
Application of stochastic recurrent

reinforcement learning to index trading

Denise Gorse
1

1- University College London - Dept of Computer Science

Gower Street, London WC1E 6BT - UK

Abstract. A novel stochastic adaptation of the recurrent reinforcement learning

(RRL) methodology is applied to daily, weekly, and monthly stock index data, and

compared to results obtained elsewhere using genetic programming (GP). The data

sets used have been a considered a challenging test for algorithmic trading. It is

demonstrated that RRL can reliably outperform buy-and-hold for the higher

frequency data, in contrast to GP which performed best for monthly data.

1 Introduction

In a pioneering work Allen and Karjalainen [1] used genetic programming (GP) to

evolve trading rules that were profitable in their own terms but unable to consistently

outperform buy-and-hold in the presence of transactions costs, results that were taken

as supporting evidence for then widely held academic beliefs about market efficiency.

However these results were challenged in later GP work by Becker and Sashadri [2]

whose evolved rules based on the same Standard and Poors 500 (S&P 500) data sets

did in contrast succeed in outperforming buy-and-hold, though it was not clear to

what extent the improved performance was due to a decision to adopt monthly rather

than daily trading. Most recently Lohpetch and Corne [3] have revisited this data and

in a thorough comparative study demonstrated that it is indeed the use of lower

frequency data that allows GP-induced trading rules to gain traction in this market.

 These results for monthly data were very encouraging, but do not necessarily

mean other learning methods may not also be able to discover exploitable structure in

the higher frequency data GP found problematical. Reinforcement learning (RL) is

one such alternative, being a form of machine learning that has shown considerable

promise in trading and asset allocation. In particular Moody and co-workers have

proposed the method of recurrent reinforcement learning (RRL) [4,5], a technique

that has been used successfully by later workers for stock index [6] and currency [7,8]

data, though mixed results in the latter case led Gold [8] to suggest that it might be

beneficial to adapt RRL to use forms of learning other than gradient ascent.

 The current work follows this suggestion in using a learning procedure based on

associative reward-penalty (ARP) learning [9] but with the elaboration of extended

bitstreams so that multiple trial-and-error experiments can be carried out at each time

step. The method is applied to trading the S&P 500 using the same data as in [13].

To facilitate comparison with the GP work it utilises an online learning adaptation of

the performance measure first proposed as a fitness function in [1], demonstrating that

the RRL methodology can be successfully adapted to use a wider range of

performance measures than have been generally explored.

123

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.

Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

2 The stochastic RRL model

In its original form [4,5] RRL was a gradient-based method. Outputs were derived

from a tanh unit and thresholded to give trading decisions. In the stochastic version

developed here the tanh output function is modified to

y
t
= sig(w

i
r
t−i + wm+1

y
t -1

+ w
m+2

)
i=0

m

∑

where sig(x) =1/(1+exp(-x)), y is an output probability used both to determine trading

positions during performance assessment (outputs ≥ 0.5 leading to funds being

invested in the risky asset, outputs < 0.5 leading to funds being invested in a

competing risk-free asset) and to generate bitwise outputs in {0,1} during the learning

process. Following [13] we here use as external inputs at each of m+1 previous

time steps rt = log(pt)−log(pt-1) (indicating the continuously compounded return, with

pt the price at time t), which together with the feedback weight wm+1 and adaptive

threshold wm+2 gives a total of m+3 parameters overall.

2.1 Learning rule

At each time step t a set of k=1..K binary trading decisions b
t

k (we define a ≡ (1− a)

for any variable a in [0,1]) are made with probability yt, at each later time t+1 being

assessed and allocated retrospective reinforcement in the form of reward (rwd
t+1
k) and

penalty (pty
t+1
k) signals. The weights are then updated using the ARP-based rule

 ∆w
i
(t +1) =

η
K

[(b
t

k − y
t
) × rwd

t+1

k
+ λ (b

t

k − y
t
) × pty

t+1

k
]x

i

k
(t)

k=1

K

∑

where η is a training rate, λ is a parameter controlling the amount of exploration

when a penalty is received, and the inputs are given by

 x
i

k
(t) =

 r
t−i i = 0.. m

 b
t−1

k
i =m+1

 1 i =m+ 2

2.2 Allocating reinforcement

The GP fitness function used in [13] is

 R = I
b
(t)r

t
 +

t=1

T

∑ I
s
(t) log(1+ ρ

t
) +

t=1

T

∑ n log
1−δ
1+δ

in which the binary variables Ib(t), Is(t) represent the trading position at time t (in or

out of the market respectively), ρt is the interest earned over a time interval [t-1,t)

from investment in a risk-free asset, δ is a transactions cost, and n is the number of

completed trades over T time intervals. This performance measure can be used as a

reward/penalty signal generator by re-expressing it as a sum of terms R
t
, for t=1..T,

where

 R
t
= y

t−1rt + yt−1 log(1+ ρt)+ yt−1yt log(1−δ)− yt−1yt log(1+δ)

124

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.

Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

Since yt influences returns both at times t and t+1 it can be seen that

dR

dyt
=
dRt+1

dyt
+
dyt+1

dyt
.
dRt+1

dyt+1
+
dRt

dyt

Replacing the derivative dyt+1/dyt by the cross-correlation (2b
t+1

k −1)(2b
t

k −1) to

facilitate bitwise computation, the above gradient can be approximated by

 dRdb
t

k
= r

t+1 − log(1+ ρt)+ log(1−δ)[bt+1
k

− (2b
t+1

k −1)b
t

k − b
t−1
k]

 + log(1+δ)[b
t+1

k
+ (2b

t+1

k −1)bt
k

− bt−1
k

]

and used to generate reinforcement signals

 rwdt+1

k
=

1 if dRdbt
k
× (2bt

k −1)> 0

0 otherwise

, ptyt+1
k
=1− rwdt+1

k

at time t+1 for trial actions b
t

k
taken at the previous time.

3 Data set

The data used here are as in Lohpetch and Corne [3] the opening prices of the S&P

500 taken over a range of timescales (monthly, weekly, daily) from the years 1960 to

2008, with corresponding risk-free returns derived from three-month US Treasury

Bill rates. Data are as in [3] additionally divided into the subsets set out in Table 1:

Data split Training period Test period 1 Test period 2

MonthlySplit1 31 years from 1960 next 12 years next 5 years

MonthlySplit2 31 years from 1960 next 8 years next 8 years

MonthlySplit3 31 years from 1960 next 9 years next 9 years

MonthlySplit4 25 years from 1960 next 12 years next 12 years

WeeklySplit1 366 wks from 1/01/60 next 158 wks next 157 wks

WeeklySplit2 366 wks from 1/01/72 next 158 wks next 158 wks

WeeklySplit3 367 wks from 1/01/84 next 157 wks next 158 wks

WeeklySplit4 366 wks from 1/01/96 next 157 wks next 158 wks

DailySplit1 378 days from 1/01/60 next 126 days next 127 days

DailySplit2 380 days from 1/01/75 next 127 days next 127 days

DailySplit3 379 days from 1/01/90 next 128 days next 127 days

DailySplit4 376 days from 1/01/06 next 128 days next 126 days

Table 1: Monthly, weekly, and daily data splits.

Two training/testing regimes were considered in [3]: in Regime 1 (no validation) the

test period was that immediately following the training period (period 1), while in

Regime 2 the first test period was used for validation and the second period for out of

sample testing. Both regimes are also considered here.

125

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.

Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

4 Results

Results are tabulated below for each type of data split, showing the comparative

performance of RRL and the GP-induced trading rules of [3] in relation to buy-and-

hold over the relevant test periods. GP results are as quoted in [3] for a Performance

Consistency parameter equal to 12. RRL results are for training parameters η=0.05,

λ=0.01, a bitstream length K=8, and input window size m=20. The system was not

found to be overly sensitive to the values chosen for η and λ, while the effects of

changes to m and K are explored below in Figures 1 and 2 respectively. As described

above, in Regime 1 the net is trained until performance on the training set exceeds

buy-and-hold while in Regime 2 the same test is applied to the validation set.

Data split Trials outperforming buy-and-hold for regimes 1 (2)

RRL-ARP (100 trials) GP (Lohpetch & Corne [3])

MonthlySplit 1 99 (0) % 10 (10) out of 10

MonthlySplit 2 7 (94) % 4 (8) out of 10

MonthlySplit 3 4 (97) % 10 (8) out of 10

MonthlySplit 4 0 (72) % 9 (10) out of 10

Monthly average 27.50 (65.75) % 82.5 (90.0) %

WeeklySplit 1 53 (16) % 6 (2) out of 10

WeeklySplit 2 100 (0) % 10 (10) out of 10

WeeklySplit 3 8 (98) % 4 (4) out of 10

WeeklySplit 4 98 (100) % 10 (10) out of 10

Weekly average 64.75 (53.50) % 75.0 (65.0) %

DailySplit 1 100 (94) % 0 (0) out of 10

DailySplit 2 100 (100) % 0 (0) out of 10

DailySplit 3 100 (100) % 10 (10) out of 10

DailySplit 4 100 (100) % 2 (2) out of 10

Daily average 100 (98.50) % 30.0 (30.0) %

Table 2: Summary of comparative results for monthly, weekly, and daily trading,

with bracketed figures referring to results found for training/testing regime 2.

 It can be seen that in contrast to GP, RRL finds the daily data more tractable and

the monthly data less so. Both methods agree in finding the weekly data to be of

intermediate difficulty. With respect to the difference between Regimes 1 and 2, there

again appears to be agreement between the methods in that results are better in

Regime 2 for monthly data but worse for weekly data, with the quality of the daily

results about the same. It is surprising that the use of a validation set appears to

degrade performance in the case of weekly data. However though fewer Regime 2

trials exceed buy-and-hold profit Figure 1 shows that the average excess profit

nevertheless exceeds that for Regime 1 over a range of input window sizes.

 It is also clear from this figure that profits can be affected by window size and

that the optimal value for this parameter may depend on the data set. Preferred values

126

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.

Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

appear quite large, with as may be expected less evidence of an overtraining effect in

Regime 2. Gradient-based RRL has typically used smaller windows for both stock

index and currency data; however it should be noted that not only the learning method

but also the performance measure used to provide reinforcement are different in the

present case.

Fig. 1: Weekly data: split- and trial-averaged percentage profit in excess of

buy-and-hold as a function of RRL window size parameter m.

 A further parameter that might be expected to affect performance is K, the

number of sampling bits in the weight update rule at each time step. Figure 2 shows

how performance depends on K for an RRL net with window size m=20. While

overly small values do not give optimal performance there appears to be little benefit

in values larger than K=8. Provided excessively small values are not used, unlike the

input window size the bitstream length does not appear to be a critical parameter

Fig. 2: Weekly data: split- and trial-averaged percentage profit in excess of

buy-and-hold as a function of bitstream length K, for window size m=20.

5 Discussion

The current work has supported that of [2,3] in demonstrating that a trading model

can be developed that is able to reliably outperform buy-and-hold on a data set

considered challenging in this respect. Results here however differ from the GP-based

work of [2,3] in that for RRL it is the higher frequency daily data that is the most

tractable. These contrasting results may give insight into the forces that drive markets

over different time scales. The rules induced by Lohpetch and Corne [3] are quite

127

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.

Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

complex and utilise as terminal nodes quantities such as moving averages and moving

average maxima. However it has been noted in [7] that the inclusion of such derived

quantities as additional inputs is not helpful to RRL, for which it appears all relevant

information has already been captured by the raw data. The most successful rules for

daily trading may be the simplest ones, possibly reflecting both the psychology and

preferred tools of human traders operating at these time scales.

 As noted in the Results section performance here depends on the size of the

past-returns input window. Dependence on a parameter that could easily be over-

optimised is always a potential problem. In this context Dempster and Leemans [7]

have advocated online adaptation of various model hyperparameters, and this

approach could certainly be applied to input window size in the present case.

 The use of multilayer networks in RRL was explored by Gold [8] but did not

improve performance (this was also found to be the case here). It seems unlikely

however that the optimal trading model for the majority of data sets will be a linear

one. Maringer and Ramtohul [6] have recently shown that an RRL system that

switches between its two specialist units in response to data volatility performs much

better than a single-unit system, suggesting that a more effective way to introduce

nonlinearity may be via an ensemble of separately trained linear models.

Acknowledgement

The author would like to thank David Corne and Dome Lohpetch for the use of the

data investigated herein, and for insightful and helpful discussions.

References

[1] F. Allen and R. Karjalainen, Using genetic algorithms to find technical trading rules, Journal of

Financial Economics, 51:245-271, Elsevier, 1999.

[2] L. A. Becker and M. Sashadri, Comprehensibility and overfitting avoidance in genetic programming

for technical trading rules. Technical Report WPI-CS-TR-03-09, Computer Science Department,

Worcester Polytechnic Institute, Worcester, MA 01609, USA, September 2003.

[3] D. Lohpetch and D. Corne, Outperforming buy-and-hold with evolved technical trading rules: daily,

weekly and monthly trading, submitted to EvoApplications 2011, 10 pages, Springer LNCS, 2011.

[4] J. Moody, L. Wu, Y. Liao and M. Saffell, Performance functions and reinforcement learning for

trading systems and portfolios, Journal of Forecasting, 17:441-470, Wiley, 1998.

[5] J. Moody and M. Saffell, Learning to trade via direct reinforcement, IEEE Transactions on Neural

Networks, 12:876-889, IEEE Press, 2001.

[6] D. Maringer and T. Ramtohul, Threshold recurrent reinforcement learning for automated trading. In

C. Di Chio et al., editors, EvoApplications 2010, Lecture Notes in Computer Science 6025, pages

212-221, Springer-Verlag, 2010.

[7] M. Dempster and V. Leemans, An automated FX trading system using adaptive reinforcement

learning, Expert systems with applications, 30:543-552, Elsevier, 2006.

[8] C. Gold, FX trading via recurrent reinforcement learning. In Proceedings of the IEEE International

Conference on Financial Engineering, IEEE Press, pages 363-370, March 20-23, Hong Kong

(People's Republic of China), 2003.

[9] A. G. Barto and P. Anandan, Pattern recognising stochastic learning automata, IEEE Transactions

on Systems, Man, and Cybernetics, 15:360-375, IEEE Press, 1983.

128

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning. Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5.

Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.

