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Abstract In this study, the super-resolution convolutional

neural network (SRCNN) scheme, which is the emerging

deep-learning-based super-resolution method for enhancing

image resolution in chest CT images, was applied and evalu-

ated using the post-processing approach. For evaluation, 89

chest CT cases were sampled from The Cancer Imaging

Archive. The 89 CT cases were divided randomly into 45

training cases and 44 external test cases. The SRCNN was

trained using the training dataset. With the trained SRCNN,

a high-resolution image was reconstructed from a low-

resolution image, which was down-sampled from an original

test image. For quantitative evaluation, two image quality

metrics were measured and compared to those of the conven-

tional linear interpolation methods. The image restoration

quality of the SRCNN scheme was significantly higher than

that of the linear interpolation methods (p < 0.001 or p < 0.05).

The high-resolution image reconstructed by the SRCNN

scheme was highly restored and comparable to the original

reference image, in particular, for a ×2 magnification. These

results indicate that the SRCNN scheme significantly outper-

forms the linear interpolation methods for enhancing image

resolution in chest CT images. The results also suggest that

SRCNNmay become a potential solution for generating high-

resolution CT images from standard CT images.
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Introduction

High-resolution imaging has recently attracted much attention

in the field of medical imaging, and it is expected to lead to

more accurate diagnosis [1]. In computed tomography (CT),

high-resolution CT (HRCT) is an essential diagnostic tool for

identifying some pulmonary diseases such as pulmonary tu-

berculosis [2], idiopathic pulmonary fibrosis [3], and intersti-

tial pneumonia [4]. HRCToutperforms conventional chest CT

when identifying and distinguishing various entities of inter-

stitial lung disease [5, 6]. However, the acquisition of volu-

metric HRCT images requires state-of-the-art multidetector

CT scanners (e.g., at least 16 detector rows). The scanning

time of HRCT images with conventional CT scanners (e.g.,

4 detector rows) is considerably long, with most patients un-

able to hold their breath long enough for complete lung scan

[7]. If the acquisition of high-resolution CT images from stan-

dard CT images by using post-processing is made possible, it

could improve the overall visualization of small anatomical

structures and will lead to more accurate diagnosis.

The simplest approach to generating a high-resolution image

by post-processing is through linear interpolationmethods such

as the nearest neighbor, bilinear, and bicubic interpolations.

These methods are widely used for improving the resolution

of a low-resolution image. However, conventional linear inter-

polation methods often produce over-smoothed images with

artifacts such as aliasing, blur, and halo around the edges [8].

The super-resolution method is the process of estimating a

high-resolution image from a low-resolution input image, which

can reduce artifacts resulting from the conventional linear
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interpolation methods. Recent super-resolution methods are

example-based methods that learn the relationship between

low-resolution and high-resolution image pairs. In computer vi-

sion, various example-based super-resolutionmethods have been

proposed [9–11]. It has been shown that the use of the sparse-

coding super-resolution method [10], which is an example-based

super-resolution method, yielded higher image quality over that

of the conventional linear interpolation methods in chest CT

images [12]. However, for real-time clinical applications in med-

ical imaging, the computation time of the conventional example-

based super-resolution methods still remains a challenge.

Deep learning, also known as deep convolutional neural

network (DCNN), has revolutionized the application of a large

number of computer vison problems, including image en-

hancement, such as denoising [13] and deblurring [14]. In

super-resolution, the super-resolution convolutional neural

network (SRCNN) [15, 16] scheme, which is a deep-

learning-based super-resolution method, has recently been

proposed in the field of computer vision. The SRCNN scheme

can directly learn an end-to-end mapping between the low-

resolution image and the high-resolution image. Recent stud-

ies have shown that the use of the SRCNN scheme for non-

medical imaging achieved superior performance over the pre-

vious super-resolution methods in terms of image quality and

processing speed [15, 16]. In medical imaging, it has been

shown that the application of the SRCNN scheme to chest

radiographs could significantly improve image quality of

high-resolution images in comparison with the use of the con-

ventional linear interpolation methods [17, 18]. However, few

studies have investigated whether the application of the

SRCNN scheme contributes to the improvement of the image

quality of high-resolution images in CT images.

In this paper, the SRCNN scheme was applied and evalu-

ated for enhancing image resolution in chest CT images by

post-processing. The performance of the SRCNN scheme for

the improvement of the image quality of high-resolution im-

ages was evaluated using clinical CT cases. In addition, the

training schemes for improving the image quality of the

reconstructed high-resolution images were explored. Two

types of training images—non-medical images and chest CT

images—were used as the training dataset.

Materials and Methods

Materials

In all, 89 chest CT images of patients diagnosed with non-

small cell lung cancer, who were surgically treated [19, 20],

were obtained from The Cancer Imaging Archive (TCIA)

[21]. The TCIA is a publicly available open-access database

provided by the National Cancer Institute. The 89 chest CT

cases were divided randomly into a training dataset and an

external test dataset. The training dataset contained 45 chest

CT cases and the test dataset contained 44 chest CT cases.

Super-Resolution Convolutional Neural Network

Figure 1 shows an overview of the SRCNN [15, 16] that was

used in this study. The SRCNN scheme requires bicubic

interpolation-based upscaling, which is the only pre-

processing step involved. The SRCNN is a feed-forward net-

work that can be divided into three steps—patch extraction

and representation, non-linear mapping, and reconstruction.

The patch-extraction-and-representation part extracts

patches from the bicubic interpolated low-resolution input im-

age. The first layer is expressed as follows:

F1 Yð Þ ¼ max 0;W1*Y þ B1ð Þ; ð1Þ

where F,Y,W1, and B1 represent the mapping function, the

bicubic interpolated low-resolution image, the filters, and the

biases, respectively. W1, which has a size of c × f1 × f1, corre-

sponds to n1 filters, where c is the number of channels in the

input image, n1 is the number of filter sizes, and f1 is the spatial

size of a filter. The output is composed of n1 feature maps, and

Fig. 1 Architecture of the super-

resolution convolutional neural

network (SRCNN) scheme used

in this study
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B1 is an n1-dimensional vector. The rectified linear unit

(ReLU, (max(0, x)) [22] was used as an activation function.

In the non-linear mapping step, the n1-dimensional feature

vectors are mapped non-linearly to another set of n2-dimen-

sional feature vectors, called the high-resolution features. The

operation of the second step is as follows:

F2 Yð Þ ¼ max 0;W2*F1 Yð Þ þ B2ð Þ: ð2Þ

HereW2, which has a size of n1 × f2 × f2, corresponds to n2
filters, and B2 is an n2-dimensional vector.

The last reconstruction part aggregates these high-

resolution features to generate the final high-resolution image.

The operation of the last layer is as follows:

F Yð Þ ¼ W3*F2 Yð Þ þ B3: ð3Þ

Here W3, which has a size of n2 × f3 × f3, corresponds to c

filters, and B3 is a c-dimensional vector.

Training Phase

Our experiments using the SRCNN scheme can be divided

into a training phase and a testing phase. In the training phase,

the mapping function F requires the estimation of network

parametersΘ = {W1,W2,W3, B1, B2, B3}. Let us define the re-

constructed images F(Y;Θ) and the ground-truth high-resolu-

tion image X. The loss function L, which was the mean

squared error used in this study, is given as follows:

L Θð Þ ¼
1

n
∑
n

i¼1

F Y i;Θð Þ−X ik k2; ð4Þ

where n is the number of training images, Xi is a set of high-

resolution images, and Yi is the set of their corresponding low-

resolution images. The loss function was minimized using sto-

chastic gradient descent with the standard backpropagation.

To explore an appropriate training scheme for improving the

image quality of high-resolution images, two different training

datasets, i.e., 91 non-medical images and 45 chest CT images,

were used. Dong et al. proposed that the typical and basic

SRCNN configuration is f1 = 9, f2 = 1, f3 = 5, n1 = 64, and

n2 = 32 [16]. Therefore, this SRCNN configuration was used

in this study. In the training phase, the SRCNN scheme was

trained using each training dataset. Finally, two types of trained

SRCNN models, which were trained using non-medical image

dataset and chest CT image dataset, were obtained.

Testing Phase

Figure 2 shows an overview of the testing phase. Moreover,

the usefulness of the super-resolution technique has al-

ready been demonstrated in computer vision. However,

Fig. 2 Overview of the testing phase of the SRCNN scheme

Fig. 3 Comparison of the PSNR between the linear interpolation

methods and the SRCNN scheme (the SRCNN trained using the CT

images), for a magnification of ×2. The SRCNN scheme yielded

significantly higher PSNR than the linear interpolation methods

(p < 0.001)
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for the application of the super-resolution technique to

medical images, the evaluation of the super-resolution

technique in medical images poses a difficult problem ow-

ing to the uncertainty in terms of accuracy of the resulting

high-resolution image obtained with the super-resolution

scheme. Therefore, the following image-restoration

experiment was performed using the down-sampled origi-

nal test image.

In the testing phase, 44 chest CT images (matrix size:

512 × 512 pixels) were used. First, two types of low-

resolution images were generated by down-sampling per-

formed using the bicubic interpolation method. The matrix

Fig. 6 Comparison of the SSIM between the linear interpolation

methods and the SRCNN scheme (the SRCNN trained using the CT

images), for a magnification of ×4. The SRCNN scheme yielded

significantly higher SSIM than the linear interpolation methods

(p < 0.001)

Fig. 4 Comparison of the SSIM between the linear interpolation

methods and the SRCNN scheme (the SRCNN trained using the CT

images), for a magnification of ×2. The SRCNN scheme yielded

significantly higher SSIM than the linear interpolation methods

(p < 0.001, or p < 0.05)

Fig. 5 Comparison of the PSNR between the linear interpolation

methods and the SRCNN scheme (the SRCNN trained using the CT

images), for a magnification of ×4. The SRCNN scheme yielded

significantly higher PSNR than the linear interpolation methods

(p < 0.001)

Fig. 7 Comparison of the PSNR between the training of the SRCNN

using non-medical images (NM-SRCNN) and the training of the SRCNN

using CT images (CT-SRCNN), for a magnification of ×2. The CT-

SRCNN yielded significantly higher PSNR than the NM-SRCNN

(p < 0.001)
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sizes of the resulting low-resolution image were 256 × 256

pixels and 128 × 128 pixels. Next, the high-resolution images

were reconstructed from the down-sampled low-resolution

image by using the trained SRCNN scheme for a ×2 magnifi-

cation or for a ×4 magnification. Thus, the matrix size of the

resulting high-resolution image was the same size as that of

the original test image—512 × 512 pixels. Such experiments

enable us to assess whether the resulting high-resolution im-

age was correctly restored or not, in comparison with the

original image. Finally, the image restoration quality of the

resulting high-resolution image was quantitatively assessed

by measuring the image quality metrics using the original test

image as the ground-truth image.

Evaluation Methods

To quantitatively evaluate the resulting high-resolution images,

two image quality metrics were used, i.e., peak signal-to-noise

ratio (PSNR) [23] and structural similarity (SSIM) [24]. These

metrics are widely used for objectively evaluating the image

quality. PSNR is most commonly used as a measure of the

quality of noisy images [25]. SSIM indicates the similarity

between two images for assessing the perceptual image quality.

For a comparative evaluation of the SRCNN scheme and

the conventional linear interpolation methods, the same exper-

iments were performed using the liner interpolation methods,

i.e., the nearest neighbor, bilinear, and bicubic interpolations.

The image quality metrics of the SRCNN scheme on the test

dataset were compared with those of the conventional linear

interpolation methods.

Statistical Analysis

The statistical significance of the differences in the image quality

metrics between the SRCNN scheme and the linear interpolation

Fig. 10 Comparison of the SSIM between the training of the SRCNN

using non-medical images (NM-SRCNN) and the training of the SRCNN

using CT images (CT-SRCNN), for a magnification of ×4. The CT-

SRCNN yielded marginally higher SSIM than the NM-SRCNN.

However, the difference between the NM-SRCNN and the CT-SRCNN

was not statistically significant (p = 0.97)

Fig. 9 Comparison of the SSIM between the training of the SRCNN

using non-medical images (NM-SRCNN) and the training of the

SRCNN using CT images (CT-SRCNN), for a magnification of ×2. The

CT-SRCNN yielded marginally higher SSIM than the NM-SRCNN.

However, the difference between the NM-SRCNN and the CT-SRCNN

was not statistically significant (p = 0.99)

Fig. 8 Comparison of the PSNR between the training of the SRCNN

using non-medical images (NM-SRCNN) and the training of the SRCNN

using CT images (CT-SRCNN), for a magnification of ×4. The CT-

SRCNN yielded significantly higher PSNR than the NM-SRCNN

(p < 0.001)
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methods was tested using one-way analysis of variance and

Tukey’s post hoc test. The statistical significance of the differ-

ences in the image quality between the SRCNN trained using

non-medical images and the SRCNN trained using CT images

was tested by Student’s t test. All statistical analyses were con-

ducted using IBM SPSS Statistics version 22.0 (IBM Corp.,

Armonk, NY). For all comparisons, p < 0.05 was considered

to indicate a statistically significant difference. Data are present-

ed as mean ± standard deviation (SD).

Results

Comparison of Image Quality

Figures 3 and 4 represent the PSNRs and the SSIMs of the

linear interpolation methods and the SRCNN scheme (the

SRCNN trained using CT images), respectively, for a ×2 mag-

nification. As shown in these figures, the SRCNN scheme

demonstrated a performance superior to that of the three linear

interpolation methods. In the PSNR, the mean ± SD of the

nearest neighbor, the bilinear, the bicubic, and the SRCNN

scheme were 29.87 ± 1.70, 31.25 ± 2.02, 32.98 ± 2.41, and

37.42 ± 4.17 dB, respectively (Fig. 3). The differences in the

PSNR between the three linear interpolation methods and the

SRCNN scheme were statistically significant (p < 0.001). In

the SRCNN scheme, the mean ± SD of the SSIM was

0.920 ± 0.059, which was significantly higher than that of

the nearest neighbor (0.837 ± 0.060. p < 0.001), the bilinear

(0.843 ± 0.073, p < 0.001), and the bicubic (0.878 ± 0.068,

p = 0.045) (Fig. 4).

Figures 5 and 6 represent the PSNRs and the SSIMs of the

linear interpolation methods and the SRCNN scheme (the

SRCNN trained using CT images), respectively, for a ×4 mag-

nification. As shown in these figures, the SRCNN scheme also

yielded higher image quality compared to that of the three

linear interpolation methods for a ×4 magnification. In the

PSNR, the mean ± SD of the nearest neighbor, the bilinear,

Fig. 11 An example of the

reconstructed high-resolution im-

ages for a magnification of ×2. a

Low-resolution image, b nearest

neighbor, c bilinear, d bicubic, e

the SRCNN scheme (CT-

SRCNN), and f original test im-

age (the ground-truth image)
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the bicubic, and the SRCNN scheme were 25.04 ± 1.46,

26.01 ± 1.58, 26.76 ± 1.64, and 30.50 ± 2.42 dB, respectively

(Fig. 5). The differences in the PSNR between the three linear

interpolation methods and the SRCNN scheme were statisti-

cally significant (p < 0.001). In the SSIM, the mean ± SD of

the nearest neighbor, the bilinear, the bicubic, and the SRCNN

schemewere 0.590 ± 0.069, 0.627 ± 0.079, 0.663 ± 0.079, and

0.746 ± 0.079, respectively (Fig. 6). The differences in the

SSIM between the three linear interpolation methods and the

SRCNN scheme were also statistically significant (p < 0.001).

Comparison of Training Schemes

Figures 7 and 8 show a comparison of the PSNRs for the

SRCNN scheme trained using the non-medical image dataset

(NM-SRCNN) and the SRCNN scheme trained using the

chest CT image dataset (CT-SRCNN), for ×2 and ×4 magni-

fications, respectively. The mean ± SD of the CT-SRCNN

scheme was 37.42 ± 4.17 dB, which was significantly higher

than that of the NM-SRCNN scheme (34.07 ± 2.23 dB,

p < 0.001) for a ×2 magnification (Fig. 7). For a ×4 magnifi-

cation, the mean ± SD of the CT-SRCNN scheme was

30.50 ± 2.42 dB, which was also significantly higher than that

of the NM-SRCNN scheme (26.54 ± 1.57 dB, p < 0.001)

(Fig. 8).

Figures 9 and 10 show a comparison of the SSIMs for

the NM-SRCNN scheme and the CT-SRCNN scheme, for

×2 and ×4 magnifications, respectively. For a ×2 magnifi-

cation, the mean ± SD of the CT-SRCNN scheme was

0.920 ± 0.059, which was higher than that of the NM-

SRCNN scheme (0.910 ± 0.059) (Fig. 9). For a ×4 magni-

fication, the mean ± SD of the CT-SRCNN scheme was

0.746 ± 0.079, which was also higher than that of the

NM-SRCNN scheme (0.728 ± 0.076) (Fig. 10). The differ-

ence in the SSIM between the NM-SRCNN scheme and

the CT-SRCNN scheme was not statistically significant,

for both ×2 and ×4 magnifications (for a magnification of

×2, p = 0.99; for a magnification of ×4, p = 0.97).

Fig. 12 An example of the

reconstructed high-resolution im-

ages for a magnification of ×4. a

Low-resolution image, b nearest

neighbor, c bilinear, d bicubic, e

the SRCNN scheme (CT-

SRCNN), and f original test im-

age (the ground-truth image)
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Visual Examples

Figures 11 and 12 illustrate an example of the resulting

high-resolution images in the lung field obtained using

the three linear interpolation methods and the SRCNN

scheme (the SRCNN trained using CT images), for magni-

fications of ×2 and ×4, respectively. For a magnification of

×2, the SRCNN scheme yielded much sharper edges com-

pared to those obtained using the linear interpolation

methods. Visual assessment confirmed that the SRCNN

scheme restored close to the original image at a higher

level in comparison with the linear interpolation methods

(Fig. 11). For a magnification of ×4, the resulting high-

resolution image by the linear interpolation methods was

clearly a lower quality image in comparison with the orig-

inal image. In particular, the nearest neighbor generated an

over-smoothed image with a jagged artifact, whereas with

the application of the SRCNN scheme, the lung structures

could be observed in higher detail in the resulting high-

resolution image as compared to that with the linear inter-

polation methods (Fig. 12).

Figures 13 and 14 illustrate an example of subtraction im-

ages that are obtained from the high-resolution image by each

method from the original reference image, for magnifications

of ×2 and ×4, respectively. These figures visualize the com-

ponents lost from the original image for each method. As

shown in these figures, the conventional linear interpolation

methods lost most of the high-frequency components due to

up-sampling. On the other hand, the SRCNN scheme yielded

high image quality without compromising the high-frequency

components in the original image, for magnifications of both

×2 and ×4.

Discussion

In this study, the SRCNN scheme, which is the state-of-

the-art super-resolution method in computer vision, was

used for enhancing image resolution in chest CT images.

The SRCNN scheme used in this study yielded significant-

ly higher image quality over the conventional linear inter-

polation methods, for magnifications of both ×2 and ×4.

These results indicated that the SRCNN scheme signifi-

cantly outperforms the linear interpolation methods for en-

hancing image resolution in chest CT images. Recent stud-

ies have shown that similar results were obtained in non-

medical images [16], and in chest radiographs [17, 18].

Fig. 13 An example of the

subtraction images between the

original test image and a nearest

neighbor, b bilinear, c bicubic,

and d the SRCNN scheme (CT-

SRCNN), for a magnification of

×2

448 J Digit Imaging (2018) 31:441–450



Two types of training schemes—using non-medical images

or chest CT images—were used for training the SRCNN. In

PSNR, the training of the SRCNN using CT images yielded

significantly higher image quality than the training of the

SRCNN using non-medical images. In SSIM, the training of

the SRCNN using CT images yielded marginally higher im-

age quality than the training of the SRCNN using non-medical

images. These results suggest that the training of the SRCNN

scheme using a dataset that is similar to target images provides

an effective training method for improving the image quality

of the reconstructed high-resolution images.

The reconstructed high-resolution image obtained with the

SRCNN scheme was highly restored compared to the original

reference image, in particular for a magnification of ×2. The

subtraction image obtained from the high-resolution images

by using each method from the original reference image

showed that the SRCNN scheme yielded high-resolution im-

ages that were very close to the original reference image,

without any obvious artifacts. These results demonstrate that

the SRCNN scheme provides an effective and robust approach

for enhancing image resolution in CT images without gener-

ating obvious artifacts. Therefore, the SRCNN scheme may

provide a potential approach for yielding a high-resolution CT

image from a standard CT image.

However, this study has a few limitations. A previous

study on non-medical images showed that the architecture

of the deeper SRCNN model did not result in high per-

formance because it was difficult to set appropriate learn-

ing rates in the training of the deeper SRCNN model [16].

Therefore, the basic and typical SRCNN configurations

were used in the proposed computer vision study.

However, to use the SRCNN scheme for other CT images,

further study is needed to identify the optimal network

configuration for CT images.

Additionally, to use the SRCNN scheme, the input images

are required to have the same 2D sizes as well as non-medical

images. Therefore, in this study, the SRCNN scheme was

applied to 2D CT images. For enhancing image resolution in

volumetric 3D CT images, it is necessary to design a new 3D

SRCNN that can learn the 3D volumetric data directly.

Furthermore, the number of training images in this

study was relatively small. In general, deep learning ben-

efits from training on a large dataset. The SRCNN scheme

can also deal with a large training dataset in comparison

with existing example-based super-resolution methods.

Therefore, the results of this study must be validated

using a larger dataset. These issues will be addressed in

for future studies.

Fig. 14 An example of the

subtraction images between the

original test image and a nearest

neighbor, b bilinear, c bicubic,

and d the SRCNN scheme (CT-

SRCNN), for a magnification of

×4
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Conclusions

In this study, the SRCNN scheme was applied for enhancing

image resolution in chest CT images. The experimental results

obtained using clinical CT images demonstrated that the

SRCNN scheme significantly outperforms conventional linear

interpolation methods when used for enhancing the image

resolution in chest CT images. In the experiments conducted

as part of this study, the SRCNN scheme could restore very

close to the reference image. The results demonstrate the po-

tential applications of the SRCNN scheme for generating

high-resolution CT images from standard CT images.
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