chlorophylls, Anth-free 540–560 760–800 760–800

690–720 760–800 760–800

Chlorophylls, Anth-cont 690–720 760–800 760–800

Carotenoids carotenoids 510–520 540–560 760–800

510–520 690–710 760–800

Anthocyanins 540–560 690–710 760–800

Table 2. Summary of selected vegetation indices, wavebands, applications, and citations.†

Index Wavebands Application Reference

R800–R680 biomass Jordan, 1969

R800–R550 biomass Bushman and Nagel, 1993

R550 chlorophyll Carter, 1994

R–1
700 Gitelson et al., 1999

log(1/R737) chlorophyll Yoder and Pettigrew-Crosby, 1995

Simple ratio R = RNIR/Rred biomass, LAI, cover Birth and McVey, 1968; Jordan, 1969

Photochemical Refl ectance Index PRI = (R550 – R531)/(R550 + R531) light capture effi ciency Gamon et al., 1992

Pigment-specifi c normalized difference (R800 – R470)/(R800 + R470) LAI Blackburn, 1998

Normalized Difference Vegetation Index NDVI = (RNIR – Rred)/(RNIR + Rred) intercepted PAR, vegetation cover Deering, 1978

Perpendicular Vegetative Index PVI = (RNIR – aRred – b)/(1 + a2)1/2 LAI Richardson and Wiegand, 1977

Wide Dynamic Range Vegetation Index WDRVI = (0.1RNIR – Rred)/(0.1RNIR + Rred) LAI, vegetation cover, biomass Gitelson, 2004

Soil Adjusted Vegetation Index SAVI = (RNIR – Rred)(1 + L)/(RNIR + Rred + L) LAI Huete, 1988

Transformed Soil Adjusted Vegetative Index TSAVI = a(RNIR – aRred – b)/(Rred + aRNIR – ab) LAI, biomass Baret et al., 1989

Enhanced Vegetation Index EVI = 2.5(RNIR – Rred)/(RNIR+6Rred–7.5Rblue + 1) LAI, biomass Huete et al., 2002

Green NDVI (RNIR – Rgreen)/(RNIR + Rgreen) intercepted PAR, vegetation cover Bushman and Nagel, 1993; Gitelson and 

Merzlyak, 1994; Gitelson et al., 1996

Red Edge NDVI (RNIR – Rred edge)/(RNIR + Rred edge) intercepted PAR, vegetation cover Gitelson and Merzlyak, 1994

Visible Atmospherically Resistant Indices VARIgreen = (Rgreen – Rred)/(Rgreen + Rred) green vegetation fraction Gitelson et al., 2002b

VARIred edge = (Rred edge – Rred)/(Rred edge + Rred) green vegetation fraction Gitelson et al., 2002b

Chlorophyll Indices CIgreen = (RNIR/Rgreen) – 1 LAI, GPP, chlorophyll Gitelson et al., 2003b, 2005

CIred edge = (RNIR/Rred edge) – 1 LAI, GPP, chlorophyll Gitelson et al., 2003b, 2005

† LAI, leaf area index; GPP, gross primary productivity.
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to enhance the vegetation signal while minimizing the solar 
irradiance and soil background e� ects. Many current VIs have 
their foundation in leaf re� ectance and understanding how 
these re� ectance indices relate to canopy parameters will help 
strengthen our future e� orts to re� ne and apply VIs to agro-
nomic problems. � e trend toward use of narrow-band hyper-
spectral indices is fostering a re� nement of VIs and will increase 
our ability to exploit the information content of detailed leaf 
spectra. Part of this evolution is the wide use the red edge band 
and the extension beyond visible and near-infrared wavebands 
into the SWIR regions. � e power of indices incorporating 
SWIR wavebands is yet to be realized.

RETRIEVING AGRONOMIC PARAMETERS 
FROM PLANT CANOPIES

Retrieval of plant canopy agronomic parameters poses a dif-
ferent problem from that of the retrieval of plant leaf param-
eters. Plant canopy re� ectance integrates the contributions of 
leaf optical properties; re� ectance of underlying surfaces such 
as soil, plant litter, and weeds; and plant canopy architecture 
(Gausman et al., 1975b; Norman et al., 1985; Verhoef, 1984; 
Norman and Welles, 1983). Plant canopy architecture is quanti-
� ed in radiative transfer models (RT) as LAI, percentage veg-
etative cover, and leaf angle distribution (LAD) (Goel, 1988; 
Liang and Strahler, 2000; Liang, 2004). Illumination condi-
tions, including the amount of direct vs. di� use incoming solar 
radiation, and solar zenith and azimuth angles are important as 
these govern the amount and intensity of shadowing within the 
canopy. � e cumulative e� ect of these additional factors is that 
transfer of information from leaf re� ectance to canopy re� ec-
tance is nonlinear. View angle considerations are important 
when viewing o� -nadir, including situations where wide view 
angle swath widths are used to maximize ground area coverage. 
� e bidirectional re� ectance distribution function (BRDF), a 

fundamental quantity describing the re� ectance 
from a surface from all possible viewing angles 
under all possible illumination conditions, has 
seen considerable study for plants and soils (Liang 
and Strahler, 2000; Walthall et al., 1985) and can 
be approached as a source of information as well 
as a source of noise to be removed from remotely 
sensed data

� e most widely used VI is the Normalized 
Di� erence Vegetative Index (NDVI) proposed by 
Deering (1978) that now serves as somewhat of 
a benchmark for researchers developing new VIs. 
� e NDVI has been shown to be strongly related 
to light interception (Hat� eld et al., 1984a; Redelfs 
et al., 1987; Richardson et al., 1992; Sellers, 1987; 
Serrano et al., 2000; Verma et al., 1992; Wiegand 
and Hat� eld, 1988; Wiegand et al., 1990, 1992; 
Russel et al., 1995). Interference from underlying 
soil re� ectance, especially for incomplete canopy 
cover, has been a weakness for many VIs. � e 
re� ectance line for the soil (day of year 150) shown 
in Fig. 6 reveals a fairly linear relationship across 
the wavelengths compared with the changes as the 
canopy develops. Agronomic systems occur on 
many di� erent soils and accounting for these dif-

ferences provides con� dence in being able to apply VIs to dif-
ferent regions. Minimizing the soil background e� ect has been 
accomplished by a number of methods. Kauth and � omas 
(1976) proposed a linear combination of four wavebands using 
principal component analyses to estimate brightness, greenness, 
yellowness, and other components. � e brightness term repre-
sents the magnitude of the re� ected energy and could be con-
sidered a soil background line. � e greenness term represents 
an orthogonal plane to the soil line that contained information 
about vegetation and represents yellowness—an additional 
plane to both soils and vegetation with particular sensitivity to 
senescent vegetation. Jackson (1983) described how spectral 
indices could be obtained from combinations of wavebands in 
n-space. Another attempt to remove soil background was the 
Perpendicular Vegetative Index (PVI) developed by Richardson 
and Wiegand (1977) using a statistical relationship. A review 
of the re� nements of ratio-based VIs to account for soil back-
ground through a soil-adjusted vegetative index (SAVI) was 
described by Huete (1988). Many of the soil background 
adjustment approaches have been accomplished through the 
use of vegetative indices in which the coe�  cients were derived 
from empirical studies. Rondeaux et al. (1996) proposed an 
Optimized SAVI (OSAVI) in which the “l” term (an adjust-
ment factor for soil re� ectance), was equal to 0.16. An addi-
tional adjustment for soil background to the NDVI was devel-
oped by Baret et al. (1989) and expressed as the Transformed 
Soil Adjusted Vegetative Index (TSAVI). An atmospherically 
resistant VI, (ARVI), was proposed for the use of satellite data 
(Kaufman and Tanré, 1992), and further modi� ed by Huete et 
al. (1997) to make the soil adjusted (SARVI2).

Recently, a suite of algorithms was developed for accurate 
estimation of crop biophysical characteristics. � e suite includes 
algorithms for retrieval of crop green vegetation fraction 
(VF), fraction of PAR absorbed by photosynthetically active 

Fig. 6. Seasonal changes in the reflectance from a corn canopy using an eight-
band sensor.
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vegetation (fAPARPH), green leaf area index (GLAI), green 
leaf biomass, total Chl content, and gross primary production 
(GPP) (Wiegand and Richardson, 1984, Wiegand et al., 1979). 
Detecting changes of growth and development or yield across 
di� erent species, growing seasons, or locations requires methods 
that utilize the same wavebands or patterns (Shanahan et al., 
2001).

Daughtry et al. (2000) combined VIs minimizing back-
ground re� ectance contributions with VIs responding more to 
leaf Chl content in a simulation study to produce isolines of leaf 
Chl content. A limited test of the concept using canopy re� ec-
tance data showed that the slopes of the VI pairs were linearly 
related to leaf Chl content over a wide range of foliage cover 
and background re� ectances.

Leaf area index (LAI), Chl content, and biomass are impor-
tant crop biophysical characteristics used for climate modeling, 
estimating primary production, and forecasting crop yield. 
Algorithms for green LAI and green leaf biomass estima-
tion (Green Leaf Area Vegetation Index), are summarized in 
Gitelson et al. (2003b; 2005). � ese algorithms, which have 
been tested in maize (Zea mays L.), soybean [Glycine max (L.) 
Merr.], and wheat (Triticum aestivum L.), allow accurate pre-
diction of GLAI ranging from 0 to more than 6 m2 m–2 with 
RMSE of GLAI prediction of less that 0.6 m2 m–2.

� e same algorithms were parameterized for remote assess-
ment of green leaf biomass (Gitelson et al., 2003b) and total 
Chl content in irrigated and rainfed maize and soybean 
(Gitelson et al., 2005). � e algorithm accounted for more than 
98% of green leaf biomass variation in the range from 100 to 
more than 3000 kg ha–1. When applied for total Chl estima-
tion in crops, the algorithm accounted for more than 92% of 
Chlt variation in both soybean and maize. However, in discrete 
spectral bands 540 to 560 nm and 700 to 710 nm the calibra-
tion coe�  cients in both algorithms remained species-speci� c. 
Di� erence between species was more pronounced in the green 
than the red-edge model (Fig. 6 in Gitelson et al., 2005). Such 
behavior is understandable, if one takes into account very con-
trasting canopy architectures and leaf structures of maize and 
soybean. A spectral range, where the algorithm is non-species 
speci� c, has been found applying a procedure that tuned spec-
tral bands in the model in accord with spectral characteristics 
of the media (Gitelson et al., 2003a, 2006a). � e algorithm 
[(R840–870/R720–730) – 1] predicted total Chl in maize and 
soybean ranged from 0.03 to 4.33 g m–2 with a RMSE of less 
than 0.32 g m–2 for both species considered together. During 
subsequent work, Gitelson et al. (2006b) found that GPP 
relates closely to total chlorophyll content in maize and soy-
bean. Total Chl accounts for more than 98% of GPP ranged 
from 0 to 3.1 mg CO2 m–2 s–1. � e algorithm for GPP estima-
tion (Gitelson et al., 2003c, 2006b) provided accurate estimates 
of midday GPP in both crops under rainfed and irrigated condi-
tions with RMSE of GPP estimation of less than 0.3 mg CO2 
m–2 s–1 in maize (GPP ranged from 0 to 3.1 mg CO2 m–2 s–1) 
and less than 0.2 mg CO2 m–2 s–1 in soybean (GPP ranged 
from 0 to 1.8 mg CO2 m–2 s–1). Validation using independent 
data sets for irrigated and rainfed maize showed robustness of 
the technique; RMSE of GPP prediction was less than 0.27 mg 
CO2 m–2 s–1.

Quanti� cation of vegetation stress using re� ectance with cur-

rent multispectral methods has shown limitations. Campbell 
et al. (2007) suggested that improvements could be achieved 
by using hyperspectral and � uorescence methods. � ey evalu-
ated nitrogen, carbon dioxide, ozone, and ultraviolet radiation 
stresses on corn, soybean, and red maple (Acer rubra L.) and 
found that combinations of � uorescence and re� ectance at 
speci� c wavebands improved the ability to detect these stresses. 
� e continued advancement of the use of various wavelengths 
o� ers the potential to provide valuable information for agrono-
mists to detect vegetation stress.

APPLICATIONS TO AGRONOMIC PROBLEMS

Nitrogen
Nitrogen is an essential nutrient for modern crop produc-

tion; however, N is o� en over-applied without regard to crop 
requirements or potential environmental risk to ensure that 
acceptable crop yields are achieved. Increased N management 
has been shown to reduce N applications while maintaining or 
increasing crop yields. Early methods for N management have 
used the Soil-Plant Analyses Development (SPAD) chlorophyll 
meter, color photography, or canopy re� ectance factors to assess 
N variations across grower’s corn � elds (Schepers et al., 1992, 
1996; Blackmer et al., 1993, 1994, 1996a, 1996b; Blackmer 
and Schepers, 1996; Shanahan et al., 2003). � ese techniques 
were based on comparisons with readings obtained from an 
adequately fertilized strip in the same � eld and eliminated the 
requirements for prior knowledge of the relationship between 
nutrient concentration and crop re� ectance.

An example of a direct method for N management was devel-
oped Bausch and Duke (1996) based on a N re� ectance index 
(NRI) derived from green and NIR re� ectance of an irrigated 
corn crop. � e NRI was highly correlated with an N su�  ciency 
index calculated from SPAD chlorophyll meter data and pro-
vided a rapid assessment of corn plant N status for mapping 
purposes a the � eld scale. Monitoring in-season plant N with 
the NRI reduced applied N via fertigation by 39 kg N ha–1 
without reducing grain yield (Bausch and Diker, 2001).

A more indirect approach was proposed by Raun et al. 
(2001), who found midseason estimates of potential yield win-
ter wheat would help growers adjust topdress N applications. 
� eir approach was based on preplant soil N tests, within sea-
son rates of mineralization, and projected N removal. Potential 
grain yields were estimated from several post-dormancy NDVI 
measurements normalized by the number of growing degree 
days accumulated between the observation dates. � is adjusted 
for local weather and compensated for spatial variations in N 
requirements caused by soil di� erences and management, for 
example, stand establishment and early season growth.

Phosphorus
Phosphorus de� ciency in plants can be expressed through 

color and biomass accumulation. Young plants growing in cold 
soils are the most likely to exhibit P de� ciency symptoms, which 
are purple leaves in the case of corn. Colder soil temperatures 
limit root exploration, which is why starter fertilizer application 
at planting time is common for early seeded corn. Corn planted 
on the same soil a� er the soil has warmed up is not nearly as 
likely to show symptoms of P de� ciency as that planted in 
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colder soils. Plants frequently grow out of the early symptoms 
of a P de� ciency (i.e., purplish leaves) but the e� ects may linger 
in terms of N and P concentration in vegetative tissue and yield. 
Osborne et al. (2004) showed that P de� ciency in corn was 
signi� cantly correlated with NIR and blue re� ectance in high-
resolution aircra�  imagery in Nebraska. Imagery was frequently 
less likely to detect P de� ciency at silking than it was at the 6 
to 8 leaf stage of corn. � e obvious di�  culty encountered with 
early season imagery of crops is dilution with soil background 
re� ectance.

Real-time active sensors that monitor the appropriate wave-
bands o� er an opportunity to use the crop as a bio-indicator 
of soil P availability. Such sensors mounted on � eld equipment 
could generate a map to guide soil sampling or would allow 
on-the-go variable-rate application of nutrients, assuming the 
causes of the plant symptoms are known.

Soil Moisture
Soil moisture has been a problem of critical importance 

in agronomic decisions and there have been many di� erent 
attempts to directly measure soil moisture from remote sens-
ing. Microwave with wavelengths around 21 cm has been used 
as the most common approach. Jackson and Schmugge (1989) 
described the use of passive microwave as a tool for measuring 
and mapping soil water content of the surface layer. Microwave 
wavelengths are capable of detecting soil moisture because of 
the large di� erences in the dielectric properties of water com-
pared to other soil components. Sensing of soil moisture in the 
surface layer is a function of the wavelength and Jackson and 
Schmugge (1989) proposed that for the L band (21 cm) the 
e� ective depth of detecting soil moisture would be approxi-
mately 5 cm. One of the problems with passive microwave sys-
tems is the relatively large footprint and for the L band system 
the spatial resolution may be on the order of 100 km. � is limits 
the ability to detect soil moisture in a speci� c � eld using a satel-
lite-based approach. However, one advantage of microwave over 
all other remote sensing wavebands is the ability of these wave-
lengths to penetrate through clouds.

Retrieval of soil water content from passive microwave sys-
tems requires the following factors be addressed: the brightness 
temperature be normalized to emissivity, the e� ects or interfer-
ence of vegetation above the soil surface be removed, adjust-
ments for the soil roughness e� ects on brightness temperature 
be made, a relationship exist between soil dielectric properties 
and emissivity, and a relationship exists between soil dielectric 
properties and soil water content. As an illustration of the 
integration of various remote sensing parameters, Jackson et 
al. (1999) proposed using the NDVI to adjust the microwave 
signals for canopy density. One of the major problems in using 
microwave for soil water is the interference of the vegetative 
water content, and Jackson et al. (2004) compared the NDVI 
with the Normalized Di� erence Water Index (NDWI), which 
is de� ned as (RNIR – RSWIR)/(RNIR + RSWIR). � is index uses 
the SWIR wavebands to de� ne the water content of the vegeta-
tion and showed a more robust relationship to vegetative water 
content than NDVI.

� ere continues to be advances in the development of sen-
sors. For example, LaVine et al. (1994) demonstrated that syn-

thetic aperature microwave radiometers could reduce the foot-
print size down to 10 km. Further advances in technology may 
provide further reductions from satellite systems and provide 
real-time measurements of surface soil water content for inclu-
sion in agronomic applications.

EMITTANCE FROM CANOPIES AND CROP 
WATER STRESS

Emittance from crop canopies is related to the temperature 
of the crop through the Stefan-Boltzman law where emit-
tance is a function of the fourth power of surface temperature. 
Measurement of surface temperatures with infrared thermom-
eters has become routine and o� er the potential for crop water 
stress detection and water management. A summary of the his-
tory of measuring crop stress using the thermal (8–4 µm) por-
tion of the spectrum provides a glimpse into the potential appli-
cations of these data. � e foundation for the current research 
can be traced to original observations by Tanner (1963), who 
found that plant temperature varied from air temperature and 
could be measured with thermocouples attached to the leaves. 
� is was expanded to quantify the relationship among plant 
water stress, solar radiation, air temperature, and leaf tempera-
ture by Wiegand and Namken (1966). Wiegand and Namken 
(1966) and Ehler et al. (1978) provided the original observa-
tions that leaf temperature was related to plant moisture status. 
� ese � ndings prompted studies over the past 40 yr to quantify 
crop stress and estimate water use based on observations of 
canopy temperature. Indices were developed for crop stress in a 
similar fashion to the VIs using terms such as stress degree day 
(SDD), Crop Water Stress Index, non-water-stressed baselines, 
thermal kinetic windows, crop speci� c temperatures, and Water 
De� cit Index appeared as quantitative measures of plant stress 
(Table 3). � ese advances were made possible by the develop-
ment of a� ordable and reliable infrared thermometers that 
accurately measured canopy temperature without direct physi-
cal contact between the leaf and the thermometer.

Development of canopy temperature stress indices can be 
traced to Jackson et al. (1977), who found that canopy tem-
peratures in wheat were a useful measure of crop water status. 
Variation of canopy–air temperature di� erences (Tc – Ta) dif-
ference across crops and climates invoked a team of researchers 
led by Idso et al. (1981) to derive an empirical model for canopy 
stress, whereas Jackson et al. (1981) derived the more theoreti-
cal relationship between canopy temperature and crop stress. 
� e critical relationship to de� ne CWSI is the nonstressed 
lower baseline and is derived from the curves as per Table 3 
( Jackson et al., 1981).

� e Crop Water Stress Index (CWSI) has become one of 
the more widely used methods for quantifying crop stress. � is 
approach has prompted a number of studies to evaluate the 
potential measurement problems in obtaining accurate values 
for all of the parameters needed to estimate CWSI (Gardner et 
al., 1992a, 1992b). Wanjura et al. (1990) found CWSI values 
were negatively correlated with grain sorghum [Sorghum bicolor 
(L.) Moench] and cotton (Gossypium hirsutum L.) yields with 
grain sorghum yields showing a higher sensitivity to CWSI than 
cotton lint yields. Variation among years was accounted for by 
normalizing each year relative to maximum yield for the loca-
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tion. Feldhake and Edwards (1992) used the CWSI concept 
to quantify water stress on orchardgrass (Dactylis glomerata 
L.) in the humid pasture areas of the United States. Wanjura 
and Upchurch (2000) compared the empirical (Idso et al., 
1981) and theoretical CWSI ( Jackson et al., 1981) for corn 
and cotton on the High Plains of Texas and found the empiri-
cal approach was slightly more accurate than the theoretical 
approach because of the bounds of 0 to 1.0 placed by the empir-
ical method. Studies have shown that the simple SDD (midday 
air temperature–canopy temperature) were related to crop 
yield, for example, kidney bean (Phaseolus vulgaris L., Walker 
and Hat� eld, 1979) and pigeonpea [Cajanus cajan (L.) Millsp., 
Patel et al., 2001]. � ese are only a few of the number of studies 
that have been conducted using this simple model.

Fundamental di� erences in the empirical approach must be 
recognized before these approaches can be used. As an example, 
comparison of the non-water-stressed baseline for 50 cotton 
strains revealed signi� cant di� erences among strains (Hat� eld 
et al., 1987). � e genetic variation that exists in the relationship 
between water de� cits and canopy temperature responses sug-
gested that this approach could be used as a screening tool for 
genetic response to water stress. Genetic variations may create 
problems when applying this method to di� erent canopies and 
care should be exercised in universally extending these rela-
tionships without � rst verifying the Tc response for a range of 
canopy water de� cits.

For areas with signi� cant crop stress, such as those found in 
dryland environments, there has been the continuing problem 
of measuring canopy temperature under conditions of incom-
plete or partial ground cover (Hall et al., 1992; Vining and 
Blad, 1992). Heilman et al. (1981) demonstrated that incom-
plete groundcover provided a signi� cant bias when estimating 
the true canopy temperature. � is has been one of the major 
limitations of applying thermal infrared measurements to dry-
land canopies. Carlson et al. (1994) developed a method that 
incorporated thermal infrared measurements with NDVI to 
estimate soil water content and vegetation cover. Moran et al. 
(1994) developed a relationship referred to as the Water De� cit 
Index (WDI) that extended the CWSI theory to partially 

covered � elds by using SAVI as a measure 
of canopy cover. Development of the trap-
ezoid that covers the range of well-watered 
to completely stressed vegetation across 
the range of canopy sizes is based on the 
ratio of actual to potential evaporation, 
the same foundation as the CWSI. � is 
approach o� ers potential as a method for 
quantifying water stress under conditions 
of partial cover. A recent study by DeTar et 
al. (2006) coupled CWSI with NDVI to 
measure water stress in full canopy cotton 
and found a good relationship using NDVI 
values derived using 686 and 850 nm wave-
bands. � ese approaches are di� erent than 
the integration of VIs and thermal radiance 
into a yield prediction model developed by 
Hat� eld (1983). Hat� eld (1983) derived 
an estimate of biomass at the onset of the 
reproductive stage by VI and then a Tc–
derived measure of stress used to determine 

whether the plant was able to maintain optimal growing condi-
tions during grain-� lling by measuring the thermal stress of the 
crop. � e premise of this approach is based on the observation 
that the faster the rate of decline of VIs during grain-� lling, the 
lower the yield caused by hastened phenological development.

Confounding the observations of canopy temperature in 
wheat during grain-� lling was caused by the presence of the 
panicles because the nontranspiring panicle at the top of the 
canopy arti� cially increased the canopy temperature (Hat� eld 
et al., 1984d). In nonwater stressed canopy, the presence of 
the panicles increased the observed canopy temperature by 
2°C when viewed at an oblique angle. Increasing the angle 
of measurement from nadir provided a solution for this bias; 
however, users of this technology need to be aware of the 
potential biases due to canopy morphology. Many crops have 
morphological features present at the top of the canopy and a 
bias may be introduced into canopy temperature based meth-
ods. A further complication may occur due to the anisotropy of 
canopy temperatures when the canopy is viewed from di� erent 
angles. � ese di� erences can be as large as 3 to 5°C, introducing 
another source of variation into canopy temperature observa-
tions particularly when measurements are taken at acute angles 
(Paw U et al., 1989).

Onset of water stress has been detected through observa-
tions of the variation of canopy temperatures within a � eld. 
Heermann and Duke (1978) found that when the foliage 
temperature was 1.5°C above air temperature irrigation of 
maize was needed, which formed a reliable index to determine 
irrigation timing. Hat� eld et al. (1984c) evaluated canopy tem-
perature variability patterns in grain sorghum and found that 
when the standard deviation of canopy temperature was less 
than 0.7°C, less than 50% of available soil water was removed 
from the upper 1.5-m pro� le. � e variance of canopy tempera-
ture increased linearly when soil water extraction increased 
above 50% of the available soil water. Bryant and Moran (1999) 
adopted a slightly di� erent method based on the histogram of 
canopy temperatures using the mean and standard deviation. 
� ey found that recently irrigated � elds had histograms with 

Table 3. Summary of selected thermal indices, wavebands, applications, and citations.

Thermal Index Application Reference

Tc – Ta energy balance, sensible heat Tanner, 1963

Stress degree day (Tc – Ta) crop yield Idso et al., 1977

Crop Water Stress Index, empirical† water stress, irrigation Idso et al., 1981

Crop Water Stress Index, theoretical‡ water stress, irrigation Jackson et al., 1981

† dT is Tc – Ta, MIN is the nonstressed baseline given as a + b (Vapor Pressure Deficit, VPD), and MAX 
the upper limit of Tc – Ta when the canopy is no longer transpiring. Values for MIN are obtained by 
measuring Tc throughout a day to obtain the data necessary for the regression equation.

‡ E is actual evaporation, Ep potential evaporation, rcp canopy resistance of a well-watered canopy, 
rc actual canopy resistance, ra aerodynamic resistance to sensible heat transfer, Rn net radiation, 
∆ slope of saturation curve, λ psychometric constant, e*a saturation vapor pressure, and ea actual 
vapor pressure of the air.
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a normal distribution whereas stressed � elds deviate from this 
pattern. � e variability techniques have potential for aircra�  
and high resolution satellite data as management tools.

One valuable application of canopy or surface tem-
perature is the direct inclusion of these temperatures into 
energy balance models to estimate evapotranspiration (ET). 
Evapotranspiration estimates provide a sound approach for 
measuring crop water requirements (Hat� eld et al., 1984b). 
Zhang et al. (1995) showed the remote sensing model closely 
compared to area ET averages obtained from ground-based sta-
tions. Evapotranspiration is one of the critical energy balance 
components utilized in crop growth models and estimation of 
ET over large areas would help in crop yield estimation. In crop 
water use models, crop coe�  cients are required inputs that can 
be obtained from remotely sensed observations of re� ectance 
related to canopy development (Bausch and Neale, 1989). � is 
application uses a VI to derive a crop coe�  cient; however, this 
method couples standard meteorological data with more infre-
quent observations of the canopy to complement the remote 
sensing observations.

One of the major problems encountered when using single-
source models occurs when there is a partial canopy-covered 
surface (Kustas et al., 1989; Hall et al., 1992; Vining and Blad, 
1992). Single-source approaches treat the soil–canopy system 
as a single layer or source of energy exchange. A single-source 
model cannot accommodate the di� erences in atmospheric 
coupling associated with the soil or canopy components of the 
scene (Norman and Becker, 1995). Two-source approaches, 
which consider separately the � ux contributions from the soil 
and canopy components, improve the ability to estimate � uxes 
over a wide range of vegetation cover conditions (e.g., Norman 
et al., 1995, 2000; Kustas and Norman, 1999). Use of canopy or 
surface temperatures as direct inputs into large-scale ET models 
provides a spatial representation of water use that is not possible 
with single energy balance systems. Re� nement of regional scale 
models using remote sensing requires an integration of several 
remote sensing and ground-based observations. Anderson et al. 
(2004) showed that canopy biophysical properties, for example, 
LAI, canopy height, and vegetation water content, could be 
obtained from NDWI and OSAVI indices over regional scale 
studies with an accuracy in LAI of 0.6 and canopy height of 0.2 
m. One of the problems of these observations is that the vegeta-
tion is not distributed uniformly and the nonrandom e� ects 
of vegetative cover on the regional scale energy exchanges have 
been addressed through an approach using a scaling method 
called DisALEXI (Disaggregation Atmosphere–Land Exchange 
Inverse) that disaggregates 5-km regional output to the Landsat 
TM resolution (Anderson et al., 2005). Anderson et al. (2007) 
developed a multiscale approach that uses thermal, visible, and 
near-infrared imagery from multiple satellites to partition the 
� uxes between the soil and canopy. � ey developed an approach 
with the ability to map � uxes at a range of scales from 1 m to 10 
km that has the potential of being able to assess the represen-
tativeness of sensor placement across complex landscapes. � e 
evolution of this type of method shows the further re� nement 
in the ability to use remote sensing as an assessment tool for 
ground-based observations as well as a method for regional scale 
measurements.

METHODS FOR EMPLOYING REMOTE SENSING

Methods for remote sensing of agronomic parameters 
include: (i) empirical (parametric statistic) correlations between 
surface-measured parameters and VIs, (ii) inversion of the 
agronomic parameter from physically based canopy re� ectance 
models, and (iii) estimation using a neural network (NN). � e 
results from these methods vary by scale of observation, type of 
vegetation, spectral bands, and the sophistication of the models. 
Each procedure requires optimization for a speci� c geographic 
location, the vegetation type, and the illumination conditions 
for the time of data acquisition.

� e simplest approach uses a regression equation between the 
VI and the parameter of interest calibrated with in situ measure-
ments of the parameter. � e number and location of the calibra-
tion samples can a� ect the performance of the procedure.

Each approach has its disadvantages. Parameter retrieval 
using empirical approaches tend to be time and space-speci� c. 
Empirical relationships are valid only under conditions similar 
to those at the time the correlation was established. � e rela-
tionship may break down if the solar and viewing geometries, 
soil background, Chl concentrations, canopy architecture, or 
moisture conditions are di� erent, and in situ calibration mea-
surements over large areas are impractical ( Jacquemoud et al., 
1995).

Retrieval of parameters through numerical inversion of 
physically based canopy re� ectance models is computationally 
intensive when applied to each sensor reading (typically a pixel). 
� ere is no universally applicable canopy re� ectance model for 
all vegetation types, and thus model selection is o� en a com-
promise between model complexity, invertability, and compu-
tational e�  ciency (Goel, 1989; Jacquemoud and Baret, 1990; 
Jacquemoud et al., 1995). One-dimensional radiative transfer 
models have been shown to work well for inversion despite the 
tendency to oversimplify. � e Scattering by Arbitrarily Inclined 
Leaves (SAIL; Verhoef, 1984) model has been used for inver-
sion of LAI (a user-friendly version can be found at http://ars.
usda.gov/services/so� ware/download.htm?so� wareid=12&m
odecode=12-65-06-00; veri� ed 22 Jan. 2008). Problems with 
inversions include lack of convergence, sensitivity of results 
to initializing values, and di�  culty estimating model input 
parameters that are challenging to obtain or cannot be directly 
measured.

Neural network approaches have not been generalized to 
handle all wavelength and viewing condition combinations 
(Fang and Liang, 2003; Kimes et al., 1998). Observations that 
are used to train the NN must encompass the expected range of 
values for the area of interest. � e availability of a large, surface-
measured, high quality, vegetation data set is therefore neces-
sary for the validation of the NN approach over large areas. 
An advantage of the NN approach is that it allows the use of 
complex, detailed models otherwise cumbersome for traditional 
inversion because of slow computational times ( Jacquemoud et 
al., 1995). Further, NN approaches are not as a� ected by initial 
choices as traditional model inversion approaches are, nor are 
they as computationally intensive as traditional techniques. 
Forward runs of the NN are fast once NN training is com-
pleted. Other variations of these approaches include within-
scene scaling of an SVI that yields LAI directly as a function 
of the fraction of vegetation cover (Choudhury et al., 1994; 
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Campbell and Norman, 1998) and a hybrid radiative transfer-
neural network (RT-NN) approach (Fang and Liang, 2003). 
Both the scaled NDVI and the hybrid method o� er the advan-
tages of requiring little or no in situ calibration measurements.

Plots of estimated vs. measured LAI appear to suggest that 
the calibrated methods, such as regression, better estimate the 
full range of LAI values while the uncalibrated methods such as 
the scaled NDVI and the hybrid RT-NN method perform rea-
sonably well for midrange LAI values and show less consistent 
estimation of higher and lower LAI values. While not perform-
ing as well as the SVI approaches, the hybrid RT-NN results are 
still impressive, given that site-speci� c data for calibration are 
not required (Walthall et al., 2004).

An application of remote sensing for current agronomic 
problems is the use of VIs simulated from plant growth mod-
els and then compared with remotely sensed observations as 
detailed by Ko et al. (2006). � is type of approach provides a 
framework for using remotes sensing as either a calibration tool 
for plant growth models or as a direct input.

CHALLENGES
� e major challenge for remote sensing researchers is to fully 

realize the potential of remote sensing as a source of useful 
information that can be used for agronomic management deci-
sions. � is requires an expansion of our knowledge base of the 
agronomic information content of remote sensing data, and 
algorithmic innovations for exploiting such data. We o� er the 
following suggestions and perspectives for future research direc-
tions:

• � ere is a need to expand our understanding of the informa-
tion content of remotely sensed data. As previously stated, 
SWIR, TIR, and microwave regions are especially attractive 
as topics for new investigations. � e requirement that both 
leaf-level information and canopy-level information content 
be addressed is paramount to developing a more complete 
realization of the potential of these wavelengths.

• � ere is a need to re� ne agronomic information retrieval 
algorithms so that they can be extended through space 
(within � elds, across landscapes and regions, at di� erent 
geographic locales, under di� ering climates, etc.) and time 
(at di� erent times within a growing season, among growing 
seasons, at di� erent times of the day, etc.). Currently, when 
conducting agronomic parameter retrieval, strati� cation of 
the landscape by crop type is o� en used, thus suggesting that 
some algorithms may require optimization of spectral bands 
for speci� c crops.

• � ere is a need to quantify the error bars associated with 
agronomic parameter retrieval using remote sensing. An 
understanding of the error associated with remote sensing-
based retrieval of agronomic information will better de� ne 
optimal conditions for its use. Part of this challenge is the 
need to better understand what is needed for extension of 
remote sensing methods beyond the structured environment 
of research studies to the unstructured environment of � eld-
scale operations. � e uncertainty of remote sensing relation-
ships must be quanti� ed in a way so that the information 
can be used with con� dence at a scale and location beyond 
that of the original study.

• � ere is a need to simplify algorithms used for remote sens-
ing of agronomic parameter retrieval using remote sensing. 
Turn-key solutions with an appropriate degree of automated 
calibration and processing to compensate for di� erent crops, 
and the variability imposed by time and space, suitable for 
use by specialists and nonspecialists, are needed.

Paths to addressing these challenges vary. � e past 40 yr of 
VI development illustrated by Table 2 is evidence of a highly 
successful evolutionary approach. Expansion of the types of 
agronomic information that can be retrieved from remote sens-
ing, and re� nement of the spectral bands required for retrieving 
speci� c information have evolved into hyperspectral remote 
sensing. For many applications, VIs have been developed as sur-
rogates for agronomic properties that are closely aligned with 
what we observe with the human eye. As research progressed, 
VIs has gone far beyond just extending what is possible with the 
human eye, suggesting that retrieval of “nonvisual” agronomic 
information is possible given the right combination of spectral 
bands and analysis methods. Attention to unwanted signals (i.e., 
“noise”) from variations of underlying soil re� ectance, plant 
canopy architecture, illumination conditions, viewing condi-
tions, and contributions from the sensor systems and platforms 
have also re� ned VIs and fostered insights to the limitations of 
using remote sensing.

Observed re� ectance or emittance signals from a canopy are 
a function of the leaf spectral and morphological properties, the 
variation of leaf cover over the soil, the architectural arrange-
ment of the leaves, branches and stems, percentage vegetative 
cover, and the atmospheric signals between the surface and 
the sensor. For the VIs of Table 2, topography, soil roughness, 
canopy architecture, and row have been treated as unwanted 
noise in the observations. A revolutionary path of remote sens-
ing research is also needed that will exploit the potentially 
useful information available from these sources of noise. One 
approach is to investigate pattern recognition technologies that 
will enable quanti� cation of row structure, leaf angle, or foliage 
distribution, which can be related to stress, genotype identi� ca-
tion, weed identi� cation, disease presence, or insect damage. 
Multiple view angle (i.e., BRDF) approaches are an example of 
how exploitation of a traditional source of noise in imagery have 
been investigated as a new source of information. It may thus be 
possible to provide new and perhaps better information about 
crop canopies when information from these traditional sources 
of noise can be added to spectral VI analysis.

Most of the emerging technologies being developed place 
remote sensing tools directly into the hands of producers use 
active sensors rather than passive systems. � ere are a growing 
number of sensors that can be mounted directly onto imple-
ments for sensing the crop or soil for the detection of N or 
weeds in � elds and linked to control units for directing fertil-
izer or pesticide applications. � is approach helps overcome 
limitations of timeliness, reliability, turn-around time, weather 
uncertainties, and cost. New inexpensive sensors using speci� c 
wavelengths have been shown to be sensitive to desired plant 
attributes and functions (i.e., color, biomass, water stress, � uo-
rescence, etc.). As noted by Holland et al. (2006), scientists have 
been developing ingenious ways to study plants and automate 
management practices for many years. � e uncertainty facing 
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producers is knowing which input or plant growth factor(s) is 
limiting biomass production and the risk that a slight or modest 
temporary stress or de� ciency might have on yield and pro� t-
ability. Using remote sensing data to help make agronomic 
decisions provides a tool to improve � eld-scale management. 
Improving our understanding of the variation in remote sensing 
observations will help quantify the uncertainty and improve our 
con� dence in this information source.
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