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	is paper employs the computational approach known as successive linearizationmethod (SLM) to tackle a fourth order nonlinear
di
erential equation modelling the transient �ow of an incompressible viscous �uid between two parallel plates produced by
a simple wall motion. Numerical and graphical results obtained show excellent agreement with the earlier results reported in
the literature. We obtain solution branches as well as a turning point in the �ow �eld accurately. A comparison with numerical
results generated using the inbuilt MATLAB boundary value solver, bvp4c, demonstrates that the SLM approach is a very ecient
technique for tackling highly nonlinear di
erential equations of the type discussed in this paper.

1. Introduction

Studies related to transient �ows produced by a simple wall
motion have been of interest for several years due to its prac-
tical importance in understanding several engineering and
physiological �ow problems. For instance, the entire conduits
in human body are �exible and also collapsible.	at is, when
the external pressure exceeds the internal pressure, the cross-
sectional area can be signi�cantly reduced, if not fully dimin-
ished. 	e cross-section may eventually return to its original
shape when the external pressure is reduced, and, conse-
quently, normal internal �uid �ow can be restored [1]. Other
applications can be found in unsteady loading, which is met
frequently in many hydrodynamical machines and apparatus
[2]. In the light of these applications, squeezing �ow in a chan-
nel has been studied by many authors; mention may be made
of research studies [3–6]. 	is problem admits similarity
variable [7, 8], thereby reducing the unsteady Navier-Stokes
equations to a parameter dependent fourth order nonlinear
ordinary di
erential equation for the similarity function.

Generally speaking, nonlinear problems and their solu-
tions provide an insight into inherently complex physical
process in the system. 	e nonlinear nature of the model

equations in most cases precludes its exact solution. Several
approximation techniques have been developed to tackle
this problem such as the homotopy analysis method [9–11],
homotopy perturbation method [12, 13], spectral homotopy
analysis method [14, 15], and variational iteration method
[16]. In this paper, we employ the successive linearisation
method [17–19] to tackle a fourth order nonlinear boundary
value problem that governs the squeezing �ow problem
between parallel plates. In this work, we assess the applica-
bility of the SLM approach in solving nonlinear problems
with bifurcations. Such problems are very dicult to resolve
numerically near the bifurcation point.Numerical and graph-
ical results obtained using the new SLM approach are vali-
dated through comparison with numerical results generated
using the inbuilt MATLAB boundary value solver, bvp4c,
for di
erent values of the governing physical parameters. In
following sections, the problem is formulated, analysed, and
discussed.

2. Mathematical Formulation

Consider a transient �ow of an incompressible viscous �uid
between parallel plates driven by the normal motion of
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Figure 1: Schematic diagram of the problem.

the plates. Take a Cartesian coordinate system (�, �) where� lies in the streamwise direction and � is the distance
measured in the transverse direction. Let � and V be the
velocity components in the directions of � and � increasing,
respectively. It is assumed that the two plates are at � =±�0√(1 − ��), where �0 is the position at time � = 0 as shown
in Figure 1.

When � is positive, the two plates are squeezed sym-
metrically until they touch at � = 1/�. Negative values of� represent the symmetrical separation of the plates. 	e
length of the plates is assumed to bemuch larger than the gap
width at any time such that the end e
ects could be neglected.
Following [4, 6–8], the two-dimensional governing equation
of motion in terms of vorticity (	) and stream function (Ψ)
formulation is given as

�	�� + � (	, Ψ)� (�, �) = ]∇	, 	 = −∇2Ψ, (1)

with

�Ψ�� = 0, �Ψ�� = −���� , on � = � (�) ,
�2Ψ��2 = 0, �Ψ�� = 0, on � = 0.

(2)

We introduce the following transformations:

� = �
�0√1 − �� , Ψ = ��0�� (�)2√(1 − ��) ,
	 = − ��

2�0(√(1 − ��))3
�2���2 .

(3)

Substituting (3) into (1) and (2), we obtain

�4���4 = �(�
2���2 ���� − ��

3���3 + ��
3���3 + 3�

2���2 ) , (4)

���� = 0, � = 1, on � = 1, (5)

�2���2 = 0, � = 0, on � = 0, (6)

where � = �20�/2] is the local Reynolds number (� > 0
represents squeezing and � < 0 represents separation). 	e
wall skin friction is given by

�� = −����� = − ���
2�0(√(1 − ��))3

�2���2 , at � = 1, (7)

where � is the dynamic coecient of viscosity. From the axial
component of the Navier-Stokes equations, the pressure drop
in the longitudinal direction can be obtained. Let

���� = ����
2�20(1 − ��)2 , (8)

and we obtain

� = �3���3 − �[(����)
2 − ��2���2 + ��

2���2 + 2���� ] . (9)

In the following section, (4)–(6) will be solved using succes-
sive linearization method and other important �ow proper-
ties like the skin friction and pressure drop will be deter-
mined.

3. Successive Linearisation Method
(SLM) Approach

	e proposed linearisation method of solution, hereina�er
referred to as the successive linearisation method (SLM), is
based on the assumption that the unknown function�(�) can
be expanded as

� (�) = �� (�) + �−1∑
�=0
�� (�) , ! = 1, 2, 3, . . . , (10)

where �� are unknown functions. 	e solutions of ��, (" =1, 2, . . .) are obtained recursively by solving the linear part of
the equation that results from substituting (10) in the gov-
erning equations (4) using �0(�) as an initial approximation.
	e linearisation technique is based on the assumption that�� becomes increasingly smaller as ! becomes large; that is,

lim
�→∞
�� = 0. (11)

	e initial approximation �0(�) must be chosen in such a
way that it satis�es the boundary conditions (5) and (6). An
appropriate initial guess is

�0 (�) = ( $2 + 32) � − (3$2 + 12) �3 + $�4, (12)

where $ is an arbitrary constant which when varied results
in multiple solutions. Substituting (10) in the governing
equations and neglecting nonlinear terms in ��, ��� , ���� , and����� give

��V� + �1����� + �2���� + �3��� + �4�� = &�−1, (13)
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where

�1 = �( �−1∑
�=0
�� − �) , �2 = −�(3 + �−1∑

�=0
���) ,

�3 = −� �−1∑
�=0
����, �4 = � �−1∑

�=0
����� ,

&�−1 = − �−1∑
�=0
��V� + �(

�−1∑
�=0
���
�−1∑
�=0
���� −

�−1∑
�=0
�� �−1∑
�=0
�����

+� �−1∑
�=0
����� + 3

�−1∑
�=0
����) .

(14)

Starting from the initial approximation, �0, the subse-
quent solutions for ��, " ≥ 1, are obtained iteratively by
solving (13) subject the the boundary conditions

��� = 0, �� = 0, on � = 1,
���� = 0, �� = 0, on � = 0. (15)

Once each solution for �� (! ≥ 1) has been obtained, the
approximate solutions for �(�) are obtained as

� (�) ≈ �∑
�=0
�� (�) , (16)

where 5 is the order of SLM approximation. It is worth
noting that the coecient parameters and the right hand
side of (13) for ! = 1, 2, 3, . . ., are known (from previous
iterations). 	us, system (13) can easily be solved using
numerical methods such as �nite di
erences, �nite elements,
Runge-Kutta based shooting methods, or collocation meth-
ods. In this work, (13) is solved using the Chebyshev spectral
collocation method. 	is method is based on approximating
the unknown functions by the Chebyshev interpolating
polynomials in such a way that they are collocated at the
Gauss-Lobatto points de�ned as

6	 = cos 789 , 8 = 0, 1, . . . , 9, (17)

where 9 is the number of collocation points used (see e.g.,
[20, 21]). In order to implement the method, the physical
region [0, 1] is transformed into the region [−1, 1] using the
mapping

� = 6 + 12 , −1 ≤ 6 ≤ 1. (18)

	e derivative of �� at the collocation points is represented as

�
����
 =
�∑
�=0

D


�	�� (6�) , 8 = 0, 1, . . . , 9, (19)

where D = ((2/;)D)
 and D is the Chebyshev spectral
di
erentiation matrix (see, e.g., [20, 21]). Substituting (17)–
(19) in (13) results in the matrix equation

A�−1F� = R�−1, (20)

Table 1: 	e tenth order SLM approximation for ��(0) and ���(1) at
the two branches of solutions for di
erent values of �.

Lower branch Upper branch� SLM bvp4c SLM bvp4c

��(0)−3.45 3.39748 3.39748 5.45425 5.45425−3.40 3.12576 3.12576 6.27172 6.27172−3.35 2.94758 2.94758 7.05936 7.05936−3.30 2.81355 2.81355 7.88138 7.88138−3.25 2.70596 2.70596 8.77609 8.77609

���(1)−3.45 7.28689 7.28689 19.95709 19.95709−3.40 5.80900 5.80900 25.70501 25.70502−3.35 4.86274 4.86274 31.60366 31.60366−3.30 4.16178 4.16178 38.12272 38.12272−3.25 3.60511 3.60511 45.62417 45.62417

in whichA�−1 is a (9 + 1) × (9+ 1) square matrix and F� and
R�−1 are (9 + 1) × 1 column vectors de�ned by

F� = [�� (60) , �� (61) , . . . , �� (6�−1) , �� (6�)],
R�−1 = [&�−1 (60) , &�−1 (61) , . . . , &�−1 (6�−1) , &�−1 (6�)],

A�−1 = D4 + a1D3 + a2D2 + a3D + a4.
(21)

In the above de�nitions, a� (A = 1, 2, 3, 4) are diagonal
matrices of size (9+1)× (9+1). A�er modifying the matrix
system (20) to incorporate boundary conditions, the solution
is obtained as

F� = A−1�−1R�−1. (22)

4. Results and Discussion

In this section, we present the results for the solution of the
governing nonlinear boundary value problem (4). To check
the accuracy of the successive linearisation method (SLM),
comparison is made with numerical solutions obtained using
theMATLAB routine bvp4c.	eMATLAB routine bvp4c is
based on an adaptive Lobatto quadrature scheme [22, 23].

Table 1 gives a comparison between the 10th order SLM
approximate results and thebvp4cnumerical results for��(0)
and ���(1) at selected values of �. By using di
erent values of
the constant $ in the initial approximation (see (12)), it was
found that both the SLM and bvp4c give multiple solutions
when � < 0. Two solutions, called lower branch and upper
branch, were identi�ed when −3.45 ≤ � ≤ −3.25. We
observe that the SLM results are in very good agreement
with the bvp4c results for both branches of the solutions.
Table 1 indicates that the skin friction ���(1) decreases when� is increased in the lower branch and the opposite e
ect is
observed when � is increased in the upper branch.

Figure 2 illustrates a slice of bifurcation diagram in both
planes. For symmetrical squeezing of the plates; that is,� > 0,
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Figure 2: Slice of the bifurcation diagrams for ��(0) and ���(1) against �.
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Figure 3: Two branches of the 10th order SLM approximate solution for normal velocity pro�le �(�) and longitudinal velocity pro�le ��(�)
for di
erent values of �.

only one solution branch exists; this can be regarded as
the lower solution branch. Another solution branch was
identi�ed in addition to the lower solution branch when the
plates were symmetrically separated (� < 0); this is the
upper solution branch. A turning point exists between the
primary and secondary solution branches at� = −3.495.	is
bifurcation result obtained using SLM is in perfect agreement
with the one reported by Makinde et al. [5] using Hermite-
Padé approximation technique. Moreover, this turning point
is very signi�cant with respect to application; it represents the
symmetrical separation limit of plates during �ow process.

Figure 3 depicts both the �uid normal and axial velocity
components during plate separation. It is interesting to note
from the lower solution branch that both the �uid normal and
axial velocity components increase with an increase in the
plates separation (i.e.,� < 0) whereas the trend is opposite for
upper solution branch.Meanwhile, we observe the possibility
of �ow reversal near the plates with increasing plate sepa-
ration. Figure 4 displays the �uid normal and axial velocity
components during plate squeezing (� > 0) for the only solu-
tion branch in this region. Both the normal and axial velocity
components decrease with an increase in plates squeezing.
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Figure 4: Comparison between the 10th order SLM approximate solution (circles) and the bvp4c numerical results for the normal velocity
pro�le �(�) and longitudinal velocity pro�le ��(�) for di
erent values of �.

5. Conclusion

In this work, we employed a very powerful new linearisation
technique, known as the successive linearisation method
(SLM), to solve a fourth order nonlinear di
erential equation
modelling the transient �ow of an incompressible viscous
�uid between two parallel plates produced by a simple wall
motion. 	e SLM results for the governing �ow parameters
were comparedwith results obtained usingMATLAB’sbvp4c
function and excellent agreement was observed. Using the
SLM, it was also shown that the governing problem admits
multiple solutions when � < 0.	e ability of the SLM to gen-
erate multiple solutions makes it superior to most numerical
methods which are only capable of generating one solution
of nonlinear equations. Another signi�cant advantage of the
SLM is that its implementation does not depend on small
parameters unlike other traditional perturbation methods.
	e study con�rms that the proposed SLM approach con-
verges rapidly to the solution of the original nonlinear prob-
lem and can be used to solve many other nonlinear equations
arising in �uid mechanics and nonlinear science in general.
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