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Application of Speech Conversion
to Alaryngeal Speech Enhancement

Ning Bi and Yingyong Qi

Abstract— Two existing speech conversion algorithms were
modified and used to enhance alaryngeal speech. The modifi-
cations were aimed at reducing spectral distortion (bandwidth
increase) in a vector-quantization (VQ) based system and the
spectral discontinuity in a linear multivariate regression (LMR)
based system. Spectral distortion was compensated for by for-
mant enhancement using chirpz-transform and cepstral weight-
ing. Spectral discontinuity was alleviated using overlapping clus-
ters during the construction of conversion mapping function.
The modified VQ and LMR algorithms were used to enhance
alaryngeal speech. Results of perceptual evaluation indicated that
listeners generally preferred to listen to the alaryngeal speech
samples enhanced by the modified conversions over original
samples.

Index Terms—Speech enhancement, speech conversion, speech
analysis and synthesis, vector quantization, linear multivariate
regression

I. INTRODUCTION

L ARYNGEAL cancer may necessitate a total removal of
the larynx, resulting in a fundamental change of speech

production. For many alaryngeal individuals, voicing is mainly
produced by setting surgically reconstructed tissues in the
upper airway in vibration. Alaryageal speech sounds rough,
hoarse, and creaky. A system that converts alaryngeal speech
into normal speech could be useful to enhance communication
for alaryngeal talkers [1], [2].

To enhance the quality of alaryngeal speech, Qi attempted
replacing the voicing source of alaryngeal speech using a linear
predictive coding (LPC) technique [1], [2]. There are two basic
assumptions under these early studies: i) articulatory-based
acoustic features of alaryngeal speech are not significantly
modified by laryngectomy, and ii) vocal tract transfer functions
of alaryngeal speech could be accurately determined using
LPC analysis. These assumptions should be applicable to
most alaryngeal speech because only the larynx is surgically
removed during laryngectomy. In some special cases, how-
ever, these assumptions may not be valid. For example, the
formant frequencies of alaryngeal speech may be significantly
shifted upward due to the possible surgical shortening of the
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vocal tract. Larynx removal may also alter other articulatory
behaviors because of the disrupted muscular support for the
tongue. In these cases, both source- and articulation-related
properties of alaryngeal speech need to be modified to achieve
enhancement.

It has been documented that spectral conversion is a feasible
technique for modifying articulation-related parameters of
speech [3]–[9]. Spectral conversion was originally used for
talker adaptation in speech recognition systems. The tech-
nique of spectral conversion was also used in normal voice
conversion systems [4], [6], [7]. To accomplish voice con-
version, the spectral space of an input talker was reduced to,
and represented by an input codebook obtained using vector
quantization (VQ) algorithms [10]. A mapping codebook that
specifies the output vector of an input codeword was generated
through a supervised learning procedure. Spectral conversion
was accomplished by applying the mapping codebook to each
input spectrum.

VQ-based spectral conversion method has two major
sources of error/distortion. First, the reduction of a continuous
spectral space into a discrete codebook introduces quantization
noise, which inevitably creates a difference between a given
spectrum and its corresponding codeword (representative
spectrum) in the codebook. Second, under the cepstral
representation, the codewords created by the VQ process
typically are the means of a set of spectral clusters and, thus,
have individual formant bandwidth larger than the original. In
an effort to reduce quantization noise, Shikanoet al. (1991)
proposed a fuzzy vector quantization method in which an
input spectrum was coded as a weighted interpolation of
a set of codewords. This weighted interpolation has the
potential to reduce quantization noise because the spectral
space is now approximated by many interconnected lines
between codewords rather than by a point grid of codewords.
The weighted interpolation, however, increase further the
bandwidth of the final coded spectrum.

A linear multivariate regression (LMR) approach for spec-
tral conversion was used as an alternative to the VQ-based
method [9]. In this approach, the spectral space of the input
talker was partitioned by a few large clusters, and the spectra
within each cluster was mapped linearly. The mapping matrix
was obtained using procedures of least-square approximation.
Because the mapping in a given region of the spectral space
was continuous, the conversion distortions due to quantization
and spectral averaging were minimized in a least square
sense. The transitions between clusters in a connected speech,
however, could be discontinuous resulting in audible clicks in
the converted speech [9].
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Fig. 1. Example of formant enhancement using the chirpz-transform.

Despite of the problems of spectral averaging in VQ-based
system and transition discontinuity in LMR-based system, it
has been reported that the conversions were successful in that
the converted speech is perceptually more close to the target
than to the original speech [3]–[9]. Speech quality was not a
major concern in these reported studies. However, the quality
of speech would be the primary concern when using spectral
conversion for speech enhancement.

The goal of this work is to improve the existing speech
conversion methods and apply these speech conversion meth-
ods for the enhancement of alaryngeal speech. The specific
objectives are:

• to modify the VQ-based method to reduce conversion
distortions due to bandwidth increase;

• to modify the LMR-based method to reduce auditorily
annoying, transitional discontinuities during speech con-
version;

• to evaluate and compare the performance of VQ- and
LMR-based systems;

• to determine if these modified spectral conversion meth-
ods can be used for alaryngeal speech enhancement.

II. M ODIFICATIONS OF SPECTRAL CONVERSION METHODS

In this section, the modifications of VQ- and LMR-based
spectral conversion methods are presented. These modifica-
tions are aimed at reducing the spectral distortion (bandwidth
increase) in the VQ-based method and the spectral disconti-
nuity in the LMR-based method.

A. Modification of VQ-Based Conversion Method

The bandwidth increase in the VQ-based speech conversion
system is intrinsic to the algorithm of vector quantization.
Vector quantization is an algorithm for choosing a limited set
of codewords (spectra) that represent the whole spectral space
of a given talker. Each codeword is essentially an averaging
of a small cluster of spectra. The number of codewords
and clusters is dependent on the algorithm and parameters
chosen [10], [11]. Unfortunately, each codeword, being an
averaged spectrum, tends to have a larger bandwidth than its
constituents.

Fig. 2. Example of formant enhancement using cepstral weighting.

The bandwidth increase is also intrinsic to the VQ-based
conversion mapping scheme, where the target spectrum is
designated as the average of all the spectra projected from
a given cluster in the input spectral space. A small cluster in
the input spectral space might project divergently to a large
area in the target spectral space. When the divergent projection
occurs, the bandwidth of the target spectrum will be large.

Perceptually, speech synthesized with large bandwidth
sounds ambiguous and unclear. Because spectral averaging
cannot be avoided in the VQ-based spectral conversion
system, our modified system included formant enhancement
(bandwidth reduction of resonance/formant peaks) as part
of the speech conversion process to compensate for the
bandwidth increase. Formant enhancement was made after
spectral conversion and before speech synthesis.

1) Formant Enhancement Using Chirp-Transform: One
method to sharpen the spectral peaks/formants is to use the
chirp -transform [12]. The chirp -transform allows for the
evaluation of a transfer function on a contour that is not
the unit circle. If the contour for computing spectral transfer
function is located outside all poles of the transfer function and
inside the unit circle, the bandwidth of the resulting transfer
function will be reduced.

The -transform of any sequence is defined as

(1)

When , where is an arbitrary complex number, (1)
defines the chirp -transform

(2)

A special case of the chirp-transform is when is a constant
and 1. It yields the -transform of on a circle with
a radius .

There are several ways to implement the chirp-transform.
One method is to multiply the LPC coefficients,, by a factor,

, and evaluate the adjusted polynomial on the unit
circle [13]. The resulting spectrum will have sharper spectral
peaks/formants than the original spectrum because the poles
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(a) (b)

Fig. 3. Illustration of the use of formant enhancement during speech conversion. The conversion of the word sail was made: (a) by the conventional
VQ-based method and (b) by the modified VQ-based method.

are effectively pushed out toward the unit circle. In order
not to introduce extraneous variations during conversion, the
magnitude of should be a constant. It is difficult, however, to
choose the magnitude ofa priori. If is too large (close to
the unit circle), it will not have significant formant sharpening.
If is too small (smaller than the magnitude of the largest pole
of an LPC filter), it will make the LPC filter unstable.

An alternative is to implement the chirp-transformation in
the time domain. By substituting the system impulse response,

, with a weighted sequence, , the transfer function
of this system is evaluated on a circle inside the unit circle.
To ensure the final synthesis filter is stable, the filter can be
reestimated from linear predictive analysis of the weighted
sequence using the autocorrelation method.

In our VQ-based conversion system, the chirp-transform
was implemented using the weighted impulse response. The
magnitude of 0.98 was chosen based on the mapping
codebook. It was the radius that set the upper-bound to
the magnitude of all poles in the mapping codebook. The
impulse response of new transfer function was obtained from
the converted cepstrum [14]. An example of the converted
spectrum before and after formant enhancement is shown in
Fig. 1.

2) Formant Enhancement Using Cepstral Weighting:The
formant enhancement effect using the chirp-transform is
limited by the magnitude of. To enhance the formants further,
the method of cepstral weighting was also applied [15].

The cepstrum for the vocal transfer function is a truncated
segment of the whole cepstrum, obtained from the Taylor
expansion of the log of LPC filter [16]. This windowing

(truncation) operation is equivalent to a convolution in the
frequency domain between the logarithmic spectrum of the
original signal and the spectrum of the rectangular window.
The spectrum of the rectangular window is characterized by
a narrow mainlobe, but large sidelobes [17]. These sidelobes
tend to smooth the resulting spectrum.

To enhance formants further, the rectangular window was
replaced by a more rounded sine window, as follows:

for

otherwise
(3)

where is a gain factor and was set to 0.4, theis the
window length and was set to 26. Because the sine window has
smaller sidelobes than the rectangular window, it can reduce
spectral smoothing to a certain extent. An example of formant
enhancement using the sine window is shown in Fig. 2. An
example of formant enhancement by applying both chirp-
transform ( 0.98) and cepstral weighting ( 0.4) is
illustrated in Fig. 3.

B. Modification of LMR-Based Method

In the LMR-based approach, the spectral space was par-
titioned by a few large clusters and the spectrum within
each cluster was mapped linearly [9]. The discontinuity in
transitions between clusters in the LMR-based approach is,
in part, caused by the use of a nonoverlapped clusters to
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(a) (b)

Fig. 4. Illustration of the use of overlapped subset training in speech conversion. The conversion of the word sail was made: (a) by conventional LMR-based
method and (b) by the LMR-based method with overlapped subset training.

derive the LMR mapping matrix. Here, each mapping matrix is
constrained only by samples of a given cluster and ignores the
behavior of neighboring clusters. While each mapping matrix
might serve its constituent cluster satisfactorily, neighboring
mapping matrices may project toward different directions,
resulting in spectral discontinuities during transitions between
clusters.

In addition, some clusters may have a small number of ele-
ments. Thus, the mapping matrix may be constructed from an
underdetermined rather than an overdetermined LMR problem
when the number of elements in a given cluster is relatively
small. The solution/pseudosolution (mapping matrix) of an
underdetermined LMR problem can be problematic.

In our modified algorithm, an overlapped training method
was used to reduce the spectral discontinuity [18], [19]. In this
algorithm, overlapped clusters were used to obtain the LMR
mapping matrix. The membership of a training sample,, is
determined by the Euclidean distance,, between the sample
and the cluster centers, , where is the
total number of clusters. After reordering and renumbering the

s according to their magnitudes, i.e., using
denote these distances, the training sample,,

will participate in the training of cluster if

(4)

is greater than a given threshold. The number of clusters that
a training sample can join is limited to a maximum. The

overlapped area among neighboring subsets is controlled by
the threshold. For example, when the threshold is 1, there
will be no overlap. An example of using overlapped training
in LMR-based spectral conversion is shown in Fig. 4, where
the threshold is 0.75 and is 6. It can be seen that the
converted spectrogram is a more smooth function of time
for the modified LMR-based conversion than for the original
LMR-based conversion.

In summary, the advantages of using overlapped clusters
during training are that:

• the mapping matrix of each cluster is constrained, to a
certain extent, by samples of neighboring clusters so that
continuity between transitions can be maintained;

• the size of training samples of each cluster is effectively
increased so that the LMR mapping is likely to be an
overdetermined problem as it should be.

III. SYSTEM IMPLEMENTATION

The speech conversion system has four major components:
speech analysis, voice source replacement, spectral conversion,
and speech synthesis. The implementation of each component
is described as follows.

A. Speech Analysis

Speech signals were analyzed to obtain LPC coefficients.
Only the voiced segment of each utterance was analyzed.
A signal segment (or frame) was considered to be voiced
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Fig. 5. Illustration of the parallelogram used in DTW matching.

when the fundamental period could be determined from the
cepstral peaks of the signal [14]. The analysis window was
51.2 ms to include two or more periods for fundamental period
determination. The fundamental period of an given speech
segment was computed when its cepstral peak exceeded a
preset threshold. The threshold of cepstral peak for alaryngeal
speech was set to be half of that for normal speech due to the
weak periodicity of alaryngeal speech [2]. The final periods
were smoothed using a three-point median filter [20].

Fourteen LPC coefficients were computed for each voiced
frame using the autocorrelation method [21]. Hamming win-
dow and pre-emphasis (0.98) were used in the LPC analysis.
Frame length was set to 40 ms, and frame step-size was
set to the current fundamental period. The LPC coefficients
were transformed into 26 cepstral coefficients for spectral
conversion and synthesis.

B. Voicing Source Replacement

The synthetic voicing excitation was generated based on the
approximation of the LF-model [22]. The temporal parameters
of the LF-model, , and , were defined as a constant
proportion of the period. Amplitude, was set based on the
gain constant of the LPC filter.

C. Spectral Conversion

The spectral conversion rules between two talkers were built
through a supervised learning procedure: an alaryngeal (input)
talker, and a normal (target) talker, were asked to read the
same list of words and sentences. The cepstra of these speech
samples were computed every 5 ms. The computed spectral
vectors of the same word or sentence were paired between the
input and target talkers using the procedure of dynamic time
warping (DTW) [23].

Because the duration of alaryngeal speech often is longer
than that of normal speech, the warping region was adjusted
adaptively to accommodate the spectral patterns to be matched.
A warping parallelogram is illustrated in Fig. 5. Assuming

and are the durations of two spectral patterns and
. the slope of the top and bottom sides of the

warping parallelogram was set to instead of a fixed
1/2 whereas the slope of the left and right sides was kept at 2

(the dotted lines). This adaptive modification of the warping
region enabled the DTW algorithm to align most of the speech
samples. The DTW total cost was used as a parameter to
identify speech samples that time alignment was not possible.
These samples were excluded from system training.

1) Implementation of VQ-Based Conversion System:The
implementation of a VQ-based conversion system has two
phases: the learning phase and the conversion-synthesis phase.
In the learning phase, a mapping codebook that specifies the
mapping function from the input spectral space to the target
spectral space was generated. In the conversion-synthesis
phase, speech signals were analyzed and, then, synthesized
using the converted spectral transfer function.

During learning, the mapping codebook was generated from
pairs of input and target spectral vectors. These spectral vector
pairs were obtained using the analysis procedures described
under Section III. Given the input and target vector pairs, the
mapping codebook was obtained in the following three steps:

1) the codebook of input vectors (input codebook) was
obtained using vector quantization;

2) the projections (target vectors) from a given input cluster
were identified based on the pairing relations;

3) the average of these projections was designated to be
the target codeword for the input cluster.

The sizes of input and target codebooks were set to 512.
This process is illustrated in Fig. 6(a).

During conversion-synthesis, an input frame of signal was
analyzed and its cepstral coefficients was obtained. The input
codeword for the cepstral coefficients was identified and
conversion was made based on the mapping codebook. To
enhance the formants, the converted cepstral coefficients were
weighted by the sine window before being transformed into
system impulse response. The impulse response was weighted
again by the sequence, 0.98) to enhance the formants
further. A new set of LPC coefficients was re-estimated from
this impulse response. A period of speech signal was then
synthesized using these coefficients and the replaced excitation
input. A block diagram of the conversion-synthesis process is
illustrated in Fig. 6(b).

2) Implementation of LMR-Based Spectral Conversion:
The implementation of LMR-based conversion also involves
a learning phase and a conversion-synthesis phase. In the
learning phase, a set of mapping matrices that specifies the
mapping function from the input spectral space to the target
spectral space was generated. In the conversion-synthesis
phase, speech signals were analyzed and then synthesized
using the converted spectral transfer function.

During learning, the mapping matrices were again generated
from pairs of input and target spectral vectors. These vectors
were obtained using the same supervised learning procedures
as described in the previous section. Given the input and target
vectors and the pairing relations, the mapping matrices were
obtained as follows.

1) An input codebook of a few clusters (64) was obtained
using vector quantization.

2) The projections of each input cluster were identified
based on the pairing relations.
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(a)

(b)

Fig. 6. (a) Block diagram of the learning process in the VQ-based conversion. (b) Block diagram of the conversion-synthesis process in the
VQ-based conversion.

3) The vectors located on the edges of each subset also
participated in the training of neighboring subsets. The
threshold of normalized distance was set to 0.75 and
the parameter was set to 6 [see (4)].

4) A mapping matrix, , was computed using least-square
approximations.

Let denotes the input vectors in a given cluster and
denote their projections in the target vector space. The

least-square approximation proceeds with

(5)

where denotes the pseudoinverse of [24], [25] which is
obtained as

(6)

where denotes the matrix transpose, and denotes the
matrix inverse. This learning process is illustrated in Fig. 7(a).

In the conversion-synthesis phase of LMR-based system, an
input spectrum is classified by the input codebook, and then is
converted using the corresponding mapping matrix. A block
diagram of the LMR-based system is shown in Fig. 7(b).

IV. PERCEPTUAL EVALUATIONS

A. Subjects and Recordings

Normal speech samples were gathered from one male and
one female talker. Alaryngeal speech samples were gathered
from one male and one female tracheoesophageal takers. Both
tracheoesophageal talkers were proficient and have used their

method of alaryngeal speech for a minimum of one year. Both
were referred to this project by the clinical speech pathologist
responsible for their clinical speech rehabilitation treatment,
and were rated average to above average in overall speech
proficiency by their referring specialist.

Recordings were made of subjects producing 69 words and
25 sentences (C.I.D. Auditory Test W-1, California Consonant
Test Items, and Competing-Sentence Test) at a comfortable
level of pitch and loudness. The recordings (SONY, TCD-D3)
were made in a quiet room with the recording microphone
(ASTATIC, TM-80) placed about 5 cm from the mouth of each
talker. The recorded words were digitized into a computer at
a sampling frequency of 10 kHz (AT&T, DSP32-VME). The
signal was passed through a low-pass filter (TTE, J73E) with a
cut-off frequency of 4.5 kHz prior to digitization. All subjects
read the C.I.D. Auditory Test W-1 and California Consonant
Test Items twice, and the Competing-Sentence Test once. The
first list of the recorded words and sentences were used for
system learning, and the second list of the recorded words
were used for conversion and perceptual evaluation.

B. Procedures of Perceptual Evaluation

Perceptual evaluations were made first to determine whether
speech samples converted using the modified systems sounded
more pleasant to the listeners than those converted using the
unmodified systems. Fifty words produced by the normal male
and female talkers were used for the evaluation. Conversions
were made between the normal male and female talkers. A
paired comparison procedure was used. Each word converted
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(a)

(b)

Fig. 7. (a) Block diagram of the learning process in the LMR-based conversion. (b) Block diagram of conversion-synthesis process in the
LMR-based conversion.

using the modified system was paired up with the same word
converted using the unmodified system. The order of the pair
was random.

Twelve students at the University of Arizona provided the
preference judgments. Each listener was allowed to listen to
any pair of words as many times as needed before determining
which word in the pair “sounded more natural or was more
pleasant to listen to.” Each listener also made preference
judgments about the word pairs a second time on a different
day. The order of the pairs in the list was rerandomized for
the second presentation.

A paired comparison approach was also used to determine
whether enhancement of alaryugeal speech was achieved using
speech conversion systems. Six words (beach, drawbridge,
inkwell, peep, sail, woodwork) produced by the alaryngeal
talkers were selected for perceptual evaluation. These words
were chosen because they provided a reasonably representative
sampling of the vowel space.

Each word was synthesized under the following five con-
ditions.

1) Only the voicing source was replaced.
2) Both the voicing source and the spectrum were replaced,

and spectral conversion was made using the modified
VQ-based conversion method.

3) Both the voicing source and the spectrum were replaced,
and spectral conversion was made using the modified
LMR-based conversion method.

4) Both the voicing source and the spectrum were replaced,
and spectral conversion was made using the conven-
tional VQ-based conversion method.

5) Both the voicing source and the spectrum were replaced,
and spectral conversion was made using the conven-
tional LMR-based conversion method.

Each original word and its 1–3 synthetic counterparts were
paired in all possible combinations. Conditions 2 and 4, and 3
and 5, respectively, were also paired. All pairs were presented
to the listeners. The order of the pairs in the presentation list
was randomized. Perceptual judgments were made using the
same procedure as described above.

C. Evaluation Results

The reliability of listeners was evaluated by calculating the
percentages of agreement in preference judgments made by
each listener in response to the repeated presentation of all
word pairs (test-retest agreement). The responses of listeners
exhibiting 50% or greater test-retest agreement in preference
judgments were used to evaluate enhancement. Ten listeners
achieved this arbitrarily established criteria.

Overall, 76% of the 2000 responses (2 talkers50 words
10 listeners 2 sessions) prefer words converted using

the modified VQ system over the unmodified VQ system
while 68% of the 2000 responses prefer words converted using
the modified LMR system over the unmodified LMR system.
Thus, moderate enhancement of speech produced by normal
talkers was obtained using the modified conversion systems.

The listeners’ judgments of preference made in response
to words synthesized by different enhancement systems, and
original word produced by the male, alaryngeal talker, are
summarized in Table I. The data in Table I are the number
and percentage of listeners preferring words synthesized under
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TABLE I
NUMBER AND PERCENTAGE OFRESPONSESPREFERRINGCONDITION

OF WORD SPECIFIED IN THE FIRST COLUMN FOR THE MALE SUBJECT

TABLE II
NUMBER AND PERCENTAGE OFRESPONSESPREFERRINGCONDITION OF

WORD SPECIFIED IN THE FIRST COLUMN FOR THE FEMALE SUBJECT

conditions described in the first column. The total number of
responses for each comparison is 120 (6 words10 subjects

2 sessions).
Based on a binomial distribution table [26], these data

reveal a significant ( 0.01), clear overall preference by the
listeners for the synthesized versions of words, demonstrating
that enhancement of speech produced by this male laryn-
gectomized talker, was accomplished using speech analysis-
synthesis methods with or without spectral conversion.

The data in Table I also revealed the impact of spec-
tral conversion. Listeners preferred converted words over
the words synthesized by replacing voicing source only. As
expected, both the modified VQ- and LMR-based speech
conversion approaches achieved better performances than the
conventional systems. The modified LMR-based method and
the VQ-based method had comparable performance.

For the female alaryngeal talker, speech enhanced by the
LPC analysis-synthesis method had the highest scores (see
Table II). Listeners almost unanimously preferred synthesized
version of words over the originals. Listeners also preferred the
speech samples synthesized by LPC analysis-synthesis without
spectral conversion.

These results indicated that speech conversion would be
useful for alaryngeal talkers with articulatory deficits. The
speech conversion would not be necessary when articulatory
deficits are minimal. A voice source replacement alone would
provide a significant enhancement [2].

V. DISCUSSIONS ANDCONCLUSIONS

Formant enhancement described in the modified VQ-based
algorithm could also be applied to the LMR-based system
because the LMR least-square mapping also introduces some
spectral averaging. The magnitude of averaging in the LMR-

based system, however, is much smaller than that in the VQ-
based system. Hence, formant enhancement was not imple-
mented in the modified LMR-based system to focus attention
on the overlapped training and its effect.

The cepstrum-based, fundamental period determination al-
gorithm may not work well for signal segment that has weak
periodicity. For example, it may misclassify some transitional
voiced segment as unvoiced. This type of misclassification,
however, is not expected to influence the results significantly
because the quality of voiced segment of speech is determined
primarily by those segments that carry an appreciable amount
of energy [27].

The increase of perceptual evaluation scores due to system
modifications is larger for the normal speech than for the
alaryngeal speech. This difference may be attributed, in part,
to the difference of data set used. Six of the 50 words used
for normal speech comparison were used in alaryngeal speech
comparison. In addition, the improvement of system modifica-
tions might be difficult to observe when the overall quality of
the speech samples used are very poor. A more comprehensive
evaluation may be needed using a large database of alaryngeal
talkers. Unfortunately, we could only locate one male talker,
that has articulatory deficit in his production of alaryngeal
speech.

In conclusion, the original VQ- and LMR-based spectral
conversion methods were modified. The modifications were
aimed at reducing the spectral distortion in the VQ-based
method and the spectral discontinuity in the LMR-based
method. The modified systems were used for alaryngeal speech
enhancement. Perceptual evaluations based on a limited data
set were completed to determine if enhancement could be
accomplished using these modified speech conversion meth-
ods. Results of perceptual evaluations indicated that listeners
generally preferred the output of the modified algorithms.
The enhancement achieved by the modified LMR-based ap-
proach was comparable to that of the modified VQ-based
approach. Results of perceptual evaluations also revealed
that speech conversion techniques were more effective on
alaryngeal speech with articulatory deficits when comparing
to enhancement achieved by voice source replacement alone.
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