
 
Abstract—This paper discusses the application of local 

interpolation splines of the second order of approximation 

for the numerical solution of Volterra integral equations of 

the second kind. Computational schemes based on the use 

of polynomial and non-polynomial splines are constructed. 

The advantages of the proposed method include the ability 

to calculate the integrals which are present in the 

computational methods. The application of splines to the 

solution of nonlinear Volterra integral equations is also 

discussed. The results of numerical experiments are 

presented 
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I. INTRODUCTION 
ARIOUS numerical methods are known for solving 
Volterra integral equations of the second kind. The most 
common numerical methods are based on the use of 

quadrature formulas [1]-[3]. New methods for calculating 
integrals appear periodically. For example, in paper [4] the 
application of the finite-difference methods are investigated  
to compute the definite integrals. When solving a variety of 
tasks, splines are successfully used. Paper [5] deals with the 
use of the first two vanishing moments for constructing cubic 
spline-wavelets orthogonal to polynomials of the first degree.  
The method proposed in [6] can be used to calculate the real 
eigenvalues of an arbitrary matrix with real elements. This 
method uses splines of the Lagrangian type of the fifth order 
and/or polynomial integro-differential splines of the fifth 
order.  In paper [7] periodic cubic splines were used to obtain 
smooth walking trajectories of every joint in the biped model.  
Recently, a number of studies have appeared on the use of 
splines for solving integral equations. Among them, special 
mention should be made of works using nonpolynomial 
splines. The most commonly used are polynomial splines. 

Non-polynomial splines are used much less often but they can 
provide a solution with smaller error. Among the studies using 
splines to solve the problem of solving Volterra integral 
equation, we note the following. In paper [8] spline functions 
were used to propose a new scheme for solving the linear 
Volterra–Fredholm integral equations of the second kind. In 
paper [10] two types of non-polynomial spline functions 
(linear, and quadratic) were used to find the approximate 
solution of Volterra integro–differential equations. In [11], a  
computational method for solving nonlinear Volterra-
Fredholm Hammerstein integral equations is proposed by 
using compactly supported semiorthogonal cubic B-spline 
wavelets as basis functions. In [12], the non-polynomial spline 
basis and Quasi-linearization method to solve the nonlinear 
Volterra integral equation were used. In [13], a new 
collocation technique for the numerical solution of the 
Fredholm, Volterra and mixed Volterra-Fredholm integral 
equations of the second kind is introduced, and a numerical 
integration formula on the basis of the linear Legendre multi-
wavelets is also developed. In paper [9] the advanced 
multistep   hybrid methods were used for the construction of 
the numerical methods for solving the Volterra integral 
equations.  
 
This paper discusses the application of the local interpolation 
of both polynomial splines and non-polynomial splines (see 
[14]-[17]) of the second and the third order of approximation 
for the numerical solution of the Volterra integral equations of 
the second kind. These splines have the following properties:  
- these splines are continuous, piecewise defined functions;  
- the support of the basic spline occupies several neighboring 
grid intervals (the support of the piecewise-linear basic spline 
occupies two adjacent grid intervals, the support of the 
piecewise-quadratic basic spline occupies three adjacent grid 
intervals); 
- the approximation is constructed separately on each grid 
interval in the form of the sum of the products of the values of 
the function at the grid nodes and the basis splines.  
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For the first time, approximations by such quadratic splines 
were used by Professor Ryabenkiy V.S. Note, that the 
polynomial Courant functions are well known and have been 
used for a long time. The method for obtaining an estimate of 
the error of approximation of a function by non-polynomial 
piecewise-given functions is discussed in detail in paper [17]. 
Let 𝑛 be integer, and 𝑎, 𝑏 be real. Suppose that a grid of nodes {𝑥𝑗} with step ℎ = 𝑏−𝑎𝑛 , is constructed on the interval [𝑎, 𝑏]. 
Thus, 𝑥𝑗 = 𝑎 + 𝑗ℎ, 𝑗 = 0, … , 𝑛. Let us consider the numerical 
solution of the Volterra equation of the second kind. The 
linear Volterra equation of the second kind has the form:  

 𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)𝑥𝑎 ,   𝑥 ∈ [𝑎, 𝑏],     (1) 
 

where ƒ is a given function, 𝐾, 𝑓 are continuous functions and 𝑢(𝑥)  is an unknown function. 
First, we recall the method for solving integral equations 
based on the composite trapezoidal rule. 
As it is known, the composite trapezoidal rule for calculating 
an integral has the following form (see [3]):  
 ∫ 𝑢(𝑠)𝑑𝑠 ≈ ℎ𝑏𝑎 ∑ 𝑢(𝑥𝑗)𝑛−1𝑗=1 + (𝑢(𝑥0) + 𝑢(𝑥𝑛))/2. 
 
If the function 𝑢 is as such that 𝑢 ∈ 𝐶2[𝑎, 𝑏], then the 
remainder can be written in the form:  ∫ 𝑢(𝑠)𝑑𝑠 − ℎ𝑏

𝑎 ∑ 𝑢(𝑥𝑗) −𝑛−1
𝑗=1  

 − 𝑢(𝑥0) + 𝑢(𝑥𝑛)2 = − (𝑏 − 𝑎)ℎ212 𝑢′′(𝜉), 𝑎 ≤ 𝜉 ≤ 𝑏. 
Consistently applying the composite trapezoidal rule for 
calculating the integral in equation (1), taking into account the 
error in calculating the integral and putting 𝑥 = 𝑥𝑗 , we obtain 
the system of equations: 
 𝑢(𝑥0) = 𝑓(𝑥0), 𝑢 ̃(𝑥1) = ℎ𝐾10𝑢(𝑥0)/2 + ℎ𝐾11𝑢 ̃(𝑥1)/2 + 𝑓(𝑥1), 

𝑢 ̃(𝑥𝑘) = ℎ𝐾𝑘0𝑢(𝑥0)2 + ℎ ∑ 𝐾𝑘𝑗𝑢 ̃(𝑥𝑗)𝑘−1
𝑗=1 + ℎ𝐾𝑘𝑘𝑢 ̃(𝑥𝑘)2 + 

+𝑓(𝑥𝑘), 𝑘 = 2, . . . , 𝑛. 
Here  𝐾𝑘𝑗 = 𝐾(𝑥𝑘 , 𝑠𝑗), 𝑢 ̃(𝑥𝑘) ≈ 𝑢(𝑥𝑘). 

The calculations can be carried out according to the following 
scheme: 𝑢 ̃(𝑥𝑘) = 11 − ℎ𝐾𝑘𝑘2 (ℎ𝐾𝑘0𝑢(𝑥0)2 + 𝑓(𝑥𝑘) + ℎ ∑ 𝐾𝑘𝑗𝑢 ̃(𝑥𝑗)𝑘−1

𝑗=1 ). 
As a result, we obtain approximate values 𝑢 ̃(𝑥𝑘) of the 
solution  𝑢 of integral equation (1) at the grid points. 

II. APPLICATION OF SPLINES OF THE SECOND ORDER OF 
APPROXIMATION 

Let us consider the numerical solution of the Volterra 
equation of the second kind 𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)𝑥𝑎 ,  𝑥, 𝑠 ∈ [𝑎, 𝑏]  
using splines of the second order of approximation. Suppose 𝐾(𝑥,∙)𝑢(∙) ∈ С2[𝑎, 𝑏]. Suppose that {𝑥𝑗} is a grid of nodes 
with step ℎ on the interval [𝑎, 𝑏].  
The function 𝑢(𝑠) can be approximated by the polynomial 
spline (see [17]) 
 𝑈(𝑠) = 𝑢(𝑥𝑗)𝜔𝑗(𝑠) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑠),       (2) 𝑠 ∈ [𝑥𝑗 , 𝑥𝑗+1], 
where the basis splines have the form: 𝜔𝑗(𝑠) = 𝑠 − 𝑥𝑗+1𝑥𝑗 − 𝑥𝑗+1 , 𝑠 ∈ [𝑥𝑗 , 𝑥𝑗+1], 𝜔𝑗+1(𝑠) = 𝑠 − 𝑥𝑗𝑥𝑗+1 − 𝑥𝑗 , 𝑠 ∈ [𝑥𝑗 , 𝑥𝑗+1]. 
Let us denote ∥ 𝑢′′ ∥[𝑥𝑗,𝑥𝑗+1]= max[𝑥𝑗,𝑥𝑗+1] |𝑢′′(𝑥)|,  
Theorem 1. Let 𝑢 ∈ С2[𝑎, 𝑏]. To approximate the function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 𝑢 ∈ С2[𝑎, 𝑏], by spline (2), the following 
inequality is valid: | 𝑢(𝑥) − 𝑈(𝑥)| ≤ 𝐾1ℎ2 ∥ 𝑢′′ ∥[𝑥𝑗,𝑥𝑗+1], 𝐾1 = 1/8. 
Proof. It is easy to notice that 𝑈 is an interpolation polynomial 
of the first degree, and 𝑥𝑗 , 𝑥𝑗+1 are the interpolation nodes, 𝑢(𝑥𝑗) = 𝑈(𝑥𝑗), 𝑢(𝑥𝑗+1) = 𝑈(𝑥𝑗+1). Using the remainder term 

we get 𝑢(𝑥) − 𝑈(𝑥) = 𝑢′′(𝜏)2! (𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1), 𝜏 ∈ [𝑥𝑗, 𝑥𝑗+1]. 
When 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1] we can use the relation 𝑥 = 𝑥𝑗 + 𝑡ℎ, 𝑡 ∈[0,1]. Therefore (𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1) = ℎ2𝑡(𝑡 − 1). 
We can see that max𝑡∈[0,1]|𝑡(𝑡 − 1)| = 1/4. 
Thus, max𝑥∈[𝑥𝑗,𝑥𝑗+1]|𝑢(𝑥) − 𝑈(𝑥)| = max[𝑥𝑗,𝑥𝑗+1] |𝑢′′| ℎ28 . 

The proof is complete. 
 
The function 𝑢(𝑥), 𝑢 ∈ С2[𝑎, 𝑏] can also be approximated 
with non-polynomial splines. As it is shown in paper [17], if 
the functions 𝜑1, 𝜑2 form a Chebyshev system, then the basis 
functions 𝜔𝑘 , 𝑘 = 𝑗, 𝑗 + 1, can be determined by solving the 
system of equations 𝜑1(𝑥𝑗)𝜔𝑗(𝑥) + 𝜑1(𝑥𝑗+1)𝜔𝑗+1(𝑥) = 𝜑1(𝑥), 𝜑2(𝑥𝑗)𝜔𝑗(𝑥) + 𝜑2(𝑥𝑗+1)𝜔𝑗+1(𝑥) = 𝜑2(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1]. 
Suppose that the determinant of the system does not equal 
zero. Let us investigate the case when 𝜑1(𝑥) = 1, 𝜑2(𝑥) =𝜑(𝑥). 
We construct a non-polynomial approximation of function 𝑢(𝑥), on each grid interval [𝑥𝑗 , 𝑥𝑗+1] in the form: 𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥),         𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 
where 𝜔𝑗(𝑥) = 𝜑(𝑥) − 𝜑(𝑥𝑗+1)𝜑(𝑥𝑗) − 𝜑(𝑥𝑗+1), 
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𝜔𝑗+1(𝑥) = 𝜑(𝑥) − 𝜑(𝑥𝑗)𝜑(𝑥𝑗+1) − 𝜑(𝑥𝑗). 
Note that this formula for function interpolation can also be 
applied on a uniform grid of nodes. 
Depending on the choice of the function 𝜑(𝑥), we obtain 
slightly different estimates of the error (see paper [17]), but 
they all have an approximation error of the order of 𝑂(ℎ2). 
This approximation error can be obtained using Taylor's 
theorem. But we will apply the method described in paper 
[17]. 
    Table 1 shows the actual errors of approximation of some 
functions 𝑢(𝑥) obtained with the use of the polynomial and 
non-polynomial splines when ℎ = 0.1, [𝑎, 𝑏] = [−1,1]. 
 
Table 1. The actual errors of approximation of some functions 
obtained with the use of the polynomial and non-polynomial splines 𝑢(𝑥) 𝜑(𝑥) = 𝑥 𝜑(𝑥) = exp (𝑥) 𝜑(𝑥)= exp (−𝑥) exp(𝑥) 0.00323 0 0.00646 𝑠in(𝑥) 0.00102 0.00177 0.00177 𝑥2

 0.00250 0.00487 0.00487 exp(−𝑥) 0.00323 0.00646 0 

 
Table 2 shows the theoretical errors of approximation of some 
functions obtained with the use of the polynomial splines 
when ℎ = 0.1, [𝑎, 𝑏] = [−1,1]. 
 
Table 2. The theoretical errors of approximation of some functions 
with the polynomial splines 𝑢(𝑥) max[−1,1] |𝑢 − 𝑈| exp(𝑥) 0.00340 sin(𝑥) 0.00105 𝑥2

 0.00250 

 

Let ordered distinct nodes {𝑥𝑗} be such that 𝑥𝑗+1 − 𝑥𝑗 = ℎ. 
 

Theorem 2. Let function 𝑢(𝑥) be such that 𝑢 ∈  𝐶2([𝑎, 𝑏]). 
Suppose the basis splines 𝜔𝑗(𝑥), 𝜔𝑗+1(𝑥) are constructed 
when 𝑈(𝑥) = 𝑢(𝑥), 𝑢(𝑥) = 1, 𝜑(𝑥), for 𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1]. 
 Then, for 𝜑(𝑥) = exp(𝑥) , exp(−𝑥) , 𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1] we have  |𝑢(𝑥) − 𝑈(𝑥)|  ≤ 𝐾2ℎ2‖𝐿𝑢‖,  𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],  𝐾2 > 0. 
Here 𝐿𝑢 = exp(−𝑥) (𝑢′′(𝑥) + 𝑢′(𝑥)) in the case of 𝜑1(𝑥) =1, 𝜑2(𝑥) = exp(−𝑥) , 𝐿𝑢 = exp(𝑥) (𝑢′′(𝑥) − 𝑢′(𝑥)) in the case of 𝜑1(𝑥) =1, 𝜑2(𝑥) = exp(𝑥) . 
 

Proof. In the case of the non-polynomial splines as it was 
shown in paper [17] we construct a homogeneous equation, 
which has a fundamental system of solutions 1, 𝜑(𝑥) 𝐿𝑢 = |1 𝜑(𝑥) 𝑢(𝑥)0 𝜑′(𝑥) 𝑢′(𝑥)0 𝜑′′(𝑥) 𝑢′′(𝑥)| = 0. 
It is easy to see, that the Wronskian 𝑊(𝑥) = |1 𝜑(𝑥)0 𝜑′(𝑥)| does 

not equal zero when 𝜑(𝑥) = exp(𝑥) , or exp(−𝑥) . Now we 
can construct a general solution of the nonhomogeneous 
equation 𝐿𝑢 =  𝐹 by the method of variation of the constants. 

Expanding the determinant according to the elements of the 
last column and dividing all terms of the equation by 𝑊(𝑥) we 
obtain the equation 𝐿𝑢 = 0 in the form. 𝑢′′ + 𝑞𝑢′ + 𝑝𝑢 = 0. 
Here  𝑞 and 𝑝 are some coefficients.  
After we have constructed a general solution of 
nonhomogeneous equation 𝐿𝑢 = 𝐹 by the method of variation 
of the constants we obtain the function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1]. 
Let us write down the results for several special cases. 
In the case of 𝜑1(𝑥) = 1, 𝜑2(𝑥) = exp(𝑥) we obtain  𝐿𝑢 = exp(𝑥) (𝑢′′(𝑥) − 𝑢′(𝑥)) and 𝑢(𝑥) = ∫ exp(𝑡) (𝑢′′(𝑡) − 𝑢′(𝑡))𝑑𝑡𝑥

𝑥𝑗 +  𝑐1 + 𝑐2exp(𝑥). 
In the case of 𝜑1(𝑥) = 1, 𝜑2(𝑥) = 𝑒𝑥𝑝(−𝑥) we obtain  𝐿𝑢 = −exp(−𝑥) (𝑢′′(𝑥) + 𝑢′(𝑥)) and 𝑢(𝑥) = − ∫ (𝑢′′(𝑡) +  𝑢′(𝑡)) exp(−𝑡) 𝑑𝑡𝑥

𝑥𝑗 +  𝑐1+ 𝑐2exp(−𝑥). 
Here 𝑐𝑖, 𝑖 =  1, 2,  are some arbitrary constants,𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1]. 
We construct the approximation of 𝑢(𝑥) in the form: 𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥),         𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1]. 
Thus, using the results from paper [17], we get |𝑢(𝑥) − 𝑈(𝑥)|  ≤ 𝐾2ℎ2‖𝐿𝑢‖, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], 
in the case of 𝜑1(𝑥) = 1, 𝜑2(𝑥) = 𝜑(𝑥).  
The proof is complete. 
 
Now we will consider, in detail, the construction of 
computational schemes for solving the Volterra equation of 
the second kind. In the construction of the computational 
schemes, we will use the approximation formulas with 
polynomial and non-polynomial splines of the second order of 
approximation. 
Transforming the integral ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠𝑥𝑗+1𝑥𝑗  using formula 
(2) or (1), we obtain ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 =𝑥𝑗+1𝑥𝑗 𝑢(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗(𝑠)𝑑𝑠 +𝑥𝑗+1𝑥𝑗  

+𝑢(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗+1(𝑠)𝑑𝑠 + 𝑂(ℎ3).𝑥𝑗+1𝑥𝑗  

To construct a numerical method, we discard the error and 
denote 𝑢 ̃(𝑥𝑗) ≈ 𝑢(𝑥𝑗). Let us introduce the notation 𝑊𝑗(𝑥) = 𝑢 ̃(𝑥𝑗) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗(𝑠)𝑑𝑠 +𝑥𝑗+1𝑥𝑗  

+𝑢 ̃(𝑥𝑗+1) ∫ 𝐾(𝑥, 𝑠)𝜔𝑗+1(𝑠)𝑑𝑠.𝑥𝑗+1𝑥𝑗  

Setting 𝑥 = 𝑥𝑘,  we obtain the numerical method 𝑢 ̃(𝑥𝑘) + ∑ 𝑊𝑠(𝑥𝑘)𝑘−1
𝑠=0 = 𝑓(𝑥𝑘), 𝑘 = 0, … , 𝑛. 

In a more detailed notation, the system of equations has the 
form 𝑢 ̃(𝑥0) = 𝑓(𝑥0), 𝑢 ̃(𝑥1) + 𝑢 ̃(𝑥0) ∫ 𝐾(𝑥1, 𝑠)𝜔0(𝑠)𝑑𝑠 +𝑥1𝑥0  
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+𝑢 ̃(𝑥1) ∫ 𝐾(𝑥1, 𝑠)𝜔1(𝑠)𝑑𝑠 = 𝑓(𝑥1),𝑥1𝑥0  

………………… 𝑢 ̃(𝑥𝑛) + ∑ 𝑊𝑠(𝑥𝑛)𝑛−2
𝑠=0  

+𝑢 ̃(𝑥𝑛−1) ∫ 𝐾(𝑥𝑛 , 𝑠)𝜔𝑛−1(𝑠)𝑑𝑠𝑥𝑛𝑥𝑛−1  +𝑢 ̃(𝑥𝑛) ∫ 𝐾(𝑥𝑛 , 𝑠)𝜔𝑛(𝑠)𝑑𝑠 = 𝑓(𝑥𝑛).𝑥𝑛𝑥𝑛−1  

We find the approximate values of the solution of the Volterra 
integral equation at the grid nodes by solving each equation 
sequentially. It is assumed that the integrals can be calculated 
exactly, or a quadrature formula with an error not less than 𝑂(ℎ3) can be applied. 

III. NUMERICAL RESULTS 
Now we apply the polynomial, the non-polynomial splines 

of the second order of approximation, and the composite 
trapezoidal rule for solving some Volterra integral equations. 
We will carry out the calculations in the package MAPLE 
with 𝐷𝑖𝑔𝑖𝑡𝑠 = 15 and the number of nodes 𝑛 = 32, 64, 128. 

 
Problem 1. We take the equation 𝑢(𝑥) = 𝑔(𝑥) − ∫ (𝑥 − 𝑡)cos(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,    𝑥 ∈ [0, 1].𝑥

0  

The exact solution of the equation is 𝑢(𝑥) = 2 cos(√3𝑥 + 1) /3. 
 

The function 𝑔(𝑥) is as follows: 𝑔(𝑥) = (23) cos(√3𝑥 + 1) − (13) √3 𝑥 cos(𝑥) sin(1) + (23) cos(𝑥)cos(1) − (13) 𝑥 sin(𝑥) cos(1) − (13) √3 sin(𝑥) sin(1) − (23) cos(√3 𝑥) cos(1) + (23) sin(√3 𝑥)sin(1). 
 
Аn approximate solution of this integral equation will first 

be calculated using the composite trapezoidal rule, then using 
polynomial and finally using non-polynomial piecewise linear 
splines.  

When we use the linear piecewise polynomial splines with 
the 128 nodes on the interval [0,1] we receive the plot of the 
error between the exact solution of the equation and the 
numerical solution obtained with the application of the linear 
polynomial splines. This plot is shown in Fig.1. When we use 
the composite trapezoidal rule with the 128 nodes on the 
interval [0,1] we receive the plot of the error between the 
exact solution of the equation and the numerical solution 
obtained with the application of the composite trapezoidal 
rule. This plot is shown in Fig.2. Note that the solution is 
obtained in the form of a grid function, but the points on the 
graph are connected by a solid line for visualization clarity. 

Table 3 show the maximum of the error in absolute value 
between the exact solution of the equation and the numerical 

solution obtained with the application of the linear polynomial 
splines (column 2). The maximum of the error in absolute 
value obtained with the application of the non- polynomial 
splines when 𝜑(𝑥) = exp(𝑥) is given in the column 3. The 
maximum of the error in absolute value obtained with the 
application of the composite trapezoidal rule is presented in 
the fourth column of Table 3. The number of nodes (n) is 
given in the first column of Table 3. 

 

 
Fig.1. The plot of error between the exact solution of the equation 

(problem 1) and the numerical solution obtained with the application 
of the linear polynomial splines when we use 128 nodes 

 

 
Fig.2. The plot of error between the exact solution of the equation 

(problem 1) and the numerical solution obtained with the application 
of the composite trapezoidal rule when we use 128 nodes 

 
Table 3. The maximum of the error in absolute value between the 

exact solution of the equation from problem 1 and the numerical 
solution obtained with the application of the linear polynomial 
splines, non-polynomial splines and the composite trapezoidal rule  𝑛 The error 

obtained with 
the use of the 
linear 
polynomial 
splines 

The error 
obtained with 
the use of the 
non-polynomial 
splines 𝜑(𝑥) =exp(𝑥) 

The error 
obtained with the 
composite 
trapezoidal rule 
application 

32 0.518 ∙ 10−5
 0.350 ∙ 10−4

 0.770 ∙ 10−4
 

64 0.130 ∙ 10−5 0.875 ∙ 10−5 0.192 ∙ 10−4 
128 0.324 ∙ 10−6 0.219 ∙ 10−5 0.481 ∙ 10−5 
 
Now let us solve some equations from paper [13] and 

compare the results with the result obtained with the 
polynomial and the non-polynomial splines. Let us compare 
the results with the result obtained with the composite 
trapezoidal rule. 
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Problem 2. We take the equation 7 from paper [13]. 𝑢(𝑥) = exp(−𝑥) + 𝑥 exp(𝑥)− ∫ exp(𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡,    𝑥 ∈ [0, 1].𝑥
0  

The exact solution of the equation is 𝑢(𝑥) = exp(−𝑥) 
 

 
 
Fig.3. The plot of error between the exact solution of the equation 

(problem 2) and the numerical solution obtained with the application 
of the linear polynomial splines when we use 128 nodes 

 
When we use the linear piecewise polynomial splines with 

the 64 nodes on the interval [0, 1] we receive the plot of the 
error between the exact solution of the equation and the 
numerical solution obtained with the application of the linear 
polynomial splines. This plot is shown in Fig.3. When we use 
the non-polynomial splines (𝜑(𝑥) = exp(−𝑥)) with the 64 nodes 
on the interval [0,1] we receive the plot of the error between 
the exact solution of the equation and the numerical solution. 
This plot is shown in Fig.4. 

 

 
Fig.4. The plot of error between the exact solution of the equation 

(problem 2) and the numerical solution obtained with the application 
of the non-polynomial splines (𝜑(𝑥) = exp(−𝑥)) when we use 64 

nodes 
 

When we use the non-polynomial splines (𝜑(𝑥) = exp(𝑥)) 
with the 128 nodes on the interval [0,1] we receive the plot of 
the error between the exact solution of the equation and the 
numerical solution. The plot is shown in Fig.5. 

Table 4 shows the maximum of the error in absolute value 
between the exact solution of the equation and the numerical 
solution obtained with the application of the linear polynomial 
splines (column 2). The maximum of the error in absolute 
value obtained with the application of the non-polynomial 
splines (𝜑(𝑥) = exp(𝑥)) is presented in the third column of 
Table 4. The number of nodes (n) is given in the first column 
of Table 4. The application of the composite trapezoidal rule 
for this equation gives us the exact solution. 

 

 
Fig.5. The plot of error between the exact solution of the equation 

(problem 2) and the numerical solution obtained with the application 
of the non-polynomial splines (𝜑(𝑥) = exp(𝑥)) when we use 128 

nodes 
Table 4. The maximum of the error in absolute value between the 

exact solution of the equation from problem 2 and the numerical 
solution obtained with the application of the linear polynomial 
splines, non-polynomial splines  𝑛 The error 

obtained with 
the use of the 
linear 
polynomial 
splines 

The error 
obtained with the 
use of the non-

polynomial 
splines 𝜑(𝑥) =exp(𝑥) 

 32 0.499 ∙ 10−4
 0.999 ∙ 10−4

 

 64 0.125 ∙ 10−4 0.250 ∙ 10−4 
128 0.312 ∙ 10−5 0.624 ∙ 10−5 

 
When we use the polynomial splines (𝜑(𝑥) = 𝑥) with the 128 

nodes on the interval [0,1] we receive the plot of the error 
between the exact solution of the equation and the numerical 
solution. The plot is shown in Fig.6. 

 

 
Fig.6. The plot of error between the exact solution of the equation 

(problem 2) and the numerical solution obtained with the application 
of the polynomial splines (𝜑(𝑥) = 𝑥) when we use 128 nodes 

 
Problem 3. We take the equation 𝑢(𝑥) = 𝑔(𝑥) + ∫ (1 − (𝑥 − 𝑠)exp(𝑥))𝑢(𝑡)𝑑𝑡,    𝑥 ∈ [0, 1].𝑥

0  

Here 𝑔(𝑥) = 1 − exp(𝑥) sin(𝑥) − 𝑥 exp(𝑥) − exp (𝑥)/2 + exp (2𝑥)(sin(𝑥) + cos (𝑥))/2.  
The exact solution of the equation is 𝑢(𝑥) = exp (𝑥)(cos(𝑥) − sin (𝑥)). 

Table 5 shows the maximum of the error in absolute value 
between the exact solution of the equation (Problem 3) and the 
numerical solution obtained with the application of the linear 
polynomial splines (column 2). The maximum of the error in 
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absolute value obtained with the application of the non-
polynomial splines (𝜑(𝑥) = exp(𝑥)) is presented in column 3, 
the error obtained with the composite trapezoidal rule 
application is given in the fourth column of Table 5. The 
number of nodes (n) is given in the first column of Table 5.  
 

Table 5. The maximum of the error in absolute value between the 
exact solution of the equation from problem 3 and the numerical 
solution obtained with the application of the linear polynomial 
splines, non-polynomial splines and the composite trapezoidal rule  𝑛 The error 

obtained with 
the use of the 
linear 
polynomial 
splines 

The error 
obtained with 
the use of the 
non-polynomial 
splines 𝜑(𝑥) =exp(𝑥) 

The error 
obtained with the 
composite 
trapezoidal rule 
application 

32 0.114 ∙ 10−3
 0.798 ∙ 10−4

 0.860 ∙ 10−3
 

64 0.285 ∙ 10−4 0.200 ∙ 10−4 0.215 ∙ 10−3 
128  0.712 ∙ 10−5 0.498 ∙ 10−5 0.537 ∙ 10−4 
 
The plot of error between the exact solution of the equation 

(problem 3) and the numerical solution obtained with the 
application of the exponential splines when we use 128 nodes 
is given in Fig.7. The plot of error between the exact solution 
of the equation and the numerical solution obtained with the 
application of the composite trapezoidal rule when we use 128 
nodes is given in Fig.8. 

 
Fig.7. The plot of error between the exact solution of the equation 

(problem 3) and the numerical solution obtained with the application 
of the exponential splines when we use 128 nodes 

 

 
Fig.8. The plot of error between the exact solution of the equation 

(problem 3) and the numerical solution obtained with the application 
of the composite trapezoidal rule when we use 128 nodes 

IV. APPLICATION TO SOLVING A NONLINEAR EQUATION 
Let us now consider the application of splines of the second 

order of approximation to the solution of the nonlinear 
Volterra integral equation of the second kind. 

 𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠, 𝑢(𝑠))𝑑𝑠 = 𝑓(𝑥)𝑥𝑎 ,   𝑥 ∈ [𝑎, 𝑏]. 
 

We approximate 𝑢(𝑠) with the expression: 𝑈(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1(𝑥),        (3) 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 
Now transforming the integral ∫ 𝐾(𝑥, 𝑠, 𝑢(𝑠))𝑑𝑠𝑥𝑗+1𝑥𝑗  using 

formula (3), we obtain ∫ 𝐾(𝑥, 𝑠, 𝑢(𝑠))𝑑𝑠 ≈𝑥𝑗+1𝑥𝑗 ∫ 𝐾(𝑥, 𝑠, 𝑈(𝑠))𝑑𝑠𝑥𝑗+1𝑥𝑗 . 
Here we take the nonlinear Volterra integral equation of the 

second kind of the form: 𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠, 𝑢2(𝑠))𝑑𝑠 = 𝑓(𝑥)𝑥𝑎 ,   𝑥 ∈ [𝑎, 𝑏].     
Now let us solve the equation from paper [13] and compare 

the results with the result obtained with splines. In problem 4 
we consider problem 6 from paper [13]. 

 
Problem 4. We take the equation 𝑢(𝑥) = 𝑔(𝑥) + ∫ 𝑥𝑠2𝑢2(𝑠)𝑑𝑠,    𝑥 ∈ [0, 1].𝑥

0  

Here 
 𝑔(𝑥) = (1 + 2𝑥4/9 − 𝑥3/3 + 2𝑥2/3 + 11𝑥/9)log (𝑥 + 1) + (− 𝑥43 − 𝑥3) (ln(𝑥 + 1))2 + 5𝑥3/18 − 11𝑥2/9 − 2𝑥4/27. 

The exact solution is taken by 𝑢(𝑥) = log(𝑥 + 1). 
When we use the linear piecewise polynomial splines with 

the 128 nodes on the interval [0,1] we receive the plot of the 
error between the exact solution of the equation and the 
numerical solution obtained with the application of the linear 
polynomial splines which is shown in Fig.9.  

 

 
Fig.9. The plot of error between the exact solution of the equation 

(problem 4) and the numerical solution obtained with the application 
of the linear polynomial splines when we use 128 nodes 

 
Table 6 shows the maximum of the error in absolute value 

between the exact solution of the equation (Problem 4) and the 
numerical solution obtained with the application of the linear 
polynomial splines (column 2). The maximum of the error in 
absolute value obtained with the application of the non-
polynomial splines (𝜑(𝑥) = exp(𝑥)) is presented in column 3. 
The maximum of the error in absolute value obtained with the 
application of the non-polynomial splines (𝜑(𝑥) = exp(−𝑥)) 
is given in column 4. The number of nodes (n) is given in the 
first column of Table 6.  
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When we use the piecewise non-polynomial splines with 
the 128 nodes on the interval [0,1] we receive the plots of the 
error between the exact solution of the equation and the 
numerical solution obtained with the application of the non-
polynomial splines which are shown in Figs. 10-11.  

 
Table 6. The maximum of the error in absolute value between the 

exact solution of the equation from problem 4 and the numerical 
solution obtained with the application of the linear polynomial 

splines, non-polynomial splines 𝑛 The error 
obtained with 
the use of the 
linear 
polynomial 
splines 

The error 
obtained with the 
use of the non-
polynomial 
splines 𝜑(𝑥) =exp (𝑥) 

The error 
obtained with the 
use of the non-
polynomial 
splines 𝜑(𝑥) =exp (−𝑥) 

 32 0.116 ∙ 10−4
 0.317 ∙ 10−4

 0.856 ∙ 10−5
 

 64 0.290 ∙ 10−5 0.793 ∙ 10−5 0.214 ∙ 10−5 
128 0.724 ∙ 10−6 0.198 ∙ 10−5 0.535 ∙ 10−6 
 

Comment. This paper considers the case when it is possible 
to calculate the exact integral of the product of the kernel and 
the basis function. If this is not possible, then we can use a 
quadrature formula, for example, Simpson's rule.  
 

 
Fig.10. The plot of error between the exact solution of the equation 

(problem 4) and the numerical solution obtained with the application 
of the non-polynomial splines (𝜑(𝑥) = exp (−𝑥)) when we use 128 

nodes 
 

 
 

Fig.11. The plot of error between the exact solution of the equation 
(problem 4) and the numerical solution obtained with the application 
of the non-polynomial splines (𝜑(𝑥) = exp (𝑥)) when we use 128 

nodes 
 

Problem 5. The applied problem of mathematical description 
of the gas-turbine engine state modification processes in the 
form of Volterra integral equation of second kind with 
separable kernel is solved in [18]. We construct an equation 
based on the data in paper [18]. First, let us take the model 
problem  𝑢(𝑥) = 𝑔(𝑥) + ∫ (𝑡 + 𝑥𝑡2)𝑢(𝑡)𝑑𝑡,    𝑥 ∈ [0, 1]𝑥0 . 

We construct the function 𝑔(𝑥) by specifying the piecewise 
function 𝑢(𝑥) (see Fig.12). The plot of the solution of Volterra 
integral equation of second kind obtained with the application 
of the linear polynomial splines when 64 nodes were taken is 
given in Fig.12. 

 
Fig.12. The plot of the piecewise function 𝑢(𝑥) 

 
The plot of error between the exact solution of the equation 
solution obtained with the application of the linear polynomial 
splines when 64 nodes were taken is given in Fig.14. 

 
Fig.13. The plot of the solution obtained with the application of 

the linear polynomial splines when 64 nodes were taken/ 
 

 
Fig.14. The plot of error between the exact solution of the equation 
solution obtained with the application of the linear polynomial 

splines when 64 nodes were taken. 
 

Now let us take the next model problem 𝑢(𝑥) = 𝑔(𝑥) + ∫ (𝑡 + 𝑥𝑡2)𝑢(𝑡)𝑑𝑡,    𝑥 ∈ [0, 1]𝑥
0  

We construct the function 𝑔(𝑥) by specifying the piecewise 
function 𝑢(𝑥) (see Fig.15). The plot of the function 𝑢(𝑥) is 
similar to the plot from paper [18]. The plot of the solution of 
Volterra integral equation of second kind obtained with the 
application of the linear polynomial splines when 128 nodes 
were taken is given in Fig.16. The plot of error between the 
exact solution of the equation solution obtained with the 
application of the linear polynomial splines when 128 nodes 
were taken is given in Fig.17. Our method can find 
applications in [19] and [20]. 
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Fig.15. The plot of the piecewise function 𝑢(𝑥). 

 
Fig.16. The plot of the solution obtained with the application of 

the linear polynomial splines when 128 nodes were taken. 
 

 
Fig.17. The plot of error between the exact solution of the equation 
solution obtained with the application of the linear polynomial 

splines when 128 nodes were taken. 

V. CONCLUSION 
In this paper, polynomial and non-polynomial splines of the 
second order of approximation are used to solve the linear and 
nonlinear models of the Volterra integral equations of the 
second kind. It is assumed, that the integral of the product of 
the kernel and the basis spline can be calculated exactly (in the 
form of a formula). The basis spline is the polynomial spline 
or non-polynomial spline of the second order of 
approximation. The numerical examples are done. The graphs 
of the error between the exact and approximate solutions at the 
different number of grid points are also drawn. As it is shown, 
the application of the local interpolation splines of the second 
order of approximation for the Volterra integral equations of 
the second kind can give an appropriate result, better than the 
composite trapezoidal rule. The non-polynomial splines 
sometimes can provide the result better than the polynomial 
splines. The application of the presented method to solve the 
model of an engineering problem presented in paper [18] gave 
a completely reliable result. 
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