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Abstract. The work in this paper concerns the study of conventional and
refined heat balance integral methods for a number of phase change problems.
These include standard test problems, both with one and two phase changes,
which have exact solutions to enable us to test the accuracy of the approximate
solutions. We also consider situations where no analytical solution is available
and compare these to numerical solutions. It is popular to use a quadratic pro-
file as an approximation of the temperature, but we show that a cubic profile,
seldom considered in the literature, is far more accurate in most circumstances.
In addition, the refined integral method can give greater improvement still and
we develop a variation on this method which turns out to be optimal in some
cases. We assess which integral method is better for various problems, showing
that it is largely dependent on the specified boundary conditions.

1. Introduction

The heat balance integral method (HBIM) is an approximate technique for
solving thermal problems. It was originally proposed by Goodman [13–15] as an
adaptation of the Karman-Pohlhausen integral method [37] for analysing bound-
ary layers, see [39] for a translated account of this work. Since exact solutions have
been found for many problems in heat transfer the HBIM has made the greatest
impact on Stefan problems, where very few exact solutions can be found. Ob-
viously other approximate solution techniques exist; such as numerical methods,
perturbation solutions, ray methods, see for example [1,7,8,16,18,24,26,35]. De-
spite the fact that the HBIM may not always be as accurate as certain of these
methods, it remains a popular choice due to its simplicity and the fact that it
produces analytic solutions to a wide range of problems and parameter values.

Consider a semi-infinite solid, initially at a constant temperature. The bound-
ary x = 0 is suddenly heated to another constant temperature. The HBI solution
proceeds as follows:

(1) First introduce the heat penetration depth, δ(t). For x ≥ δ the tempera-
ture rise is negligible.
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(2) Then define an approximate function for the temperature, typically a
polynomial, and apply sufficient boundary conditions at x = 0 and δ(t)
to determine all unknown coefficients in terms of the unknown function δ.

(3) Finally integrate the governing equation for x ∈ [0, δ] to produce what
is termed the heat balance integral. Typically this results in an ordinary
differential equation for δ.

Hence the initial partial differential equation is reduced to a first order ordinary
differential equation, which may often be solved analytically. However, the ap-
proximation to the temperature only satisfies the heat-balance integral, not the
original governing equation. Thus, the governing equation will only be satisfied
in an averaged or integral sense [2].

When solving a Stefan problem the approach is similar except the position of
the moving boundary is also unknown. The Stefan condition provides a further
equation to determine this. Here the original problem consists of two partial
differential equations in the two phases, the domain of these phases is unknown
a priori and is defined by an ordinary differential equation. Using the HBIM this
reduces to solving two first order ordinary differential equations. In the idealised
case of the melting of a solid initially at its solidus the problem reduces to a first
order ordinary differential equation coupled to an algebraic equation.

The choice of approximating function is a constant source of debate [3,21,32].
Goodman primarily employed a quadratic. However, even for this simple choice
Wood [43] shows six different formulations and demonstrates that Goodman’s
choice is typically third best, i.e. that it has the smallest error in the melt-front
position s(t). In fact there is a seventh formulation; all the different methods
will be discussed in §3. The obvious next step is a cubic approximating function
and this is mentioned by Goodman [13]. Myers et al. [35] choose a cubic function
when studying the melting of a sub-cooled finite block. Their choice is motivated
by analysing the melting of a material initially at its solidus. Both the small
argument expansion of the exact solution and an asymptotic solution lead to a
cubic with no quadratic term. They go on to show that this form is more accurate
than a quadratic when analysing the melting of a sub-cooled finite block. Antic &
Hill [2] use two cubics to describe the temperature in grain and the surrounding
air in a model of thermal diffusion in a grain store. Mitchell & Myers [25] employ
a quartic in a study of ablation. This choice is motivated through an analysis
of the heating up stage before ablation commences. Their results are compared
with an analysis of Braga et al. [4, 5] who use functions of the form

(1) u = a0 + a1(δ − x)n .

Mosally et al. [27] note that many thermal problems have exponentially decaying
solutions, and consequently use an exponential form. This performs well for the
problem that motivated the choice, however for the melting problem investigated
in [35] it is the worst of the choices investigated. They also use piece-wise linear
and exponential approximations to improve the accuracy of the method. Mosally
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et al. [28] investigate the convergence properties of the piece-wise linear form and
conclude that convergence is slow compared to that of finite difference schemes.
We will discuss the single exponential method further in subsequent sections and
show cases where it is the best approximating function. A logical conclusion of
the HBI method is to look for a series solution. The generalized integral balance
method involves a solution of the form

(2) u = a0 + Σn
k=1ak(t)fk(x) ,

where fk form a linearly independent system and satisfy recurrence relations,
see [41] (the method is described in [12]). Fomin et al. [12] carry out calculations
only up to n = 2 and describe the calculations as ”tedious but straightforward”.
Since one of the main appeals of the HBIM is its simplicity this may explain
the lack of popularity of this generalization. A general introduction into the
application of the HBIM to thermal problems and the choice of n is given in [17].

The majority of studies using the HBIM impose a fixed temperature at the
substrate that is greater than the melt temperature, U0 > Um. This leads to
immediate melting. When studying the melting of a sub-cooled material subject
to a Robin condition melting is not always immediate and this means there will
be a pre-melting stage where a standard solution to the heat equation may be
found and compared with the approximate solution. This approach was employed
in [4, 5, 35] for example. In a series of papers, Braga & Mantelli [4, 5] investigate
ablation, using the HBIM, which has a pre-ablation stage. They choose the
power n for the approximating function of equation (1) from matching the time
to ablation predicted by an exact solution and by the HBIM. Once ablation starts
they switch to a higher value, m > n. This approach suffers from two major
drawbacks. Firstly, the initial approximation only works when an exact solution
is known and therefore is of little value. Secondly, Mitchell & Myers [25] have
shown that when switching the order of the polynomial there is the restriction
that m ≤ n, otherwise mass will be added to the ablating material. They go on
to demonstrate that a quartic provides a good approximation for all time.

In the following work we begin our analysis by looking at the standard problem
of melting a semi-infinite solid which is initially at the solidus. In this context we
describe the usual HBI methods and then introduce the Refined Integral Method
(RIM) [38]. With a constant temperature boundary condition an analytical solu-
tion exists and this provides a test for the accuracy of the approximate solutions.
With a Robin condition at the substrate we compare with numerical solutions.
All these results are given in § 5. In addition, we also consider two time-dependent
boundary conditions, both having exact solutions. This leads us to introduce an
Alternative Refined Integral Method (ARIM) which in certain cases can show a
further improvement for either a Robin or flux boundary condition. In § 6 we
move on to the more realistic problem of melting a semi-infinite block that is ini-
tially below the melting temperature. This requires a modification of the refined
and standard HBI methods. Again with the constant temperature boundary
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condition there is an analytical solution that we use to validate the approximate
solutions. Up to this stage all solutions have involved immediate melting, when
we investigate the Robin condition we must first analyse an initial heating up
phase before melting begins. In the final sections we briefly describe how to ap-
ply the methods to melting of a finite block, where melting can occur on two
fronts, and ablation of a finite media. In general when we provide numerical
solutions we will be using parameter values appropriate to ice and water, since
this data is most readily available. Perhaps the most well studied example of the
HBI method on ablation occurs in the context of heat shields on space vehicles,
see [4,5] for example. For that example we will use parameter values appropriate
to teflon.

2. Problem description

liquid

s’(t’)

x’ = s’ Hx’ = 0

solid

Figure 1. Schematic of a two-phase melting process.

Consider the problem of two-phase melting of a semi-infinite solid, as depicted
in Figure 1. During the melting process the melt region occupies 0 ≤ x′ ≤ s′(t′).
If u′ denotes the temperature in the melt and v′ the temperature in the solid then
the problem is described by two heat equations

κl
∂2u′

∂x′2
=
∂u′

∂t′
, 0 < x′ < s′(t′)(3)

κs
∂2v′

∂x′2
=
∂v′

∂t′
, x′ > s′(t′) ,(4)

where κ is the thermal diffusivity, subscripts l and s denote the liquid and solid
respectively and primes indicate a dimensional quantity. Note that we assume
the density remains constant during the phase change, i.e. ρs = ρl = ρ. This
assumption is necessary to prevent an advection term from occurring in (3) above.
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The position of the interface is determined by the Stefan condition

(5) ρLm
ds′

dt′
= ks

∂v′

∂x′
− kl

∂u′

∂x′
, at x′ = s′ ,

where Lm is the latent heat of melting and k is the thermal conductivity. The
boundary condition at x′ = s′ is

(6) u′ = v′ = Um ,

where Um is the melting temperature. The initial condition is given by v′(x′, 0) =
U∞ (U∞ ≤ Um) so either v′x′ → 0 as x′ → ∞ or equivalently v′ → U∞. We
consider the following two possible boundary conditions at x′ = 0:

(7) (i) u′ = U0 , or (ii) kl
∂u′

∂x′
= −Q+ hs(u

′ − U0) , at x′ = 0 ,

where the source term Q could represent kinetic energy from an incoming fluid
or aerodynamic heating, and hs, for example, could be composed of thermal
energy from an incoming fluid, evaporation or convective heat transfer. These
energy terms are discussed in more detail in [7, 33]. In §6.2 we will discuss an
initial pre-melting stage where hs then represents the heat transfer coefficient
between the solid and substrate. This is not necessarily the same as the liquid-
substrate heat transfer coefficient. The HBI method for boundary condition (i)
is considered in [13, 27, 38, 43], but case (ii) with either Q = 0 or hs = 0 is only
briefly discussed in [13] and no comparisons are given with a numerical solution.
Other investigations with hs = 0 and Q constant are discussed [4,5,15], whereas
time dependent boundary conditions are described in [4, 18, 45]. In the case of
the convective boundary condition with hs 6= 0, the HBI method has only been
analysed in [6, 46], whilst consideration with both Q , hs 6= 0 are absent from
the literature. In § 5.3 we briefly mention two test cases with time dependent
boundary conditions, one with Q(t) ∼ −et and the other with u(0, t) ∼ et − 1.
Both examples have the same exact solution, with the growth rate s(t) ∝ t.

The problem can be re-scaled by setting

(8) x =
x′

L
, t =

t′

τ
, u =

u′ − Um

U0 − Um

, v =
v′ − Um

Um − U∞
, s =

s′

L
,
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choosing a timescale of τ = L2/κl means that the governing equations (3)-(7)
become

∂2u

∂x2
=
∂u

∂t
, 0 < x < s(9)

κ
∂2v

∂x2
=
∂v

∂t
, x > s(10)

β
ds

dt
= k

∂v

∂x
− ∂u

∂x
, at x = s(11)

u = v = 0 at x = s , v = −1 as x→ ∞(12)

(i) u = 1 , or (ii)
∂u

∂x
= −γ1 + γ2(u− 1) , at x = 0 ,(13)

with initial condition v(x, 0) = −1, and

(14) β =
ρLmκl

kl∆u
=

1

St
, k =

ks

kl∆U
, κ =

κs

κl
, γ1 =

QL

kl∆u
, γ2 =

hsL

kl
,

where β is an inverse Stefan number, ∆u = U0 − Um, ∆v = Um − U∞ and
∆U = ∆u/∆v. If we assume the thermal properties remain constant through
the phase change then we will obtain the more standard equations studied in
[8, 18, 27, 38, 43]. However, for this study we retain the more general form.

In general, in the following work we will use parameter values appropriate to
ice and water (which are relatively easy to obtain). These are displayed in Table
1. The value for the heat transfer coefficient, hs, is of the order of magnitude
of values quoted in [31, 33–35]. It should be noted that for the Robin boundary
condition (13ii) melting will not occur immediately. There will be a pre-melting
phase with the heat equation in the solid (10) holding for x > 0. The boundary
condition (13ii) will hold for v instead of u at x = 0 but with the alteration

(15)
∂v

∂x
= −α1 + α2(v − ∆U) , where α1 =

QL

ks∆v
, α2 =

hsL

ks

.

This is dealt with in § 6.2.

κl 1.35 × 10−7 m2 /s κs 1.16 × 10−6 m2 /s

kl 0.57 W/m K ks 2.18 W/m K

Lm 3.34 × 105 J/kg hs 180 W/m2 K

ρ 1000 kg/m3 U0 278-373 K

Um 273 K U∞ 253 K

Table 1. Physical parameter values for the liquid and solid.
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3. Melting of a semi-infinite material at the solidus

We begin our analysis with the standard problem of the melting of a mate-
rial initially at the solidus. Heat is applied at x = 0 so that melting occurs
immediately. The system (9-12) reduces to

∂2u

∂x2
=
∂u

∂t
, 0 < x < s(16)

β
ds

dt
= −∂u

∂x
, at x = s(17)

u = 0 , at x = s ,(18)

with the initial condition

(19) u(x, 0) = 0 , for x > 0 .

Boundary conditions (13) are unchanged. If we apply (13i) then we may obtain
an exact solution, with the Robin condition no analytical solution is known. We
will investigate both possibilities.

The HBI method involves integrating the heat equation (16) with respect to x
over the interval (0, s(t)). This gives

(20)
∂u

∂x

∣

∣

∣

∣

x=s

− ∂u

∂x

∣

∣

∣

∣

x=0

=
d

dt

∫ s

0

u dx ,

where, in deriving the integral term we apply (18). Once an approximating
function has been defined equation (20) must be solved in conjunction with the
Stefan condition (17). A variation on the method suggested by Goodman [13]
comes from noting that u(s(t), t) = 0 for all t, hence the total derivative of the
temperature at x = s(t) is zero, i.e.

Du

Dt
(s(t), t) = 0 =⇒ ∂u

∂t
+
∂u

∂x

ds

dt
= 0 .

Then using (16) and (17) we can re-write this as

(21)

(

∂u

∂x

)2

= β
∂2u

∂x2
, at x = s .

This may be used as an alternative to the Stefan condition (17). To proceed
further, a suitable approximating function must be defined for u. In the following
sections we will first illustrate the method using the three most popular forms of
approximating function, namely quadratic, cubic and exponential, see [13–15,24,
25, 27, 35, 43] for example.

3.1. The constant temperature boundary condition. The exact solution
to this problem is

(22) u(x, t) = 1 − erf
[

x/(2
√
t)

]

erf(α)
, s(t) = 2α

√
t ,
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where α satisfies the transcendental equation

(23)
√
πβα erf(α)eα2

= 1 .

We will use this later to test the accuracy of the approximate solutions.

3.1.1. The quadratic profile. The original approximating function, proposed by
Goodman [13,14] is a quadratic of the form u(x, t) = a(s−x)+b(s−x)2. However,
Wood [43] favours the formulation

(24) u(x, t) = a
(

1 − x

s

)

+ b
(

1 − x

s

)2

,

since this leads to coefficients a and b that are constant in time. In fact, this
is only true when the boundary condition is of the form (13i). With a Robin
condition they depend on time. Both formulations automatically satisfy the
condition u(s, t) = 0. Applying u(0, t) = 1 gives b = 1 − a and we are left with

(25) u(x, t) = a
(

1 − x

s

)

+ (1 − a)
(

1 − x

s

)2

.

Equation (25) shows

(26)
∂u

∂x

∣

∣

∣

∣

x=s

= −a
s
,

∂u

∂x

∣

∣

∣

∣

x=0

=
a− 2

s
,

∫ s

0

u dx =
s(a+ 2)

6
,

while the Stefan condition (17) becomes

(27) s
ds

dt
=
a

β
.

Since this comes from the linear term in the approximating function the same
condition will hold for the cubic approximation of the following section. The
integral expression (20) may now be written

(28)
∂u

∂x

∣

∣

∣

∣

x=s

− a− 2

s
=
a+ 2

6

ds

dt
,

where the assumption that a is constant has been applied. The Stefan condition
(17) may be used to replace the temperature gradient at x = s in equation (28)
to give a differential equation in terms of the two unknowns s(t) and a

(29) s
ds

dt
=

6(2 − a)

6β + a+ 2
.

Equation (27) provides a second equation for these two unknowns. Combining
these two expressions we find that the constant a satisfies the quadratic equation

(30) a = −1 − 6β +
√

1 + 24β + 36β2 ,
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where we have used the positive square root to ensure ux(s, t) < 0. Noting that a
is a constant then from either (27) or (29) it is clear that, as in the exact solution
(22), s ∝ t1/2,

(31) s(t) = 2α
√
t , α =

√

a

2β
.

Now that a and s(t) are known we can predict the evolution of the melt front,
and by substituting these into (25) we also know the temperature u(x, t) for all
time.

The above method details one way to use the HBIM with a quadratic approx-
imating function. However, Wood [43] shows that with this quadratic there are
in fact six different formulations of the Stefan problem (16-18), each resulting in
a different expression for a. These are found using permutations of the two forms
of Stefan condition (21), (27) together with three ways of evaluating ux(s, t) in
equation (28). So, instead of using (27) we may substitute u into (21) and find

(32) a = −β +
√

β2 + 2β .

The three ways of evaluating ux(s, t) are, firstly, from using equation (17) as
above; secondly from using (21) to find

∂u

∂x

∣

∣

∣

∣

x=s

= −
√

β
∂2u

∂x2

∣

∣

∣

∣

x=s

= −
√

2β(1 − a)

s
,

(again we choose the appropriate root so ux(s, t) < 0); and thirdly from using
the first relation in (26). In each case the solution takes the form s = 2α

√
t with

different expressions for α. Obviously there is some overlap in these permutations
and so of these six options, two sets are equivalent and there are only four distinct
values for α in (31). The relative accuracy of each method depends on the value
of β.

Goodman [13] considered two formulations, with the first corresponding to
one of Wood’s six options. Wood points out that for the majority of problems
this formulation is in fact only the third best option. The second formulation
described by Goodman, which is not discussed by Wood, involves neglecting
the integral form (20) and instead combining the two forms of Stefan condition
(27) and (32). This method therefore only satisfies the PDE (16) at x = s
but it is more accurate than all the other formulations for a small range of β
(2/15 < β < 3/8).

The six methods described by Wood, and the seventh from Goodman, have a
point of intersection in the plots of α(β) when β = 2/15. For melting ice this
corresponds to a temperature scale ∆u ≈ 544 K, which is clearly not of practical
interest. Given that for ice we are only likely to consider ∆u < 100 K, using data
from Table 1, this requires β > 0.73. In which case the method described above,
leading to equations (30), (31), is generally the most accurate.
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3.1.2. The cubic profile. When considering the melting of a finite block Myers
et al. [35] employ a cubic profile, where the quadratic term is neglected. This
form is based on both an asymptotic solution and the small argument expansion
of an exact solution. Goodman [13] also mentioned the cubic profile, but then
almost exclusively worked with a quadratic. Antic & Hill [2] employ two cubics
in a double diffusion problem. In general we may work with a cubic including
the quadratic term

(33) u(x, t) = a
(

1 − x

s

)

+ b
(

1 − x

s

)2

+ c
(

1 − x

s

)3

,

where again a, b and c are constant for the case of fixed temperature, u(0, t) = 1.
This expression automatically satisfies u(s, t) = 0 and we require c = 1 − a − b
in order to satisfy u(0, t) = 1. There is now one more coefficient than in the
quadratic case and so we immediately use the alternative form of the Stefan
condition (21) to give b = a2

2β
. Then (33) becomes

(34) u(x, t) = a
(

1 − x

s

)

+
a2

2β

(

1 − x

s

)2

+

(

1 − a− a2

2β

)

(

1 − x

s

)3

,

which now involves only one unknown coefficient a and the unknown melting
front position s(t). Even though we have used the alternative form of the Stefan
condition we must also use the original form (17), due to the extra coefficient.
This means there can only be three possible formulations, which arise from the
different ways of expressing ∂u

∂x

∣

∣

x=s
. Following the same analysis as for the qua-

dratic case we find that the three possible forms all reduce to the same expression
for a and so we only have one formulation here; this was noted in [13]. The un-
known a for the cubic profile is found by substituting u from (34) into the heat
balance integral (20) to give

(35) s
ds

dt
= −12(a2 + 6aβ − 6β)

a2 + 6aβ + 6β
.

Since a is constant we will find s ∝ t1/2. The left hand side is replaced by the
as yet unused Stefan condition (17) (which reduces to the same expression as
in the quadratic case, namely equation (27)) and we obtain the following cubic
expression for a:

(36) a3 + 18βa2 + 6β(1 + 12β)a− 72β2 = 0 .

Once this has been determined numerically we may solve equation (27) to give
the equation for s(t) in (31) but with a now found from (36).

3.1.3. The exponential profile. The exponential profile proposed by Mosally et al.

[27] is motivated by the exact solution (23) and noting that the small z expansion

of erf z ∼ 2√
π
z e−z2

. Consequently they take an approximating function of the
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form

(37) u = a+
bx

s
e−cx2/s2

.

Imposing u(s, t) = 0 and u(0, t) = 1 leads to

(38) u = 1 − x

s
ec(1−x2/s2) .

Mosally et al. [27] also propose an alternative exponential form, u = a+ be−cx/s,
but this is never as accurate as (37) and is therefore not used here. Again we
find there are six possible variations which reduce to four distinct solutions. The
most accurate (for realistic β) is obtained following the first method detailed in
§3.1.1 giving the Stefan condition

(39) s
ds

dt
=

1 − 2c

β
.

The solution to the system is

(40) s(t) = 2α
√
t , α =

√

1 − 2c

2β
,

where c satisfies the nonlinear relation

(41) (1 − 2c)
[

2(1 + β)ce−c + e−c − 1
]

= 2cβ .

3.2. The Robin boundary condition. We now turn to the problem of solving
the system (16-18) with the Robin condition (13ii) applied at x = 0. Again
we consider quadratic, cubic and exponential approximating functions but to
save time only discuss the best formulations (when compared to our subsequent
numerical solution).

3.2.1. The quadratic profile. Assuming a temperature profile of the form (24) and
applying the boundary condition (13ii), gives

(42) u = a
(

1 − x

s

)

+

[

(γ1 + γ2)s− (1 + γ2s)a

2 + γ2s

]

(

1 − x

s

)2

.

As in §3.1.1 we substitute u directly into the integrated form of the heat equation
(20) to find

(43)
2
[

(γ1 + γ2)s− (1 + γ2s)a
]

s(2 + γ2s)
=

d

dt

[

s
[

2(γ1 + γ2)s+ (4 + γ2s)a
]

6(2 + γ2s)

]

.

This equation must be solved in conjunction with the Stefan condition (27). Note,
we cannot assume a is constant in this case and so there are now two differential
equations to solve for the unknowns a(t) and s(t). Since s(0) = 0 it is clear that
a(0) = 0 to ensure that the initial condition u(x, 0) = 0 is satisfied in (42).
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3.2.2. The cubic profile. The cubic form is defined by equation (33). After apply-
ing the boundary condition (13ii) and the alternative form of the Stefan condition
(21), the temperature becomes
(44)

u(x, t)=a
(

1−x

s

)

+
a2

2β

(

1−x

s

)2

+

[

(γ1 + γ2)s−(1+γ2s)a− a2

2β
(2+γ2s)

3+γ2s

]

(

1−x

s

)3

.

Substituting this into equation (20) leads to

[

6β(γ1 + γ2)s− 6β(1 + γ2s)a− a2γ2s
]

2βs(3 + γ2s)
=

(45)

d

dt

[

s
[

6β(γ1 + γ2)s+ 6β(5 + γ2s)a+ a2(6 + γ2s)
]

24β(3 + γ2s)

]

.

Coupling this to the Stefan condition (27) we obtain a pair of equations for a(t)
and s(t). Again note that the initial condition for a is a(0) = 0.

3.2.3. The exponential profile. Finally, we impose an exponential profile of the
form (37). After applying (13ii) we find

(46) u =
(γ1 + γ2)e

−cs

1 + γ2e−cs

(

1 − x

s
ec(1−x2/s2)

)

.

Substituting this into equation (20) leads to

(47)
(γ1 + γ2)

[

1 − e−c(1 − 2c)
]

1 + γ2e−cs
=

d

dt

[

(γ1 + γ2)
[

− 1 + e−c(1 + 2c)
]

s2

2c(1 + γ2e−cs)

]

.

Calculating ux and substituting that into the Stefan condition (17) gives

(48)
ds

dt
=

(γ1 + γ2)e
−c(1 − 2c)

β(1 + γ2e−cs)
.

To determine an initial condition for c we note that as t → 0, s → 0, the
temperature u→ 0 and ux|x=0 → −γ1 − γ2. The Stefan condition (17) may then
be written

(49) −βds

dt
→ −γ1 − γ2 .

Comparison of this with equation (48) shows that the appropriate initial condition
for c is c(0) = 0. Unfortunately, solving (47,48) numerically gives singularities
near t = 0, arising from differentiating the right hand side of (47) to obtain an
explicit expression for dc

dt
. We therefore find it convenient to follow [13, 15] and

introduce φ(t) =
∫ s

0
u dx which is simply the term in square brackets in (47).

Clearly φ(0) = 0 and we are left with a pair of differential equations to solve for
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s and φ, since c can be written in terms of these unknown variables. The system
is closed with the relation

(50) −2c(1 + γ2e
−cs)φ = (γ1 + γ2)

[

1 − e−c(2c+ 1)
]

s2 .

If we were to introduce φ(t) into the quadratic or cubic analyses we would be
able to obtain an explicit relation for the unknown coefficient a in terms of φ and
s. Unfortunately this is not the case for c here and so we differentiate (50) with
respect to t. This might seem unnecessary, as there are now three differential
equations instead of two, but the larger system turns out to be easier to solve
numerically.

4. The Refined Integral Method (RIM)

Goodman’s basic approach was to integrate the heat equation once, to give
equation (20), and impose a quadratic profile to describe the temperature. Sadoun
[38] advocates a second integration coupled to a quadratic profile. Integrating
equation (16) twice with respect to x gives

(51)

∫ s

0

(
∫ x

0

∂u

∂t
dξ

)

dx =

∫ s

0

(

∂u

∂x
− ∂u

∂x

∣

∣

∣

∣

x=0

)

dx = u
∣

∣

x=s
−u

∣

∣

x=0
−s∂u

∂x

∣

∣

∣

∣

x=0

.

The first term on the right hand side is zero since u(s, t) = 0, and the double
integral on the left hand side can be integrated once by parts and the dummy
variable ξ replaced with x,

∫ s

0

∫ x

0

∂u

∂t
dξ dx = s

∫ s

0

∂u

∂t
dx−

∫ s

0

x
∂u

∂t
dx = s

d

dt

∫ s

0

u dx− d

dt

∫ s

0

xu dx .

Substituting this back into (51) leads to the integral form

(52) s
d

dt

∫ s

0

u dx− d

dt

∫ s

0

xu dx = −u
∣

∣

x=0
− s

∂u

∂x

∣

∣

∣

∣

x=0

.

Sadoun then combines this with the standard HBIM integral formulation (20)
and the Stefan condition (17) to obtain

(53)
d

dt

∫ s

0

xu dx = u
∣

∣

x=0
− βs

ds

dt
.

The integral expression (52) could of course be used directly, and it seems a more
appropriate form when ∂u

∂x
is prescribed at x = 0. We call this the alternative

RIM (ARIM) and it is discussed in more detail in the results in § 5 below.
We will now illustrate the RIM on the constant boundary condition problem of

the previous section, namely we solve the system (16-19) with boundary condition
(13i). The analysis for the Robin boundary condition is similar and so the details
are not given, we merely quote final results in the results section. The function
φ =

∫ s

0
udx introduced in the previous section has an analogous form ψ =

∫ s

0
xudx

in the RIM formulation.
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4.1. The quadratic profile. We assume u has the form (25). Substituting into
the integral equation (53) leads to

(54)
d

dt

[

s2(1 + a)

12

]

= 1 − βs
ds

dt
.

Sadoun now defines σ = s2 and combines the Stefan condition (27) with equation
(54) to give a single equation for σ. However, this change of variable is not
necessary since a is constant for the fixed boundary condition. This means we
can write s(t) = 2α

√
t where

(55) α =

√

a

2β
, a =

1

2

[

− (1 + 6β) +
√

1 + 36β + 36β2
]

.

Note the difference between this form and that obtained from the standard anal-
ysis (30). Again we could write down another six formulations but the solution
given by (55) is the most accurate for realistic β.

4.2. The cubic profile. As for the standard HBIM analysis, there is only one
formulation for the cubic profile and the temperature is defined by (34). We now
apply the same analysis as for the quadratic profile above and substitute u into
(53) and the Stefan condition (27) to give

(56)
d

dt

[

s2(3β + 7βa+ a2)

60β

]

= 1 − βs
ds

dt
, s

ds

dt
=
a

β
.

Again s(t) = 2α
√
t, with α =

√

a
2β

, where a satisfies

(57) a3 + 7βa2 + 3β(1 + 10β)a− 30β2 = 0 .

This is again different to that obtained from the standard analysis, equation (36).

4.3. The exponential profile. We now substitute the exponential profile (37)
into (53) and the Stefan condition (27). Just as for the quadratic profile, we
could write down seven formulations but we simply give the one which is most
accurate for realistic β. Then (40) holds but (41) is replaced by

(58) (1 − 2c)
[

2
√
c+ 2c3/2 −

√
πecerf(

√
c)

]

= 4βc5/2 .

5. Results

In this section we discuss the results for the constant temperature and Robin
boundary conditions. In addition, we mention two other test cases, with time
dependent boundary conditions at x = 0, which are examined in the literature,
see [8, 18] for example.
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Figure 2. Plots of the absolute error in α against β for the three
best methods, HBIM in (a) and RIM in (b), for boundary condition
(13ii).

5.1. The constant temperature boundary condition. In Figure 2 we present
a comparison of the absolute error in the growth rate coefficient α for the various
models against the inverse Stefan number β. We present the results in this way
to enable comparison with [43] where similar plots are given to compare the six
different quadratic formulations. It is clear that the RIM profiles shown on the
right in (b) are all significantly more accurate than the HBIM profiles in (a). This
was noted in [38] but there they only considered quadratic profiles for u. The
cubic and exponential profiles in the RIM formulations show a great improvement
and, although hard to see here, the latter is slightly more accurate as β increases.
In both the figures it is clear that the quadratic approximation is only best over
a very small parameter range.

As discussed in § 3.1.1 above, (for water at least) in practical applications it is
realistic to assume β > 0.7. In Table 2 we therefore present the infinity norm of
the error in s, over 0 ≤ t ≤ 1, for larger values of β. The smallest errors are shown
in bold. The conclusions are the same as for lower β but we present it in this
form to enable comparisons with the results for the Robin boundary condition
shown below, and it is easier to observe the errors for large β. For HBIM, the
exponential and cubic approximations give errors an order of magnitude less than
those obtained with the quadratic. The exponential is clearly the best, although
the error is of the same order as the cubic. When we move to RIM, there is an
order of magnitude improvement for all approximating functions when compared
to the standard method. Again the exponential is best, but the errors are very
similar to those obtained by the cubic approximation. In fact the correspondence
here is much closer than with the HBIM. For the HBIM Mosally et al. [27] pointed
out that the exponential was the best method (when compared to the quadratic).
However, this is no surprise since this approximating form was based on the exact
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solution. As we show in § 5.2 below, it does not necessarily provide the best
approximation for different boundary conditions.

Before considering the Robin boundary condition we briefly return to discuss
the accuracy of the HBIM for various values of the Stefan number β. For this
test problem we can compare the predicted dependence of α on β with the exact
solution. From the transcendental equation (23) it is clear that the exact solution
has α ∼ 1/

√
2β as β → ∞. The HBIM/RIM profiles agree with this limit: for

example, from (30) we find that a/β ∼ 1/β as β → ∞, and combining with (31)
gives the correct behaviour. However, in the limit β → 0, the exact solution
(23) has α ∼

√

ln(1/β), see [1], but the HBIM/RIM profiles do not predict this
dependence. Again using (30,31), it can be shown that as β → 0, a/β ∼ 6. This
explains why the accuracy in Tables 2 and 3 significantly increases as β decreases,
which can also be seen in Figure 2.

HBIM RIM

β Quadratic Cubic Exponential Quadratic Cubic Exponential

1 3.3 × 10−2 6.9 × 10−3 3.0 × 10−3 2.5 × 10−3 5.4 × 10−4
4.5 × 10

−4

1.25 2.6 × 10−2 4.6 × 10−3 1.9 × 10−3 1.7 × 10−3 3.1 × 10−4
2.4 × 10

−4

1.67̇ 1.9 × 10−2 2.6 × 10−3 1.0 × 10−3 1.0 × 10−3 1.4 × 10−4
1.1 × 10

−4

2.5 1.1 × 10−2 1.2 × 10−3 4.1 × 10−4 4.7 × 10−4 4.8 × 10−5
3.1 × 10

−5

5 4.6 × 10−3 2.5 × 10−4 8.2 × 10−5 1.1 × 10−4 5.3 × 10−6
3.4 × 10

−6

10 1.7 × 10−3 5.0 × 10−5 1.5 × 10−5 2.2 × 10−5 5.4 × 10−7
3.3 × 10

−7

Table 2. Comparison of infinity norm of the error in s (over 0 ≤
t ≤ 1) between the numerical solution and the HBIM and RIM
quadratic, cubic and exponential profiles, for various β ≥ 1, for the
constant boundary condition.

HBIM RIM

β Quadratic Cubic Exponential Quadratic Cubic Exponential

1 7.8 × 10−3 1.5 × 10−3 1.1 × 10−2 4.2 × 10−3
1.3 × 10

−3 7.7 × 10−3

1.25 5.5 × 10−3
8.6 × 10

−4 8.3 × 10−3 3.6 × 10−3 9.0 × 10−4 6.6 × 10−3

1.67̇ 3.4 × 10−3
3.8 × 10

−4 5.4 × 10−3 2.6 × 10−3 4.7 × 10−4 5.3 × 10−3

2.5 1.5 × 10−3
1.0 × 10

−4 2.7 × 10−3 1.7 × 10−3 1.6 × 10−4 3.7 × 10−3

5 3.0 × 10−4
6.0 × 10

−6 5.8 × 10−4 4.3 × 10−4 2.3 × 10−4 1.8 × 10−3

10 4.2 × 10−5
2.0 × 10

−6 5.0 × 10−4 2.4 × 10−4 2.9 × 10−4 8.2 × 10−4

Table 3. Comparison of infinity norm of the error in s (over 0 ≤
t ≤ 1) between the numerical solution and the HBIM and RIM
quadratic, cubic and exponential profiles, for various β ≥ 1, for the
Robin boundary condition.
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5.2. The Robin boundary condition. In Table 3 we present a comparison of
results for the Robin boundary condition with γ1 = 0, γ2 = 3.16: these values
come from applying the data in Table 1 to the definitions in (14) with Q = 0
and lengthscale L = 1× 10−2m. Since there is no exact solution for this problem
we compare with L∞ calculated using the numerical solution of [26]. Again the
smallest error is shown in bold. Note, in this case (except for the largest value
of β) the standard cubic HBIM provides the best approximation and is in fact
often an order of magnitude more accurate than the exponential. For β < 5
the refined cubic has a similar error to the standard cubic and provides the best
approximation for β ≤ 1.

5.3. Example with growth rate ∝ t. We now briefly discuss two related test
cases for the single phase semi-infinite problem. Again we solve the system (16-
19) but now look for a travelling wave solution in terms of the variable η = x−ct.
The result is a solution of the form

(59) u(x, t) = β
(

e−c(x−ct) − 1
)

, s(t) = ct .

This was first found by Stefan, see [9, p292]. The stability of the solution and
its application to combustion theory is discussed in [36]. Consequently we can
look for solutions using the approximate method subject to the following time-
dependent boundary conditions at x = 0:

(60) (a) u(0, t) = β
(

ec2t − 1
)

, (b)
∂u

∂x

∣

∣

∣

∣

x=0

= −βcec2t .

Caldwell & Kwan [8] consider the former and Kutluay et al. [18] consider the
latter, both with β = c = 1.

The integral method analysis is not presented here as it is identical to that
described above for the constant and Robin boundary conditions (13). Also, we
only consider the quadratic and cubic profiles since the ODEs for the exponential
profile are more complicated to solve numerically and lead to less accurate results,
as found for the Robin boundary condition.

In Table 4 we present the L∞ norm error for β = 1. It is clear that β can be
scaled out of the problem, by setting u = βû, and so these errors are independent
of β. These errors show that when u is prescribed on the boundary x = 0, the
cubic RIM is the most accurate method. However, when ∂u

∂x
is defined instead,

the cubic HBIM is more accurate. This makes sense because here we know ∂u
∂x

at x = 0 exactly. As can be seen from the derivation in § 4.1, the RIM removes
this term using the standard HBIM formulation, and it seems likely that this
will introduce more error. The last two columns in Table 4 shows the errors
for ARIM which uses (52) directly. Unfortunately, neither the quadratic or cubic
profile gives an improvement on the HBIM or RIM errors for s. However, in Table
5 we examine the infinity norm of the errors in the temperature u, at t = 1; here
the alternative RIM formulation is the most accurate for (60b). This shows that
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it can be important to examine the errors in u as well as in s. In addition, we
conclude that the ARIM does not give any improvement in either s or u when u
is prescribed at the x = 0 boundary and so, henceforth, we only consider ARIM
when we have ∂u

∂x
given there.

It should be noted that we could have considered the ARIM formulation for
the Robin boundary condition (13ii). As for boundary condition (60b), we do
not see an improvement in the errors in s but for β ∈ (1.5, 7) the ARIM does
give the smallest errors in u.

HBIM RIM ARIM

B.C. Quadratic Cubic Quadratic Cubic Quadratic Cubic

B.C. (60a) 2.4 × 10−2 2.3 × 10−3 4.4 × 10−3
2.9 × 10

−4 4.4 × 10−2 4.1 × 10−2

B.C. (60b) 1.8 × 10−2
1.3 × 10

−3 1.2 × 10−2 2.8 × 10−3 4.5 × 10−2 2.5 × 10−3

Table 4. Comparison of infinity norm of the error in s (over
0 ≤ t ≤ 1) between the exact solution and the HBIM, RIM and
alternative RIM quadratic and cubic profiles, for boundary condi-
tions (60).

HBIM RIM ARIM

B.C. Quadratic Cubic Quadratic Cubic Quadratic Cubic

B.C. (60a) 1.9 × 10−2
3.5 × 10

−3 3.3 × 10−2 4.6 × 10−3 2.2 × 10−2 5.5 × 10−2

B.C. (60b) 7.5 × 10−2 9.9 × 10−3 1.7 × 10−1 2.8 × 10−2 2.4 × 10−2
6.0 × 10

−3

Table 5. Comparison of infinity norm of the error in u (at t = 1)
between the exact solution and the HBIM, RIM and alternative
RIM quadratic and cubic profiles, for boundary conditions (60).

6. Melting of a subcooled semi-infinite media

6.1. The constant temperature boundary condition. We now consider the
problem specified by the system (9-12), (13i). This has the exact solution
(61)

u = 1 −
erf

(

x
2
√

t

)

erfα
, 0 < x < s , v = −1 +

erfc
(

x
2
√

κt

)

erfc(α/
√
κ)

, s < x <∞ ,

with interface height (see [10]) given by s(t) = 2α
√
t and α determined using the

Stefan condition (11)

(62) −βα
√
π = −e

−α2

erfα
+

k√
κ

e−α2/κ

erfc(α/
√
κ)

.
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For the subcooled block there is a quantitative difference from the formulation
of the previous problems. When the solid is at the phase change temperature the
problem reduces to solving for the position of the melt front. With a subcooled
block there is a thermal boundary layer within the solid whose width must also
be determined. So, to employ the HBIM it is standard to introduce the heat
penetration depth, δ, which defines the width of the thermal boundary layer. We
expect the boundary layer to merge smoothly with the region where v = −1 and
therefore define the edge of the boundary layer with the conditions

(63) v
∣

∣

x=δ
= −1 ,

∂v

∂x

∣

∣

∣

∣

x=δ

= 0 .

The introduction of δ(t) is key to solving the semi-infinite problem as we now
have a finite region s(t) < x < δ(t) where we can apply the HBIM and RIM. The
quantity δ(t) is unknown but has initial condition δ(0) = 0 and is determined as
part of the solution process.

Applying the standard HBI method to both phases gives

(64)
∂u

∂x

∣

∣

∣

∣

x=s

− ∂u

∂x

∣

∣

∣

∣

x=0

=
d

dt

∫ s

0

u dx , −κ∂v
∂x

∣

∣

∣

∣

x=s

=
d

dt

∫ δ

s

v dx+
dδ

dt
.

For the RIM we perform a similar analysis to that described in § 4. A double
integration of the PDE (9) for the liquid with respect to x, over 0 < x < s(t),
gives

(65)
d

dt

∫ s

0

xu dx = u
∣

∣

x=0
+ s

∂u

∂x

∣

∣

∣

∣

x=s

.

Note that this is identical to (53) except that we have not replaced ∂u
∂x

∣

∣

x=s
using

the Stefan condition (11) (this avoids coupling of the u and v expressions, since
the Stefan condition now involves ∂v

∂x

∣

∣

x=s
).

In the solid region, a double integration for the corresponding PDE in (9) with
respect to x, over the region s(t) < x < δ(t), leads to

∫ δ

s

(
∫ δ

x

∂v

∂t
dξ

)

dx = κ

∫ δ

s

(

∂v

∂x

∣

∣

∣

∣

x=δ

− ∂v

∂x

)

dx = −κ
[

v
∣

∣

x=δ
− v

∣

∣

x=s

]

= κ .

The left hand side may be integrated by parts, after applying (64b), we obtain

(66)
d

dt

∫ δ

s

xv dx+ δ
dδ

dt
= κ

[

1 − s
∂v

∂x

∣

∣

∣

∣

x=s

]

.

The ARIM formulation is not given here as the fixed temperature condition u = 1
is prescribed at x = 0.

At this stage we have even more choice for the approximating function, now we
may expand in terms of (1 − x/s) or (1 − x/δ). Since the melt region is defined
for x ∈ [0, s] we choose the former here. In the solid we choose the latter (in
fact, after applying the boundary conditions we find that the two formulations
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are identical). However, the latter provides a more convenient form (it is also
consistent with the expansion used in [25]). In the quadratic case, after applying
the boundary conditions, u(0, t) = 1, u(s, t) = v(s, t) = 0 and (63), these become

u = a
(

1 − x

s

)

+(1−a)
(

1 − x

s

)2

, 0≤x≤s , v = −1+
(δ − x)2

(δ − s)2 , s≤x≤δ .

We have three unknowns, namely a, s and δ, which are determined using the
Stefan condition (11) coupled with either the HBIM (64) or RIM (65,66) formu-
lations.

Substituting u and v into the Stefan condition (11) gives

(67) β
ds

dt
=

2k

s− δ
+
a

s
.

This admits a solution of the form

(68) s(t) = 2α
√
t , δ(t) = 2λ

√
t ,

for constant a. Substitution into the HBIM formulation, (64) with Stefan condi-
tion (67), gives the following three equations to be solved for α, λ and a:

(69) α2 =
6(1 − a)

2 + a
, λ+ 2α =

3κ

λ− α
, 2α2β = a− 2αk

λ− α
.

Alternatively, substitution into the RIM formulation, (65,66), leads to

(70) α2 =
3(1 − a)

1 + a
, 3α2 + 2αλ+ λ2 = 3κ

(

λ+ α

λ− α

)

,

with the Stefan condition satisfying the third relation in (69), and we again solve
for α, λ and a.

When imposing a cubic approximation further boundary conditions are re-
quired. In the melt region the alternative Stefan condition obtained from taking
the total derivative of u(s(t), t) = 0 with respect to time is

(71) β
∂2u

∂x2
=

(

∂u

∂x

)2

− k
∂u

∂x

∂v

∂x
,

which holds at x = s. We may obtain a similar condition from differentiating
v(s(t), t) = 0, however, instead we apply the method to v(δ(t), t) = −1 to obtain

(72)
∂v

∂x

∂δ

∂t
+
∂v

∂t
= 0 =⇒ ∂2v

∂x2

∣

∣

∣

∣

x=δ

= 0 ,

where we have imposed vx(δ, t) = 0 and κvxx = vt. The appropriate cubic profiles
are

u = a
(

1 − x

s

)

+ b
(

1 − x

s

)2

+ (1 − a− b)
(

1 − x

s

)3

, 0 ≤ x ≤ s(73)

v = −1 +
(δ − x)3

(δ − s)3 , s ≤ x ≤ δ .(74)
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Substituting u and v from (73) and (74) into (71) gives

(75) 2βb = a2 − 3aks

δ − s
.

This allows us to eliminate b and we are left with the three unknowns, namely
a, δ and s (as for the quadratic profile). Applying either the HBIM or RIM to
u and v, and setting s and δ according to (68), leads to two algebraic equations,
namely

HBIM: α2(3 + 3a + b) = 6(3 − 3a− b) , 3α + λ =
6κ

λ− α

RIM: α2(3 + 7a + 2b) = 15(1 − a) , 6α2 + 3αλ+ λ2 = −5κ(λ+ 2α)

α− λ
.

In both cases the Stefan condition in (69) gives the third equation and so these
can be solved to determine α, λ and a (since b is found from (75)).

HBIM RIM

∆u, β Quadratic Cubic Quadratic Cubic

100, 0.73 3.13 0.21 1.02 0.77

50, 1.45 1.89 0.52 0.88 1.60

35, 2.07 1.36 0.94 0.79 2.18

25, 2.90 0.92 1.29 0.68 2.84

15, 4.84 0.37 1.88 0.48 4.03

5, 14.52 0.54 3.46 0.18 7.38

Table 6. Comparison of % α errors when ∆v = 20.

HBIM RIM

∆u, β Quadratic Cubic Quadratic Cubic

100, 0.73 3.18 0.52 0.69 0.34

50, 1.45 2.06 0.23 0.22 0.13

35, 2.07 1.57 0.08 0.17 0.19

25, 2.90 1.19 0.03 0.14 0.27

15, 4.84 0.75 0.15 0.11 0.4

5, 14.52 0.21 0.38 0.04 0.83

Table 7. Comparison of % α errors when ∆v = 5.
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In Tables 6 and 7 we present the absolute % error in α predicted by the
exact solution and the approximate methods. Table 6 has results for a solid
initially at temperature U∞ = 253K (and so ∆v = 20) and on a substrate with
temperature varying from 278-373K. The smallest error is in bold font. In this
case for β < 2 the cubic HBIM is the most accurate. For β > 2 (except for
one case) the quadratic RIM is most accurate. The best quadratic HBIM is only
most accurate for a single example. When the initial temperature is increased to
U∞ = 271K (i.e. ∆v = 2), shown in Table 7, the quadratic HBIM is never most
accurate. For large β the quadratic RIM is best, for intermediate values it is the
cubic HBIM and finally the cubic RIM for small values.

6.2. The Robin boundary condition. We will now briefly describe the melt-
ing process subject to a Robin condition. This process is qualitatively different to
those discussed previously in that melting does not occur immediately and so we
must first analyse a pre-melting phase, where there is only a solid region, which
means that (10) is solved for x > 0 with boundary conditions (15) and v = −1
as x → ∞ from (12). The cubic profile has, in general, proved the most accu-
rate so far. Furthermore, as shown in [35], which analyses the standard HBIM
formulation for the melting of a finite block, the cubic profile is more accurate
than the quadratic in the pre-melting phase when compared to the exact solution.
Consequently we now give the derivation only for the cubic profile but will show
the quadratic results later.

Therefore, before melting begins we consider the cubic temperature profile

(76) v = −1 + a
(

1 − x

δ

)

+ b
(

1 − x

δ

)2

+ c
(

1 − x

δ

)3

.

Since there is no melting we cannot impose the alternative Stefan condition,
however, the total derivative of the constant temperature condition v(δ, t) = −1
gives

∂v

∂x

∂δ

∂t
+
∂v

∂t
= 0 .(77)

Substituting for vt from the heat equation and imposing vx =0 shows vxx(δ, t)=0.
The temperature profile then reduces to the much simpler form

v = −1 + c
(

1 − x

δ

)3

.(78)

The boundary condition (15) at x=0 determines c=δ
[

α1+α2(1+∆U)
]

/(3+α2δ).
The HBIM, RIM and ARIM formulations are derived in the same way as discussed
earlier, but now the heat equation (10) is integrated with respect to x over the
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interval (0, δ(t)). This leads to expressions

d

dt

∫ δ

0

v dx+
dδ

dt
= −κ∂v

∂x

∣

∣

∣

∣

x=0

,

δ
d

dt

∫ δ

0

v dx− d

dt

∫ δ

0

xv dx = −κ
(

1 + v
∣

∣

x=0

)

− κδ
∂v

∂x

∣

∣

∣

∣

x=0

,

for the HBIM and ARIM respectively, with RIM found from combining the two.
Substituting v into these expressions gives
(79)

HBIM:
d

dt
(cδ)=

12κc

δ
, RIM:

d

dt
(cδ2)=20κc , ARIM: 5δ

d

dt
(cδ)− d

dt
(cδ2)=40κc .

These have implicit solutions

HBIM:
1

2
α2

2δ
2 + 3α2δ − 9 ln

[

3 + α2δ
]

= 12α2
2κt− 9 ln 3(80)

RIM: α2
2δ

2 + 3α2δ − 9 ln
[

3 + α2δ
]

= 20α2
2κt− 9 ln 3(81)

ARIM:
1

2
α2

2δ
2 + 4α2δ − 12 ln

[

3 + α2δ
]

=
40

3
α2

2κt− 12 ln 3 .(82)

Melting begins at time tm when v(0, tm) = 0. From equation (78) we see that this
requires c = 1 or δ = 3/(α1 + α2∆U). Substituting this value of δ into (80,81)
then gives the HBIM, RIM and ARIM predictions of tm.

The exact solution of this pre-melting problem is
(83)

v(x, t)=−1+
α1 + α2(1 + ∆U)

α2

[

erfc

(

x

2
√
κt

)

−eα2x+α2

2
κterfc

(

x

2
√
κt

+α2

√
κt

)]

,

and so the exact value of tm is the solution of

(84) α2 =
[

α1 + α2(1 + ∆U)
]

[

1 − eα2

2
κtmerfc

(

α2

√
κtm

)

]

.

In this pre-melting phase, if Q = 0 and L = 1× 10−2m then using the definitions
in (14) and parameter values in Table 1 we have α1 = 0, α2 = 0.83 and κ ≈ 8.59.
Tables 8 and 9 show the % errors in tm for the quadratic profiles corresponding
to HBIM, RIM and ARIM. Two values of U∞ are shown, and we see remarkably
different results. In Table (8), the cubic ARIM is only best for very large ∆u,
and then the cubic HBIM becomes the most accurate (although this changes
again when ∆u < ∆v). The quadratic HBIM and RIM lead to unacceptably
large errors and should be avoided (except for ∆u < 5 where the HBIM is most
accurate). However, when ∆v is very small, as shown in Table 9, the cubic ARIM
is best in all but one case. Although not given here, the errors in u at t = tm/2
also show that the cubic ARIM can be the most accurate for some values of ∆u
when U∞ = 253, but this is not generally the case as ∆v decreases. Again the
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quadratic HBIM and RIM solutions give large errors whereas the cubic results
are better in all cases.

HBIM RIM ARIM

∆u, β Quadratic Cubic Quadratic Cubic Quadratic Cubic

100, 0.73 13.6 2.8 33.9 10.7 6.7 1.2

50, 1.45 12.3 1.3 31.7 7.7 7.2 1.9

35, 2.07 11.2 0.13 30.0 5.5 7.5 2.5

25, 2.90 10.0 1.2 28.0 2.7 7.9 3.2

15, 4.84 7.7 3.9 24.0 2.6 8.6 4.5

5, 14.52 1.6 10.7 12.9 17.6 9.8 7.3

Table 8. Comparison of % error in tm for the HBIM, RIM and
alternative RIM quadratic and cubic profiles when ∆v = 20.

HBIM RIM ARIM

∆u, β Quadratic Cubic Quadratic Cubic Quadratic Cubic

100, 0.73 14.7 4.1 35.7 13.2 6.3 0.51

50, 1.45 14.3 3.6 35.1 12.3 6.4 0.73

35, 2.07 14.0 3.3 34.5 11.6 6.5 0.92

25, 2.90 13.6 2.8 33.9 10.7 6.7 1.2

15, 4.84 12.7 1.8 32.4 8.7 7.0 1.7

5, 14.52 9.1 2.3 26.4 0.57 8.2 3.8

Table 9. Comparison of % error in tm for the HBIM, RIM and
alternative RIM quadratic and cubic profiles when ∆v = 5.

In the melting phase we solve (9)-(13ii) for t > tm. The analysis is similar
to that described in § 6.1 and we again introduce the heat penetration depth
δ(t). Here we have s(tm) = 0, with v(x, tm) and δ(tm) = δm taken from the pre-
melting phase. Given the errors in tm for the pre-melting phase, we only consider
the cubic profiles. Therefore the solution profile in the solid phase is again given
by (74). However, instead of (73) we now have
(85)

u = a
(

1 − x

s

)

+b
(

1 − x

s

)2

+

[

(γ1 + γ2)s− a(1 + γ2s) − b(2 + γ2s)

3 + γ2s

]

(

1 − x

s

)3

.
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This is similar to (44) but b here is determined from the alternative Stefan condi-
tion (71), which also reduces to (75). Hence b can be eliminated and we are left
with three unknowns a, δ and s. The Stefan condition again satisfies (67) but we
now cannot assume s and δ are of the form (68) since a is not constant.

The HBIM (64) and RIM (65,66) formulations, respectively, give the following
pair of ODEs:

dφ

dt
=

−γ2bs+ 3(γ1 + γ2)s− 3a(1 + γ2s)

s(3 + γ2s)
,

dδ

dt
+ 3

ds

dt
=

12κ

δ − s

(86)

dψ

dt
=
b+ (γ1 + γ2)s− a(1 + γ2s)

3 + γ2s
,

d

dt

[

6s2 + 3δs+ δ2
]

=
20κ(δ + 2s)

δ − s
,

(87)

where φ =
∫ s

0
u dx and ψ =

∫ s

0
xu dx are given by

φ =
s
[

b(6 + γ2s) + 3(γ1 + γ2)s+ 3a(5 + γ2s)
]

12(3 + γ2s)
(88)

ψ =
s2

[

b(9 + 2γ2s) + 3(γ1 + γ2)s+ a(27 + 7γ2s)
]

60(3 + γ2s)
.(89)

These can be used to determine an explicit expression for a in terms of s: we
eliminate b using (75) and solve the resulting quadratic equations for a. The
ARIM formulation can be derived in a similar manner. We find that
(90)

s
dφ

dt
− dψ

dt
=
−(1 + γ2s)b+ 2(γ1 + γ2)s− 2a(1 + γ2s)

3 + γ2s
≡ R , 2

dδ

dt
+3

ds

dt
=

20κ

δ − s
.

It is beneficial to define θ = sφ−ψ and then the first ODE in (90) reduces to dθ
dt

=

φds
dt

+R. The pair of ODEs in (86,87,90) are combined with the Stefan condition
(67) to solve for (s, δ, φ), (s, δ, ψ) or (s, δ, θ) for the HBIM, RIM and ARIM
respectively. The functions φ and ψ have been introduced here for convenience:
in two phase problems with a Robin boundary condition at x = 0, the resulting
ODE systems turn out to be easier to solve. We do not have to determine an
initial condition for a but simply use φ(tm) = ψ(tm) = 0.

There is no exact solution in the melting phase and so we must compare these
heat balance methods to a numerical solution of the full problem. Vynnycky et

al. [42] study the numerical solution of one-dimensional time-dependent solidifi-
cation, with focus on the continuous casting of copper. In that application there
exist pre-solidification and solidification phases and so their numerical solution
can be applied here in a similar manner. This is an extension of the numerical
method described in [26] which considers numerical solutions of the classic single
phase Stefan problem.
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Figure 3. Melting phase for the Robin condition: the first plot
shows the melt depth s(t) and the second plot shows the temper-
atures u and v at t = 1. The solid line is the numerical solution,
and HBIM and RIM are given by dotted and dashed lines respec-
tively.

In Figure 3 we have plotted s(t) against t and the temperature u and v at time
t = 1. Parameter values used are ∆u = 35 and ∆v = 20, which gives k = 2.19
and β = 2.08, with γ1 = 0 and γ2 = 3.16. We have not included the ARIM
as it is indistinguishable from the RIM. The % errors in s at t = 1 are 2.2%,
4.4% and 4.7% for the HBIM, RIM and ARIM solutions respectively. Therefore,
the HBIM solution gives a more accurate prediction of s(t) here; this is to be
expected since for these values it gave the most accurate prediction of tm in the
pre-melting phase, as can be seen in Table 8. However, the right plot in Figure
3 shows that the RIM solution is noticeably more accurate in its prediction of v.

7. Extensions and further applications

7.1. Ablation. Ablation is the process whereby mass is removed from an object
by vaporization or other similar erosive processes. Perhaps the classic example
involves the burning up of meteorites or heat shields on space vehicles. On space
vehicles the exposed surface of the ablative material is designed to burn off and the
resultant gases will carry much of the heat away, while the remaining material
acts as an insulator. The process may therefore be considered as a one-phase
Stefan problem. Ablation also occurs in other branches of physics, for example
in the melting or sublimation of a solid or laser drilling in metals and the cornea,
see [22, 25, 40].

Goodman [13] applied the standard HBIM to this problem and compared re-
sults with a numerical solution of Landau [20], whilst Zien [45] applied an expo-
nential approximation. More recently Braga & Mantelli [4, 5] have adapted the
standard HBIM approach by assuming the temperature function is a polynomial
of the form v = a0 + a1(δ − x)n, where the order n is determined by comparing
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the time ablation commences with standard exact analytical solutions for the
pre-ablation stage.

ablator

s’(t’)

x’ = s’

insulator

Hx’ = 0

ablated surface
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Figure 4. Typical ablator configuration.

The typical problem configuration is shown in Figure 4. Initially the ablator
is at a temperature v′(x′, 0) = V0 and the surface x′ = 0 is subject to a heat
flux Q, namely v′x′(0, t′) = −Q/ks. There follows a heating up stage where heat
penetrates the material and the surface x′ = 0 reaches the ablation temperature
Va; subsequently material is removed at the ablating interface, x′ = s′(t′), and we
need only solve for the temperature in the solid which occupies s′(t′) ≤ x′ ≤ H .
For simplicity we assume that the surface x′ = H ′ is insulated, so v′x′(H, t′) = 0.
Since there is only a solid phase in this problem we use a slightly different non-
dimensionalisation to previous sections and take the temperature scale ∆v =
Va − V0 and timescale τ = L2/κs.

For our purposes we can assume that the process occurs in three distinct stages.
For t ∈ [0, t1] the boundary layer 0 < x < δ(t) is heated, and this stage ends
when v(0, t) = 0. In the second stage ablation occurs and the heat penetrates
through the solid material until it reaches the end x = H at t = t2. During this
stage there is always a region where the temperature is at the initial temperature,
v(x, t) = −1. For t ≥ t2 the remaining material is all above the initial temperature
and continues to heat up until it has all ablated. The equations governing the
three stages are:

• Stage 1, t ∈ [0, t1]:

(91)
∂2v

∂x2
=
∂v

∂t
, vx(0, t) = −γ1 , v(δ, t) = −1 , vx(δ, t) = 0 ,

where γ1 = QL/(ks∆v). If using a cubic approximation the boundary
conditions may be augmented by condition (72). The stage ends when
v(0, t1) = 0 which defines t1.

• Stage 2, t ∈ [t1, t2]:

(92)
∂2v

∂x2
=
∂v

∂t
, v(s, t) = 0 , v(δ, t) = −1 , vx(δ, t) = 0 ,
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and again vxx(δ, t) = 0 when using the cubic profile. The external heat
input now appears in the Stefan condition

(93) β
ds

dt
= γ1 +

∂v

∂x

∣

∣

∣

∣

x=s

,

where β = Lm/(cs∆v). This stage ends when δ(t2) = H .
• Stage 3, t ∈ [t2, t3]. The problem is now governed by the heat equation
vt = vxx and Stefan condition (93) subject to

(94) v(s, t) = 0 , v(H, t) = vH(t) , vx(H, t) = 0 ,

where vH(t) represents the unknown temperature at x = H . The heat
penetration depth has dropped out of the problem, but we must still
determine two unknowns, namely the position of the interface s(t) and the
temperature vH(t) where vH(t2) = −1 and t3 is determined by vH(t3) = 0,
or s(t3) = H .

In stage 1 the HBIM and ARIM formulations, respectively, are

d

dt

∫ δ

0

v dx+
dδ

dt
= γ1 , δ

d

dt

∫ δ

0

v dx− d

dt

∫ δ

0

xv dx = −1 − v
∣

∣

x=0
+ γ1δ ,

with RIM found from ARIM by eliminating d
dt

∫ δ

0
v dx using HBIM. The standard

approach in the literature [4,5,25] is to use the profile v = −1+an(t)
(

1− x
δ

)n
for

some general exponent, n ≥ 2. Applying the boundary conditions in (91) leads
to

(95) v = −1 +
γ1δ

n

(

1 − x

δ

)n

.

Substituting v into the integral formulations, and solving the resulting ODEs,
gives expressions for δ for HBIM, ARIM and RIM. An analytical solution for
stage 1 is obtained by assuming a semi-infinite media, then the temperature
is [9, p75]

(96) v = −1 + 2γ1

[

√

t

π
e−x2/(4t) − x

2
erfc

x

2
√
t

]

,

with surface temperature v(0, t) = −1+2γ1

√

t/π. Ablation starts when v(0, t1) =
0 giving t1 = π/(4γ2

1). The HBIM and RIM formulations lead to expressions of
the same form for v(0, t), with a different factor in the square root. Solving
v(0, t1) = 0 using profile (95) and expressions for δ gives

HBIM: t1 =
n

γ2
1(n+ 1)

, RIM: t1 =
3n2

2γ2
1(n + 1)(n+ 2)

,

ARIM: t1 =
(2n+ 1)n2

2γ2
1(n

2 − 1)(n+ 2)
.
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we use parameter values Q = 2× 106 W/m2, L = 2.5× 10−4 m, ks = 0.22 W/mK
and ∆v = 560 K. Then the error in t1 predicted by the HBIM, RIM and ARIM
formulations, respectively, is 15.1%, 36.3%, 6.1% for the quadratic profile, and
4.5%, 14.1%, 0.27% for the cubic profile. In [25] a quartic profile is used (based
on the small x or large time expansion of the exact solution): this leads to an
error of 1.9% in t1 for all three formulations. Braga & Mantelli [4, 5] replace
the exponent 4 with a non-integer value, chosen to give an exact match for t1.
For the standard HBIM this is n = π/(4 − π) ≈ 3.66, and for RIM a quadratic
expression gives n ≈ 3.87. In the case of ARIM, a solution cannot be found,
but the resulting expression π(n2 − 1)(n + 1) = 2(2n + 1)n2 is minimised when
n ≈ 2.95.

Once ablation begins, since the boundary conditions change, it is possible to use
a new approximating profile. Braga & Mantelli switch to the value n = 7 (to give
a better match with numerical solutions). The main problem with this approach
is that the choice of exponent is based on known solutions, either analytical or
numerical, and there is no reason to suppose they are the best values for different
boundary conditions where exact solutions cannot be found. Furthermore, in [25]
it is shown that if the value of the exponent during ablation exceeds that chosen
before ablation then the solution becomes unphysical, in the sense that mass is
added (rather than removed) for a brief period, causing s′(t) < 0. Their analysis
concludes that the best post-ablation value is the same as the pre-ablation one.

Therefore, in stage 2 we consider a quartic profile for HBIM and RIM and a
cubic profile for ARIM. Similar to (74), after satisfying the boundary conditions
in (92), v is written in the form v = −1 + (δ−x)n/(δ− s)n with n = 4 for HBIM
and RIM and n = 3 for ARIM. The HBIM and ARIM integral formulations in
this stage are
(97)
d

dt

∫ δ

s

v dx+
dδ

dt
= −∂v

∂x

∣

∣

∣

∣

x=s

, (δ−s)dδ
dt

−s d

dt

∫ δ

s

v dx+
d

dt

∫ δ

s

xv dx = −v
∣

∣

x=δ
,

with RIM again determined by combining the two. Substitution of v leads to
ODEs involving s and δ, and these are coupled with the Stefan condition (93)
and initial conditions s(t1) = 0 and δ(t1), which is found from stage 1. As
in § 6.2, we can compare these results to a numerical solution [26, 42]. We use
parameter values Lm = 2.326 × 106 J/Kg, cs = 1256 J/Kg K, giving β ≈ 3.31,
and H ′ = 1 × 10−3, L = 2.5 × 10−4, giving H = 4 (since H = H ′/L). Then
the HBIM, RIM and ARIM predictions for the end of this stage are t2 ≈ 0.68,
0.70, 1.05 respectively. Obviously, since δ(t) is a fictitious quantity introduced
as part of the method, we cannot compare this time with the numerical solution.
However, the % error in s at t = 0.5, well within the interval [t1, t2], is 2.433%,
6.61%, 2.436% for HBIM, RIM and ARIM respectively.

In stage 3 the profile which satisfies the boundary conditions in (94) is v =
vH

[

1− (H−x)n/(H−s)n
]

. The HBIM, RIM and ARIM formulations are similar
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to those in (97) from stage 2 but with δ replaced by the constant boundary value
H . These are again coupled with the Stefan condition (93). Stage 3 ends at
time t = t3 when s(t3) = H , which is equivalent to vH(t3) = 0. The numerical
solution predicts t3 = 4.24568 and the % errors for t3 are 0.01, 2.54 and 1.95 for
the HBIM, RIM and ARIM formulations respectively. However, the errors grow
with time so that, for example, at t = 3 the % errors are 2.17, 5.31 and 1.13 for
the HBIM, RIM and ARIM formulations respectively.

7.2. Melting of a subcooled finite material. Modelling a finite material
heated at both ends requires dealing with a number of stages regardless of whether
fixed temperature or cooling conditions are applied. However, all of these stages
have been covered in previous sections. For example, consider a finite subcooled
material of thickness L (which corresponds to unity in our non-dimensional sys-
tem). At t = 0 the temperature at either end is raised above the melting temper-
ature, u1(0, t) = 1, u2(1, t) = uT where uT > 0 and subscripts 1 and 2 correspond
to the bottom and top layers. Both ends melt immediately and two separate
boundary layers form, where the end points are located at δ1, δ2. So initially
we solve as if there were two separate semi-infinite regions. At some time the
boundary layers meet, when δ1 = δ2 = δ. In [35] this problem is tackled in mod-
elling the melting of a block of ice. After the boundary layers meet they retain
two approximating functions at either end but there is only one boundary layer
thickness, δ, to solve for. A new unknown, the minimum temperature v(δ, t), is
then introduced in the same manner as discussed for the ablation problem. The
analysis subject to cooling conditions follows in the same manner.

A similar finite domain problem is the analysis of the contact melting process
of a phase change material (PCM) in contact with a hot plate [30]. This leads to
melting of the PCM, so a fluid layer forms between the two surfaces. The weight
of the free solid acts to squeeze out the liquid and so the melt layer remains thin.
Since the melt layer is flowing the authors ues a quasi-steady approximation to the
temperature in the thin liquid layer and the HBIM in the (initially) thicker solid
layer. The analysis is carried out until the solid is completely melted. Excellent
agreement is shown when the results are compared with experimental data.

7.3. Solidification from an incoming fluid. The solidification of a molten
material sprayed onto a substrate that is maintained at a temperature below the
melting temperature has numerous natural and industrial applications. Perhaps
the most common example being when atmospheric water freezes on a structure.
This has been studied in the context of icing on power transmission and generat-
ing equipment, aircraft and seacraft. In an industrial setting solidification from a
flowing liquid or a droplet spray is of interest in the casting of metals and spray
forming and hydrate build-up in oil pipelines, see [7, 24].

In [24] this problem is studied in the context of ice build-up from supercooled
droplets. In addition to the freezing front there is also a moving front due to
the incoming spray (the two fronts do not always coincide). This is dealt with
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by the addition of a mass balance to the system of governing equations and
then the solution is a straightforward application of the techniques discussed
so far. A quadratic HBIM is used and compared with a perturbation solution
(up to second order) and a numerical solution. Melting times and the L2 norm
for the temperature predictions are evaluated. Excellent agreement between the
numerical and approximate solutions is achieved and it is shown that the HBIM
method is often more accurate than the perturbation solution up to first order.

7.4. Incorporation of source terms. The incorporation of source terms into
the heat equation leads to a straightforward extension of the integral methods.
The only point to note is that when deriving the alternative Stefan condition
then the source term must be accounted for. For example, if

ut = uxx + q(t) ,(98)

and u(δ(t), t) = 1, ux(δ(t), t) = 0, see equation (72), then instead of using
uxx(δ, t) = 0 we find the new condition uxx(δ, t) + q(t) = 0. Antic & Hill [2]
use this approach when modelling the temperature inside a grain silo. Kutluay
et al. [19] include a source term in their model of a thermistor.

7.5. Time dependent boundary conditions. Here we see a significant draw-
back for the integral methods, namely that if the temperature in the far field
is constant (which we set to zero) and the temperature at the boundary then
reaches zero, due to the averaging inherent in the integral methods then the tem-
perature is zero everywhere. Consider the problem with u = ux = uxx = 0 at
x = δ and u = ua(t) at x = 0, where ua(t) is the varying ambient temperature.
The cubic approximation gives

u = ua

(

1 − x

δ

)3

.(99)

If ua is a monotonically decreasing function such that ua(0) > 0 and ua(tf ) = 0,
then we expect heat to diffuse into the material. At any time t > 0 there will
be some region where u(x, t) > 0, yet the approximation (99) shows that at time
tf then u is identically zero. For this reason studies such as those in [8, 18, 38]
never carry out their analysis to a time where the boundary reaches zero. It was
also noted in [13] that for boundary conditions of the form (7ii), with hs = 0
and Q ≡ Q(t), the HBI method is only useful for functions Q(t) which are
monotonically increasing or constant. Although this appears to be disproved
in [29] where, using the technique of [32], the HBIM is applied a problem with
Q ∝ 1/s(t).

Recently a new method has been developed for time-dependent boundary con-
ditions, involving the product of a polynomial and logarithmic function [23].
For the cases examined in [23] the new profile appears to provide a much more
accurate approximation to the temperature than previous HBIM solutions. In
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addition, it can accurately model solutions with a single moving peak in the tem-
perature. However, this method has so far only been applied to thermal problems
without a phase change.

Kinetic undercooling, where u(s, t) = us(t) ∝ st, or surface tension effects,
where u(s, t) ∝ κ and κ is the interface curvature, see [11, 44], lead to a time-
dependent temperature at the boundary x = s(t). So far there are no examples
in the literature of the application of heat balance methods to such problems.
However, our preliminary calculations indicate that it should be possible to model
these types of boundary condition with a HBIM, at least for small times, and that
interesting behaviour may be observed. For example, when applying u(0, t) = 1
and u(s, t) = t we find that s(t) initially increases to a maximum and then
decreases. With kinetic undercooling the problem reduces to solving a second
order equation for s rather than the standard first-order equation.

8. Discussion and conclusions

In this paper we have considered standard and refined heat balance integral
methods applied to a variety of phase change problems, including standard test
cases with exact solutions, and more interesting situations where analytical solu-
tions cannot be found. Our aim is to provide an overview of popular approaches
considered in recent literature, as well as giving new results which improve on
previous work without complicating the formulation. Indeed it is the simplicity
of the HBIM that is responsible for its popularity. The refinements discussed
here do not deviate from this premise and show a significant improvement in the
results in almost all cases considered.

In the first part of the paper we examined the melting of a semi-infinite material
at its solidus. In all cases shown the cubic approximation was more accurate
than the standard quadratic, often by an order of magnitude. For the case of a
fixed temperature boundary condition we found the exponential approximation
gave slightly smaller errors than the cubic. However, this was the only example
where it was the most accurate profile and in general the formulation is more
complicated than with a polynomial, therefore we neglected it in later studies.
From the results in § 5 it is clear that for this semi-infinite case, if u is prescribed
on the x = 0 boundary, either as a constant or time-dependent condition, then
the cubic RIM is the best method. However, when the Robin condition or time-
dependent flux are given, either the cubic HBIM or ARIM are now the most
accurate.

In § 6 we examined the melting of a subcooled material. This time we found
two cases, out of 23, where the standard quadratic HBIM was the most accurate.
For the constant boundary condition, as shown in Tables 6 and 7, the cubic HBIM
can be the the most accurate but it is not so clear cut as before, usually either
the quadratic or cubic RIM formulations proved best. For the Robin condition,
Tables 8 and 9 show that the RIM formulation is very seldom best and, in fact
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since the errors for the quadratic profiles are significantly worse it seems best to
avoid RIM here. Then either the cubic HBIM or ARIM should be used. This is
also shown to be true for the ablation problem, in stages 2 and 3 the RIM profile
has considerably larger errors. Hence for all examples discussed here, the RIM
profile should only be used when u is prescribed on the boundary, and not ∂u

∂x
.

The solutions presented in this study show that these approximate methods can
provide accurate results, provided an appropriate choice is made for the method,
HBIM or RIM, and order of the polynomial. Unfortunately this choice appears
to be both problem and parameter range dependent. This highlights the classic
problem of these methods, namely how to choose the approximating function
without knowledge of the exact or numerical solution. The general trend of our
results suggests that a cubic is the best choice. This also has the advantage
that there is only a single formulation, whereas the quadratic can have seven
versions. However, recently a more definite answer to this question may have
been found, in terms of non-integer exponent polynomials, where the exponent
is determined as part of the solution, [32]. For example, in the pre-melting phase
of the ablation problem discussed in § 7.1, the new method shows errors in the
time to melting of 0.4 and 0.6% for the HBIM and RIM formulations which is
a significant improvement on the best results given in this paper for HBIM and
RIM, namely 4.5 and 14% respectively.

A challenge still remaining for the HBIM and RIM community is how to deal
with a time dependent boundary condition which at some stage matches the far
field temperature. The approximate methods, currently, predict a temperature
equal to the far-field everywhere. Consequently studies with time-dependent
boundary conditions all avoid this point. Our work here has perhaps shed light
on the choice of approximating function or method, but not how to deal with this
issue. As mentioned in § 7.5, we have now successfully developed a new profile,
combining a polynomial and logarithmic function, which can deal with a single
moving peak in the temperature profile, see [23]. However, the application to
Stefan problems still needs to be addressed.
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