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Abstract. A novel stochastic adaptation of the recurrent reinforcement learning 

(RRL) methodology is applied to daily, weekly, and monthly stock index data, and 

compared to results obtained elsewhere using genetic programming (GP). The data 

sets used have been a considered a challenging test for algorithmic trading. It is 

demonstrated that RRL can reliably outperform buy-and-hold for the higher 

frequency data, in contrast to GP which performed best for monthly data. 

1 Introduction 

In a pioneering work Allen and Karjalainen [1] used genetic programming (GP) to 

evolve trading rules that were profitable in their own terms but unable to consistently 

outperform buy-and-hold in the presence of transactions costs, results that were taken 

as supporting evidence for then widely held academic beliefs about market efficiency. 

However these results were challenged in later GP work by Becker and Sashadri [2] 

whose evolved rules based on the same Standard and Poors 500 (S&P 500) data sets 

did in contrast succeed in outperforming buy-and-hold, though it was not clear  to 

what extent the improved performance was due to a decision to adopt monthly rather 

than daily trading. Most recently Lohpetch and Corne [3] have revisited this data and 

in a thorough comparative study demonstrated that it is indeed the use of lower 

frequency data that allows GP-induced trading rules to gain traction in this market.  

 These results for monthly data were very encouraging, but do not necessarily 

mean other learning methods may not also be able to discover exploitable structure in 

the higher frequency data GP found problematical. Reinforcement learning (RL) is 

one such alternative, being a form of machine learning that has shown considerable 

promise in trading and asset allocation. In particular Moody and co-workers have 

proposed the method of recurrent reinforcement learning (RRL) [4,5], a technique 

that has been used successfully by later workers for stock index [6] and currency [7,8] 

data, though mixed results in the latter case led Gold [8] to suggest that it might be 

beneficial to adapt RRL to use forms of learning other than gradient ascent.  

 The current work follows this suggestion in using a learning procedure based on 

associative reward-penalty (ARP) learning [9] but with the elaboration of extended 

bitstreams so that multiple trial-and-error experiments can be carried out at each time 

step. The method is applied to trading the S&P 500 using the same data as in [13]. 

To facilitate comparison with the GP work it utilises an online learning adaptation of 

the performance measure first proposed as a fitness function in [1], demonstrating that 

the RRL methodology can be successfully adapted to use a wider range of 

performance measures than have been generally explored. 
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2 The stochastic RRL model 

In its original form [4,5] RRL was a gradient-based method. Outputs were derived 

from a tanh unit and thresholded to give trading decisions. In the stochastic version 

developed here the tanh output function is modified to 
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where sig(x) =1/(1+exp(-x)), y is an output probability used both to determine trading 

positions during performance assessment (outputs ≥ 0.5 leading to funds being 

invested in the risky asset, outputs < 0.5 leading to funds being invested in a 

competing risk-free asset) and to generate bitwise outputs in {0,1} during the learning 

process. Following [13] we here use as external inputs at each of m+1 previous 

time steps rt = log(pt)−log(pt-1) (indicating the continuously compounded return, with 

pt the price at time t), which together with the feedback weight wm+1 and adaptive 

threshold wm+2 gives a total of m+3 parameters overall. 

2.1 Learning rule 

At each time step t a set of k=1..K binary trading decisions b
t

k  (we define a ≡ (1− a)  

for any variable a in [0,1]) are made with probability yt, at each later time t+1 being 

assessed and allocated retrospective reinforcement in the form of reward ( rwd
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k ) and 
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k ) signals. The weights are then updated using the ARP-based rule  
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where η is a training rate, λ is a parameter controlling the amount of exploration 

when a penalty is received, and the inputs are given by 
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2.2 Allocating reinforcement 

The GP fitness function used in [13] is   
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in which the binary variables Ib(t), Is(t) represent the trading position at time t (in or 

out of the market respectively), ρt is the interest earned over a time interval [t-1,t) 

from investment in a risk-free asset, δ is a transactions cost, and n is the number of 

completed trades over T time intervals. This performance measure can be used as a 

reward/penalty signal generator by re-expressing it as a sum of terms R
t
, for t=1..T, 

where 

          R
t
= y

t−1rt + yt−1 log(1+ ρt )+ yt−1yt log(1−δ)− yt−1yt log(1+δ)  
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Since yt influences returns both at times t and t+1 it can be seen that 
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Replacing the derivative dyt+1/dyt by the cross-correlation (2b
t+1

k −1)(2b
t

k −1)  to 

facilitate bitwise computation, the above gradient can be approximated by  
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and used to generate reinforcement signals  
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at time t+1 for trial actions b
t

k
taken at the previous time. 

 

3 Data set 

The data used here are as in Lohpetch and Corne [3] the opening prices of the S&P 

500 taken over a range of timescales (monthly, weekly, daily) from the years 1960 to 

2008, with corresponding risk-free returns derived from three-month US Treasury 

Bill rates.  Data are as in [3] additionally divided into the subsets set out in Table 1: 

 

Data split Training period Test period 1 Test period 2 

MonthlySplit1 31 years from 1960 next 12 years next 5 years 

MonthlySplit2 31 years from 1960 next 8 years next 8 years 

MonthlySplit3 31 years from 1960 next 9 years next 9 years 

MonthlySplit4 25 years from 1960 next 12 years next 12 years 

WeeklySplit1 366 wks from 1/01/60 next 158 wks next 157 wks 

WeeklySplit2 366 wks from 1/01/72 next 158 wks next 158 wks 

WeeklySplit3 367 wks from 1/01/84 next 157 wks next 158 wks 

WeeklySplit4 366 wks from 1/01/96 next 157 wks next 158 wks 

DailySplit1 378 days from 1/01/60 next 126 days next 127 days 

DailySplit2 380 days from 1/01/75 next 127 days next 127 days 

DailySplit3 379 days from 1/01/90 next 128 days next 127 days 

DailySplit4 376 days from 1/01/06 next 128 days next 126 days 

 

Table 1: Monthly, weekly, and daily data splits. 

 

Two training/testing regimes were considered in [3]: in Regime 1 (no validation) the 

test period was that immediately following the training period (period 1), while in 

Regime 2 the first test period was used for validation and the second period for out of 

sample testing. Both regimes are also considered here. 

125

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 

and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 

Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.



4 Results 

Results are tabulated below for each type of data split, showing the comparative 

performance of RRL and the GP-induced trading rules of [3] in relation to buy-and-

hold over the relevant test periods. GP results are as quoted in [3] for a Performance 

Consistency parameter equal to 12. RRL results are for training parameters η=0.05,  

λ=0.01, a bitstream length K=8, and input window size m=20. The system was not 

found to be overly sensitive to the values chosen for η and λ, while the effects of 

changes to m and K are explored below in Figures 1 and 2 respectively. As described 

above, in Regime 1 the net is trained until performance on the training set exceeds 

buy-and-hold while in Regime 2 the same test is applied to the validation set.   

 

Data split Trials outperforming buy-and-hold for regimes 1 (2) 

RRL-ARP (100 trials) GP (Lohpetch & Corne [3]) 

MonthlySplit 1 99 (0) % 10 (10) out of 10 

MonthlySplit 2 7 (94) % 4  (8) out of 10 

MonthlySplit 3 4 (97) % 10 (8) out of 10 

MonthlySplit 4 0 (72) % 9  (10) out of 10 

Monthly average 27.50 (65.75) % 82.5 (90.0) % 

WeeklySplit 1 53 (16) % 6  (2) out of 10 

WeeklySplit 2 100 (0) % 10 (10) out of 10 

WeeklySplit 3 8 (98) % 4  (4) out of 10 

WeeklySplit 4 98 (100) % 10 (10) out of 10 

Weekly average 64.75 (53.50) % 75.0 (65.0) % 

DailySplit 1 100 (94) % 0  (0) out of 10 

DailySplit 2 100 (100) % 0  (0) out of 10 

DailySplit 3 100 (100) % 10 (10) out of 10 

DailySplit 4 100 (100) % 2  (2) out of 10 

Daily average 100 (98.50) % 30.0 (30.0) % 

 

Table 2: Summary of comparative results for monthly, weekly, and daily trading,  

with bracketed figures referring to results found for training/testing  regime 2. 

 

 It can be seen that in contrast to GP, RRL finds the daily data more tractable and 

the monthly data less so.  Both methods agree in finding the weekly data to be of 

intermediate difficulty. With respect to the difference between Regimes 1 and 2, there 

again appears to be agreement between the methods in that results are better in 

Regime 2 for monthly data but worse for weekly data, with the quality of the daily 

results about the same. It is surprising that the use of a validation set appears to 

degrade performance in the case of weekly data. However though fewer Regime 2 

trials exceed buy-and-hold profit Figure 1 shows that the average excess profit 

nevertheless exceeds that for Regime 1 over a range of input window sizes.  

 It is also clear from this figure that profits can be affected by window size and 

that the optimal value for this parameter may depend on the data set.  Preferred values 
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appear quite large, with as may be expected less evidence of an overtraining effect in 

Regime 2. Gradient-based RRL has typically used smaller windows for both stock 

index and currency data; however it should be noted that not only the learning method 

but also the performance measure used to provide reinforcement are different in the 

present case. 

 

  

 

 

 

 

 

 

 

 

 

Fig. 1: Weekly data: split- and trial-averaged percentage profit in excess of  

buy-and-hold as a function of RRL window size parameter m. 

 

 A further parameter that might be expected to affect performance is K, the 

number of sampling bits in the weight update rule at each time step. Figure 2 shows 

how performance depends on K for an RRL net with window size m=20. While 

overly small values do not give optimal performance there appears to be little benefit 

in  values larger than K=8.  Provided excessively small values are not used, unlike the 

input window size the bitstream length does not appear to be a critical parameter  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Weekly data: split- and trial-averaged percentage profit in excess of  

buy-and-hold as a function of bitstream length K, for window size m=20. 

5 Discussion  

The current work has supported that of [2,3] in demonstrating that a trading model 

can be developed that is able to reliably outperform buy-and-hold on a data set 

considered challenging in this respect. Results here however differ from the GP-based 

work of [2,3] in that for RRL it is the higher frequency daily data that is the most 

tractable. These contrasting results may give insight into the forces that drive markets 

over different time scales. The rules induced by Lohpetch and Corne [3] are quite 
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complex and utilise as terminal nodes quantities such as moving averages and moving 

average maxima. However it has been noted in [7] that the inclusion of such derived 

quantities as additional inputs is not helpful to RRL, for which it appears all relevant 

information has already been captured by the raw data. The most successful rules for 

daily trading may be the simplest ones, possibly reflecting both the psychology and 

preferred tools of human traders operating at these time scales. 

 As noted in the Results section performance here depends on the size of the 

past-returns input window. Dependence on a parameter that could easily be over-

optimised is always a potential problem. In this context Dempster and Leemans [7] 

have advocated online adaptation of various model hyperparameters, and this 

approach could certainly be applied to input window size in the present case. 

 The use of multilayer networks in RRL was explored by Gold [8] but did not 

improve performance (this was also found to be the case here). It seems unlikely 

however that the optimal trading model for the majority of data sets will be a linear 

one. Maringer and Ramtohul [6] have recently shown that an RRL system that 

switches between its two specialist units in response to data volatility performs much 

better than a single-unit system, suggesting that a more effective way to introduce 

nonlinearity may be via an ensemble of separately trained linear models.  
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