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After the training stage and the formation of reference
sets of robust noise and the spectral characteristics of the
analysed noisy signals, as well as the spectral characteristics
of the noise, a comparison is made between newly received
object monitoring estimates from current noisy signals. At
the same time, a decision is made as to whether there is
a risk of changes in the technical state of the controlled
object or not. In the first case, the object goes to the
rank, requiring the attraction of mobile monitoring and
diagnostic systems, through which the final analysis and
decision-making is carried out. In the second case, the
monitoring of the object continues.
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APPLICATION OF SUPER-STICKING
ALGEBRAIC OPERATION OF VARIABLES

FOR BOOLEAN FUNCTIONS MINIMIZATION
BY COMBINATORIAL METHOD

Pozensnymo nosy npouedypy anzebpu 102iku — cynep-CKIeBaHHI SMIHHUX, KA 3ACMOCOBYEMbCSL
npU HAA6HOCMI Y CMPYKMYPi mabiuyi icmunnocmi nogroi 6inapnoi KoMOIHAmMoPHOi cucmemu 3 NOBMo-
pennsm abo nenoenoi 6inapnoi kombinamopnoi cucmemu 3 nosmopennsm. E¢pexmusnicmo anzebpuunoi
onepayii Cynepcrieiosanis SMIHHUX CYMMEBO CNPOUYE AJ2OPUMM MIHIMI3ayii Oyiesux GyHKYill, w0
003607156 30UICHIOBAMU PYUHY MIHIMI3AUII0 QYHKYTT 3 yuciom sminnux do 10.

Kmeuosi cnosa: Oyiesa Qyukyis, memod minimizauii, minimizayis noziunoi Gynxuii, 6.10K-cxema
3 NOBMOPEHHAM, MIHMEPMU, CYNEP-CKICIOBAHNA 3IMIHHUX.

1. Introduction

Boolean functions minimization is still popular in various
areas of digital technologies, such as PLA design, built-in
self-test (BIST), control system design and the like.

The problem of disjunctive normal form (DNF) mini-
mization is one of the multiextremal logical-combinatorial
problems and reduces to an optimal reduction in the
number of logical elements of the gate circuit without
loss of its functionality. It should be noted that in the
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general formulation this problem has not yet been solved,
but it has been well studied in the class of disjunctive
conjunctive normal forms (DCNF).

The disadvantages of the known methods for Boolean
functions minimization are associated with a rapid growth in
the amount of computation, which results in an increase in
the number of computational operations, and, consequently,
in the increase in the number of variables of the logical
function. In particular, the Carnot map is usually difficult to
recognize with an increase in the number of variables greater
than four or five, so this method is inexpedient to use with
a large number of variables. Despite the great perfection
of the Quine-McClusky method compared to the Carnot
maps, it also has limited practical application due to the
exponential growth of calculation time with the increase in
the number of variables. It can be shown that for a func-
tion of n variables, the upper limit of the number of basic
implicants is 3"In(n) [1]. For example, it is known that for
n=32 the number of basic implicants can exceed 6.5x10".

The result of Boolean function minimization depends
on the speed of the computing device, its reliability and
power savings.

The peculiarities of the combinatorial method [2] are
in the greater informativeness of the process of solving
the problem in comparison with the algebraic method of
the function minimization, due to tabular organization and
the introduction of the image-transformation apparatus.
The object of solving the problem of Boolean function
minimization by a combinatorial method is a block-scheme
with repetition, which properties, in turn, allow the rules
of the algebra of logic to be supplemented with new rules
for simplifying the logical function.

The algorithm for Boolean function minimization is
one of the central practically important problems that
arise when designing computing devices. Therefore, the
study of new rules of the algebra of logic to simplify the
algorithm for Boolean function minimization without losing
its functionality with increasing the number of variables
is relevant.

2. The ohject of research
and its technological audit

The object of simplification of Boolean function mini-
mization problem by a combinatorial method is a new
procedure for the algebra of logic — super-sticking of vari-
ables, which is performed if there is a complete binary
combinatorial system with repetition or an incomplete
binary combinatorial system with repetition in the truth
table structure.

The procedure for reducing the complete perfect dis-
junctive normal form (PDNF) of a logical function gives
unity. Since the complete PDNF uniquely determines the
complete binary combinatorial system with repetition, and
vice versa, this gives grounds to delete all blocks of a com-
plete binary combinatorial system with a repetition from
a truth table which structure allows to apply rules for
super-sticking of variables.

The procedure for simple sticking of variables is a spe-
cial case of the procedure for super-sticking of variables.
Variables that form a complete binary combinatorial sys-
tem with repetition or an incomplete binary combinatorial
system with repetition can occupy any bit of the minterm
of the logical function.

The effectiveness of the algebraic operation of super-
sticking of variables greatly simplifies the algorithm for
Boolean function minimization and allows manual minimi-
zation of functions with a number of variables up to 10.
The average complexity of the algorithm for logical func-
tion minimization by combinatorial method using the su-
per-sticking procedure for variables is estimated from the
growth dynamics of the number of image transformations
of the combinatorial minimization method with increasing
the bit capacity of the Boolean function. For n<7, the
dynamics is characterized by the linear law O(n), and
with increasing number of variables up to 10 — by O(n?).

Disadvantages of the combinatorial method of manual
minimization using the procedure of super-sticking of vari-
ables are associated with the rapid growth of algorithmic
complexity with increasing number of variables of the logical
function. Function minimization with a number of vari-
ables more than 12+14 requires updating the library of
submatrices on which the super-sticking procedure is based.

3. The aim and ohjectives of research

The aim of research is simplification of the combinato-
rial method of Boolean function minimization using a new
procedure for algebra of logic — super-sticking of variables
and establishing the properties of such procedure.

To achieve this aim, it is necessary to solve the fol-
lowing tasks:

1. To establish the adequacy of the application of the
algebraic procedure of super-sticking of variables for Boolean
function minimization process.

2. To determine the properties of the operation of super-
sticking of variables when using structures of a complete
binary combinatorial system with repetition and an in-
complete binary combinatorial system with repetition.

3. To verify the combinatorial method when applying
the rule of super-sticking of variables and evaluate the
complexity of the algorithm for Boolean function mini-
mization by combinatorial method.

4. To conduct a comparative analysis of the perfor-
mance and complexity of algorithms for Boolean functions
minimization obtained using the super-sticking rule for
variables, with other minimization methods.

4. Research of existing solutions
of the prohlem

A classical object-oriented algorithm for Boolean func-
tion minimization using Carnot maps is described in [3],
which presents language stereotypes and class diagrams, as
well as a performance analysis of a unified Boolean func-
tion minimization model. In [4], cubic methods of Boolean
functions minimization are considered as yet another vari-
ant of searching for a minimal function. The main aim
of the paper [4] is taking advantage of the cubic method
for minimization of the logical functions, in particular by
achieving the minimum cost of the solution.

A fast and effective heuristic algorithm for Boolean
functions minimization (ESOP) is considered in [5]. This
algorithm is based on new transformations of the cube.
Its authors prove that the quality of the corresponding
coverage corresponds, and in some cases exceeds the cur-
rent level of heuristic minimization. In [6], an extended
QMC algorithm (e QMC) is presented, which improves
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the performance of Boolean function minimization by the
Quine-McCluskey method. The paper demonstrates the
increase in speed and performance of computer memory
by simulating the function minimization process.

In the publication [7] the effective algorithm of synthesis
and ESCT (Exclusive or Sum of Complex Terms) exact
minimization of Boolean functions of not more than six
variables is presented. This kind of logical expressions can
be turned into a special honeycomb architecture, which
is called the architecture of the reverse cascade wave. It
is proved that such topology is reversible and can help
in the development of quantum circuits. The proposed
algorithm is the first one that gives a solution to the
problem of finding minimum ESCT expressions for switching
functions to six input variables. A comprehensive survey
of methods for logical functions minimization is demon-
strated in [8]. Methods are considered by their purpose,
methodology, implementation and benefits. A comparison
of the approaches taken to minimization of logical func-
tions is presented.

A new technique for the two-step optimization of com-
binational logic is described in [9]. The technique can be
applied to arbitrary combinational logic tasks, and often
brings improvements even after optimization by standard
methods. This optimization technique is used to improve
software performance. In [10], a method is shown where
the optimization process can include not only the search
for an equivalent logical expression, but also the definition
of specific conditions under which logical expressions can
be further reduced. These types of elements in the logical
design are considered as the «degree of freedom». In such
cases, the user can optimize the given design based on the
degree of freedom. Therefore, the search for alternative
solutions is desirable, since it can eventually provide the
optimal Boolean expression. In [11], multivalued logic is
presented as a generalization of classical Boolean logic
at higher levels of abstraction, where the variables often
vary over a set of symbolic codes. Use of multi-valued
logic can make the task of design more intuitive. The
designer can first manipulate and optimize the meaning-
ful logic, and then perform the appropriate encoding and
output the problem to Boolean algebra. This allows to
better study the design space, because binary coding is
postponed and many-valued optimization does not affect
the reliability of such solutions in the final stage. In the
work attempts to build multivalued integrated circuits (ICs)
are described, starting from 3 large designs can be traced
back to 1970. In [12], the optimization of the scheme of a
2-bit comparator is presented by comparing different logical
styles that are used to design the comparator circuit. The
comparison between the different designs is calculated by
modeling, which is performed for 90 nm technology in the
Tanner EDA Tool. After simulating all projects, the final
results are obtained with respect to power consumption,
signal delay, and power. In particular, they compare PTL,
NMOS, CMOS technology.

In contrast to the publications [3—12], in this paper,
the object of simplifying the process of Boolean function
minimization is a new procedure of the algebra of logic —
super-sticking of variables, which occurs when there is
a complete or incomplete binary combinatorial systems
with repetition in the truth table structure. The proce-
dure for reducing the complete perfect disjunctive normal
form (PDNF) of a logical function gives unity. Since the

complete PDNF uniquely determines the complete binary
combinatorial system with repetition, and vice versa, this
gives grounds to delete all blocks of a complete binary
combinatorial system with a repetition from a truth table
which structure allows to apply rules for super-sticking
of variables.

The mathematical apparatus of the repetition block-
design makes it possible to obtain more information about
the orthogonality, contiguity, uniqueness of truth table
blocks (combinatorial system). Equivalent transformations
by graphic images in the form of two-dimensional matrices
have a large information capacity in their properties, so
they can effectively replace verbal procedures of algebraic
transformations.

5. Methods of research

5.1. Binary combinatorial system with repetition. If a set
A is given, then it is possible to consider a new set M(A) —
the set of all its subsets. The set of all subsets of A
having & elements is denoted as My(A).

Example 1. Let A={a, b, c}, then:

M(A)={{a}.{o}{c}{a b} {ach.{b.c}{ab.c}.o);
={{ab}{ach{bel)

Let’s convinced that:

N(M(A))=8=2%, N(M,(A))=3.

The number of all k-element subsets of a set of 7 ele-
ments is equal to:

n!

N(Mk(A)):C,é’:m.

The following equality also holds:

ic,f;:m (1)

k=0

Since C! — the number of k-element subsets of a set
of n elements, the sum on the left-hand side of expres-
sion (1) is the number of all subsets.

Example 2. By formula (1), calculate the number of
all subsets of the set A={a,b,c,d}.

N(M(A))=C{+Ci+C+Ci+Ch =
=1+4+6+4+1=16=2"%

Let’s note that the set A={a, b, c,d}, except for the re-
calculation of its elements, can also determine the numbers
of the positions on which the element o is located. For
example, a can mean the first position, b can mean the
second position of the set A={a,b,c,d}, etc. A subset of
the set A={a, b,c,d} there will be subsets containing the
element o at k positions, £=0,...,n, where n — the number
of positions of the set A. In general, the element o can
occupy several positions on the set A, thus the element o
is repeated on the set A.

Let ao=1, then the positions on which the element o
is absent are affected by zero.
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Example 3. For set A={a,b,c,d}, which determines the
position numbers, let’s take a.=1. Then the subsets of the
set A will have the following form:

(0,0,0,0); (1,0,0,0);
(0,0,0,1); (1,0,0,1);
(0,0,1,0); (1,0,1,0);
(0,0,1,1); (1,0,1,1);
(0,1,0,0); (1,1,0,0);
(0,1,0,1); (1,1,0,1);
(0,1,1,0); (1,1,1,0);
0,1,1,1); (1,1,1,1). (2)

The number of all k-element subsets of the set A=
={a,b,c,d}, which determines the position numbers, is cal-
culated by formula (1).

N(M,(A))=C) =1,
N(M,(A))=C}=4,
N(M,(A))=C?=6,
N(M,(A))=C3 =4,
N(M;(A)=Ci=1
N(M(4))= N (Mo (4))+ N (M:(4))+

+ N(M,(A))+N(M;(A))+N(M,(A))=16.

The configuration (2) is a complete combinatorial system
with the repetition of the element o, which denote as:

2-(n, b)-design,

where n — the block width of the system; & — the num-
ber of blocks of the complete system, determined by the
formula — b=2", the number 2 in front of the brackets
means the binary structure of the configuration (2). For
example, 2-(4,16)-design is a complete binary combinato-
rial system with repetition, consisting of 4-bit blocks, the
number of blocks is 16.

— the second rule:

00xy
01lxy

] P 4
101y Xy (4)

11xy

— the third rule:

0
tye = xyz. 5)

lxyz

The first rule uses 2-(3,8)-design. The second rule
uses 2-(2,4)-design. The third rule uses 2-(1,2) design.
The procedure for reducing the total perfect disjunctive
normal form (PDNF) of the logical function gives unity.
For example, reducing the 3-bit full PDNF looks like this:

X1 Xy X3 +;1;2x3 +;1x2;3+;1x2x3 +X1;2;3+
F X XgXg + Xy Xo Xy + Xy XgXg =

=20, 0, (264 203 )+ 0,0, (305 + 03 )+

+ x1;2(;3+x3)+x1x2(;3+x3):
:;1972"'9713\72 +x1;2+x1x2 =

:x1(x2+x2)+x1(x2 +3¢2):x1+x1 =1.

Since the complete PDNF uniquely determines the com-
plete combinatorial system with the repetition of 2-(n,b)-
design and vice versa, this gives grounds to remove all blocks
of the complete combinatorial system from matrices that
demonstrate super-sticking rules (3)—(5). Further, applying
the law of idempotency to a variable x (xy; xyz) let’s ob-
tain the result of contraction by the rule of super-sticking
of variables. Rule (5) manifests itself as a simple sticking
of variables and is a particular case of rules (3) and (4).

The variables x, y, z, which form a complete combi-
natorial system with a repetition of 2-(n,b)-design, can
occupy any discharge of the minterm of the logical function.

For a 5-bit logical function, the rules for super-sticking
of variables are:

— the first rule:

0000 x
5.2. Algebraic operation of super-sticking of variables. 0001 x
Combinatorial properties of the block-scheme with repeti-
tion allow to supplement the rule of the algebra of the 0010w
logic of sticking of variables [2], the rule of super-sticking 0011«
of variables. 0100x
For a 4-bit logic function, the super-sticking rule for
. . 0101 x
variables has the following form:
— the first rule: 0110w
0111
Tlax (6)
000 x 1000 «x
001«x 1001 x
010« 1010x
011 1011
X o 3) 0 X
100 x 1100«
101 x 1101 x
110« 1110«
111x 1111x
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— the second rule:

000xy
001xy
010xy
011lxy
100xy
101xy
110xy
111xy

=y (7N

— the third rule:

00xy:z
01lxyz
= ; 8
10xyz e )

11xyz
— the fourth rule:

‘0 tye t‘zxyzt. )
lxyzt

The first rule (6) uses 2-(4, 16)-design. The second
rule (7) uses 2-(3, 8)-design. The third rule (8) uses 2-(2, 4)-de-
sign. The fourth rule (9) uses 2-(1,2)-design.

The variables x, y, z, ¢, which form a complete binary
combinatorial system with a repetition of 2-(n, b)-design, can
occupy any bit of the minterm of a 5-bit logical function.

Another variant of applying the rule for super-sticking
of variables is shown by the combinatorial configuration
where the combinatorial system 2-(3,8)-design is used in
the configuration variant, when there is one column with
the same variables y, and the second column contains
equally the variables x and x:

000
001xy
010xy
011xy/ |0 x|
100xy

101xy

110xy
111xy

Yy

2RI R

(10)

Similar to the rules for super-sticking of variables for
functions with four or five variables, it is possible to represent
super-sticking rules for functions of six or more variables.

In general, the configuration of the truth table of a given
function, in addition to the submatrix of a complete com-
binatorial system with a repetition of 2-(n, b)-design, con-
tains submatrices of an incomplete combinatorial system
with a repetition of 2-(n,x/b)-design. In this case, x — the
number of blocks of an incomplete combinatorial system
with repetition. The properties of an incomplete combi-
natorial system with a repetition of 2-(n, x/b)-design also
allow the establishment of rules that ensure the effective
Boolean functions minimization.

Let’s single out a class of incomplete combinatorial
systems with a repetition of 2-(n, b/2)-design, in which the
number of blocks is half of the possible number of blocks

of a complete combinatorial system with repetition. For
2-(n, b/2)-design for n=3, the minimization rules are:

x001
011
A" “lx 1]
x101
x111
x000
010
B. |* “lx 0]
x100
x110
x100
x101
C. =lx1 |
x110
x111
x000
001
p. | “lx0 |
x010
x 011
x010] |01
E x011_x01 _x01
“lx100] [x10 | |x10
x101] |x10
FOLH A O g w0t
x100] |[x10
E 101= 10 =lx10 [=|x10
* * x110 |x1 0
x110] |[x110

Rules like A—F exist for all possible 2-(n, b/2)-design
with 2-(n, b)-design.

For other cases of a 4-bit logical function, using the
2-(n,x/b)-design structure, the rules for minimizing a logi-
cal function can be, for example, the following:

000
001
x100 x00
" =[x 10 (11)
x101
x 11
x110
x111

In the first matrix of the block-design (11), there
is a complete combinatorial system with a repetition of
2-(3, 6/8)-design. Further minimization of the block-de-
sign (11) is possible in two ways, each of which gives
the same result:

x 00
x 00 x 0
ct1 | *
x 00
x 0 x 0
2) lx10 |= TR .
ct1 |7 *

In the two above variants, the first operation of sticking of
variables is performed, the second operation of variable sub-
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stitution is performed. As a result, for the block-design (11)
let’s obtain the following rule of function reduction:

x000
x001
100
101
110
111

x000
x001 [x00
2.lx011|=lx101
x101 | 11
x 111

(12)

x 0
x 1 '

X
X
X
X

(13)

or

x000
x001 [«x00
x011=x011]
x101 |1 1
x111

(14)

In the first matrix of the block-design (13), there is a com-
plete combinatorial system with a repetition of 2-(3, 5/8)-de-
sign. Further minimization of the block-design (13) is possible
in two ways, each of which gives the same result:

x00 x00
0 leto1]=lx 01f=fF20 |
oot e 11| ® 0
200 | [x00 | |¥00
c101]=(x1 ="t I
oot e o1 [©OME
2) x 01
x 00
—lx 1 1=x00«
N { X 1

As a result, for the block-design (13) let’s obtain the
following rule for the function reduction:
x000

(15)

(16)

In the first matrix of the block-design (16), there
is a complete combinatorial system with a repetition of
2-(3,7/8)-design. Further minimization of the block-de-

sign (16) is possible in two ways, each of which gives
the same result.

00x 00x 00x 0 x
1) 101 x0{=]0 x 0|= x 0]= x 0],
1 x 1 x 1 x 1 x
00x 00x 0 x 0 x
2) 101 x0l= 1x0[=| 1x0|= x 0].
1 x 1 x 1 x 1 x

As a result, for the block-design (16) let’s obtain the
following rule of function reduction:

00x0
00x1
01x0 0x
10x0|= x 0. i
10x 1 |1 «x
11x0
11x1
00x0
00x1 |00
4. T (18)
10x 1 |1 «x1
11x1
xy 01
xy 01| |[xy 1
5 |[xy 10|= = . (19)
xyl xyl
xyl1
xy 01 01 0
6. [xy10]=|"" 0=xy J. (20)
x X
xy00 Y Y
xyl1 11 1
7 leytol=|"Y =T 1)
xy O |xy O
xy00
xyl1 11 1
8 lxyot|=|"? =TY | (22)
xy0 xy0
xy00

Rules for converting block-design (19)—(22) allow the
establishment of new minimization rules, for example:

x§01
xytol [xy 1
o l[xytit_|ryt |_|¥ 1« (23)
xy01 |xy 1 v 1
xy10] |xyl
xyl1

Rules A-F, (12), (15), (17)—(23) constitute a library
of rules for the process of Boolean functions minimization
as standard procedures, so applying a separate such rule
to variables of a Boolean function reduces to the imple-
mentation of a single algebraic transformation.

5.3. 4-hit Boolean functions minimization. Example 4. To mi-
nimize the logic function F (x1,x2,x3,x4) by the combinatorial
method given by the following truth table (Table 1) [13].
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Table 1
The truth table of a logical function F(xy,xo,x3,x4)

No. | x X2 | xz3 | x4 F | No. | xy X2 | x5 | x4 F
0 0 0 0 0 1 1 0 0 0 0
1 0 0 0 1 1 1 0 0 1 1
2 0 0 1 0 1 101 1 0 1 0 1
3 0 0 1 1 1 11 1 0 1 1 1
4 0 1 0 0 0D |12]) 1 1 0 0 0
5 0 1 0 1 0|13 1 1 0 1 1
B 0 1 1 0 1 14 1 1 1 1 0 1
7 0 1 1 1 0 J15] 1 1 1 1 1

Let’s make the perfect disjunctive normal form (PDNF)
of the given function in blocks for which the function
gets the value of one, that is, for the sets 0, 1, 2, 3, 6,
9, 10, 11, 13, 14, 15.

F (261,202,203, ) = 2 25 265 204 2 265 250+

X XpX3 X4 + Xy XXX + x1x2x3 X4+
2,25 x3x4 + X x2x3 X+ x2x3x4 +

XX X3 X+ X1 X9 X5 X4 + Xy Xp X3 Xy

The first step is sticking, substituting and generalizing
sticking of variables. With the many variants of minimiza-
tion, obtained in the first stage, let’s consider two options
for minimizing the 4-bit function.

Option 1: minimization of the function using the rule of
super-sticking of variables in the presence of a complete binary
combinatorial system with a repetition of 2-(n, b)-design.

00000
110001
210010
310011
60110
91001:011020 _
10{1010
111011
13(11101
1411110
1511111
00

(24)

For blocks 0-3 of the first matrix of the block-de-
sign (24), a second super-sticking rule (4) is used, where
there is a complete combinatorial system with repetition
2-(2, 4)-design; block 6 does not change; for blocks 9-15,
the super-sticking rule (23) is used, where there is a com-
plete binary combinatorial system with a repetition of
2-(3, 6/8)-design. The result of the super-sticking operation
is recorded in the second matrix of the block-design (24).

Algebraic transformations of the second matrix (the
result of the transformation is written in the third matrix):

— substitution of variables in the first and second blocks

of the second matrix of the block-design (24):

X1 Xy +X1XZX;X4—X1(XZ+XZX;X4)

=X (XQ +.7C3x4): X1 (xZ +X1X3X4),

00 00

- .
0110 0 10
Algebraic transformations of the third matrix, the result
of which is written in the fourth matrix:
— substitution of variables in the second and fourth
blocks of the matrix of the block-design (24):

X1X3X4 + X1 X3 = X3 (x1 Xy +X1):

=X3 (JQ +X1)= X1 X3+ X3Xy,

Algebraic transformations of the fourth matrix, the
result of which is written in the fifth matrix:
— generalized sticking of the variables of the 2nd, 3rd

and 4th blocks of the 4th matrix 3 (24):

X3 X5+ XX + X X5 = Xy X4 + XX

10 10
1 1 =1 1.
1 1

As a result, let’s obtain the minimum function:

F=ux,2,+x0,+X3%,. (25)

Option 2: minimization of the function using the super-
sticking rule for variables in the presence of an incomplete
binary combinatorial system with a repetition of 2-(n, x/b)-
design.

In blocks 1-5 of the first matrix of the block-design (24),
let’s select the left column with common zeros. The other
three columns will form an incomplete combinatorial sys-
tem with a repetition of 2-(3, 5/8)-design. To minimize
blocks 1-5, let’s use the super-sticking rule (13):

0000

0001 [000

0010|=(001 :‘8(1)10‘:‘3010"
0011 0110

0110

In blocks 6-11 of the first matrix of the block-de-
sign (24), let’s select the left column with common units.
The other three columns will form an incomplete com-
binatorial system with a repetition of 2-(3, 6/8)-design.
For blocks 6—11 let’s use rule (23):

1001
1010
1ot 1 1
1101 _‘ ‘
1110
1111

;SS
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Adding the results of minimizing 1-5 and 6-11 blocks
into one matrix, let’s obtain the third matrix of the block-
design (24):

00

0 10
F=

1 1

1 1

The minimization of the matrix F is analogous to the
procedure for minimizing the first variant.

The second step is the verification of the obtained mini-
mized function (25) using the original truth table (Table 1).

The minimized logic function (25) satisfies the original
truth table (Table 1).

Table 2 presents the results of the F(a,x5,25,%;) func-
tion minimization by means of an acyclic graph [13] and
a combinatorial method.

Table 2

The result of F(xq,xz,x3,%;) function minimization

Using an acyclic graph Using combinatorial method

F =X, X5 + X X4 + X1 X3 X4 + X1 XpX5 X4 F =X %+ XXy + X3 X,

Considering Table 2, it is possible to see that the com-
binatorial method gives a function with a smaller number
of input variables.

Example 5. To minimize by a combinatorial method
a logical function [14]:

F (26,200,205, ) = (0,0,1,1,1,0,1,1,1,1,1,1,0,0,0,1).

Let’s compile the truth table of a given 4-bit function
from the blocks at which the function receives the value
of 1, that is, for the sets: 2, 3, 4, 6, 7, 8, 9, 10, 11, 15,
and minimize:

210010
310011

410100

610110 (001 01 01
70111 jo1 of [0t o] [0t 0
811000 [10 110 1o
911001 111 111 11
101010
11{1 011
1501111

To blocks 8—11 (highlighted in red) of the first matrix,
a rule of super-sticking of variables is applied, where there
is a combinatorial system of 2-(2, 4)-design. Simple sticking
variables are highlighted in colors. Substitution (incom-
plete sticking) of the variables is carrying out in the last
two matrices.

As a result, let’s the minimum function:

F=x204+X25X 4+ X5X5 + X304,
Table 3 shows the results of F(x;,25,%3,%,) function

minimization by means of parallel splitting of the con-
juncterms [14] and the combinatorial method.

Tahle 3
The result of F(xy,x2,x3,x4) function minimization

The method of parallel splitting

. Combinatorial method
of conjuncterms

F = x.x, + X1Xp X4 + Xy X3 + X3X, F = x,x5 + X1X3 %4 + XpX3 + X3X,4

Considering Table 3 it is possible see that both func-
tions have the same parameters and undergo verification,
although they differ in the composition of the variables
in the third implicants. Example 5 demonstrates the less
computational complexity of Boolean function minimiza-
tion by combinatorial method.

Example 6. To minimize the logical function given in
canonical form by combinatorial method [15]:

F (201,200,203, 20,)=(0,1,6,8,11,14,15).

00000

110001
0001 [000

60110
000 000
F=|8]1000|= = .
110 110

111011
1 111 11

1411110

1511111

The results of function minimization with the help of
parallel splitting of conjuncterms [15] and combinatorial
method are presented in Table 4.

Table 4

The result of F(xq,x2,x3,x;) function minimization

The method of parallel splitting

. Combinatorial method
of conjuncterms

ooo
ooo
110

1 11

{(0o0 ~),(~ 000),(~ 110),(1 ~ 11)}

In Table 4 it can be seen that the results of minimiza-
tion of the two compared methods are the same.

Coincidence and the minimization indicator ky/k =4/12
is coincided, where k, — the number of simple implicants;
k; — the number of input variables.

However, the computational complexity of minimi-
zing the Boolean function by a combinatorial method
is less.

Example 7. To minimize the system of 4-bit Boolean
functions f;, /5, /5 [14] by combinatorial method:

fi=2,5,6,13,14,
f=5713,14,
f,=2,6,7,13,15.

Let’s compile the truth table of a given system of 4-bit
functions from blocks for which the function gets the value
of one (Table 5).
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Tahle 5
The truth table of a system of Boolean functions £, £, f

x Xo Xz X4 f 2 f
2 0 0 1 0 1 0 1
5 0 1 0 1 1 1 0
6 0 1 1 0 1 0 1
7 0 1 1 1 0 1 1
13 1 1 0 1 1 1 1
14 1 1 1 0 1 1 0
15 1 1 1 1 0 0 1

There are two approaches to minimizing the system
of Boolean functions from n variables:

1) minimization is carried out separately for each function;

2) joint minimization of the system, when the method
of the minimal system uses the general conjunctures of
individual functions.

Eliminating redundant conjuncts in a separate function
does not guarantee the elimination of redundancy in the
system itself. On the other hand, the joint minimization
of the system may not always be better. Therefore, for
a number of systems of functions, it is necessary to apply
both methods of minimization. The joint minimization of
the system is more cumbersome than in the first method.

For joint minimization, let’s combine all the different
conjuncterms of individual functions into the function Y of
system conjuncterms:

Y'=0010(5 +0101,5+ 01105 + 011155 +
—+ 1101(1125) + 1 1 10(172) + 1 1 1 1(3)

A system conjuncterm is called a minterm of a Boolean
function with indices that show which functions it belongs
to [14]. Among the systemic conjuncterms, the elements are
identical-they have identical indices, and are identical —
that they have different indices, but whose cross-section
is not empty. For example, (101),4 and (111),4 form the
identical element (1-1)24, and (101)94 and (001)4 form the
identity element (—01) [14].

The function Y is represented by a truth table.

To jointly minimize the system, let’s apply the fol-
lowing rules:

— the sticking of variables in the system conjuncterms

of the function Y is carried out only for those con-

juncterms that have at least one common index;

— the result of sticking the conjuncterms is assigned

a set of indices, which is the intersection of the output

sets of indices of the stick conjuncterms;

— if the conjuncterms do not have common indices,

no sticking takes place;

— identical conjuncterms are stick together with other

identical conjunctures;

— the same conjuncts are stick together with other

non-identical conjunctures.

After the sticking operation, the conjuncts are identical
in the following table for further minimization, except for
the case when the indices of the sticking result coincide
with the indices of one of the non-identical conjunctures.
The absorption of one conjuncterm by another is carried out
only if the sets of indices of the two conjuncterms coincide.

0 10 (13)

0 10 (13)

0010 (13)] Jot t @ | |, )
0110 (13)] | 101 (12)) [T (12
0101 (12)] (0101 (12) “10(1’2)
v=p 11t (23)|=[t110 (12) = (},)
1101(1,23) | 111 (3) 0111 (29)
1110 (12)| [0111 (23) “01(153)
T @) | [ttot@2s) | ’(3’)

11 1 (3)

Conversion of the first matrix:

- sticking of identical conjuncterms 0010, 5 and 0110y,

(highlighted in red) the result of sticking — 0~10;5

is transferred to the second matrix; after sticking the

conjuncterm 00103 and 01105 in other operations
sticking the first matrix is not involved;

— sticking of non-identical conjuncterms 0101, and

0111,5); the result of sticking — 01~1, is transferred

to the second matrix; since the conjuncterms 0101,

and 0111, are not identical, they can participate in

other operations of sticking the first matrix; conjunc-
terms 0101;,) and 0111, are transferred to the second
matrix for further minimization;

— sticking of non-identical conjuncterms 0101, and

1101;,5); the result of sticking — ~101, is transferred

to the second matrix; since the conjuncts are not identi-

cal, they can participate in other operations of sticking
the first matrix; conjuncterms 0101, and 1101, are
transferred to the second matrix for further minimization;

— the identical conjuncterm 1110y, isn’t stick together

with one conjuncterm, transferred to the second matrix

for further minimization;

— sticking of non-identical conjuncterms 0111, and

11113;; the result of sticking — ~111y is transferred

to the second matrix; since the result of the sticking —

~111(; and the conjuncterm 11113 have the same in-
dices, the conjuncterm 1111 is not transferred to the

second matrix; the indexes of the conjuncterm 1101,

do not coincide with the indexes of the sticking re-

sult, so this conjuncterm is transferred to the second
matrix for further minimization;

— sticking of non-identical conjuncterms 1101;,5 and

11113); the result of sticking — 11~1; is transferred to

the second matrix; since the result of the sticking —

11~15 and the conjuncterm — 11115 have the same
indices, the conjuncterm — 1111 is not transferred
to the second matrix; the indexes of the conjuncterm

11013 do not coincide with the indexes of the sticking

result, so this conjuncterm is transferred to the second

matrix for further minimization.

Transformation of the second matrix: absorption of
identical conjuncterms ~101;, and 0101, (highlighted
in blue); result of absorption — ~101,, is transferred to
the third matrix.

The third matrix represents the dead-end DNF of the
function Y. Next, the problem of finding the minimal DNF
of the function Y is solved on the basis of the cover table
of B. Rytsar [14] (Fig. 1), in which it is necessary to
remove all the extra simple implicants.

The elements of the minimum coverage, which are mini-
mize the function Y by the method of joint minimization
of the system, are selected by color in Table 1:

;SB
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Y = 20020525 (1,3) 4 20, 20500, (1,2) + 20,20,0050 (2,3) +

200200204 (3) + 202002004 (1,2). (26)

The result of minimizing the function of systemic con-
juncterms (26) by combinatorial method coincides with the
result of minimization by the method of parallel splitting
of conjuncterms [14].

Since in order to minimize the function Y by the com-
binatorial method in Example 6, the sticking operation is
used for identical conjuncterms and is not applied between
identical and non-identical conjuncterms, this reduces the
number of unnecessary simple implicants and the size of
the cover table (Fig. 1).

01~1, 01~1, 11-1, -1,
0-10,, 0-10,,

~101,,, ~111 ~101, ~111,
00105, 0101, 0110, 0111, 1101, 1110,, 1111,

Fig. 1. F(xy,xo,x3,x,) function cover table

After the distribution of systemic conjuncterms of the
function (26), let’s obtain a minimized system of Boolean
functions:

S = 020+ 200 20500 + 20,0505 0,

S = 200 203004+ X1 20000504 + 210503 X,

J3 = X203 0, + X X0X5004 + X055,

Example 8. To minimize a logical function by a com-
binatorial method [16]:

F (20,200,205, ) = (1,1,1,1,1,1,0,0,1,1,1,1,0,0,0,0).

Let’s compile the truth table of a given 4-bit function from
the blocks for which the function gets the value of 1, that is,
for the sets: 0, 1, 2, 3, 4, 5, 8, 9, 10, 11, and minimize:

0000
0001
0010
0011
0100
0101
1000
1001
1010
111011

010 0

© 0 Ul B W N =, O

—_
(e}

To units 0-3 and 8—11 (highlighted in red) of the
first matrix, a rule of super-sticking of variables is applied,
where there is a combinatorial system of 2-(3, 8)-design.
Simple sticking of variables is highlighted in black. A sub-
stitution (incomplete sticking) of the variables is carrying
out in the last matrix.

As a result, let’s obtain the minimum function:

F=x x5+ x,.

The result of minimization by combinatorial method
coincides with the result of minimization obtained by
the self-reduction cycle method [16]. The method of self-
reducing cycles to minimize a given function uses four
lowering cycles and a cover table to remove unnecessary
implicants. The combinatorial method minimizes the given
function for three-dimensional transformations. Since the
self-reducing cycle method uses a complete combinatorial
system with a repetition of 2-(n, b)-design [16] to minimize
the Boolean function, but does not use an incomplete com-
binatorial system with the repetition of 2-(n, x/b)-design,
this method is attributed to a partial minimization by
a combinatorial method.

5.4. 5-hit Boolean functions minimization. Fxample 9.
To minimize the logic function F(xy,x,,23,24,45) by the
combinatorial method given by the following truth tab-
le (Table 6) [17, 18].

Table 6
The truth table of a logical function Flxy, X, x3,x4,Xs)
No.| xt | o | x3 | x4 | x5 | F|No.| xq | 0 | x3 | x4 | x5 | F
gojo|o|o0o|o0ofo0o|ODOJ16y1|0|0|0|0]|1
1 o|jojo|0o0f1]|1})17]1 o|jo|0|1|1
210|0|0|1|(O0O|-J18y1|0|0|1|0]|1
31000 1 11 -119] 1 0(0|1 110
4)10(0(1|(0|0|1)2001|0|1|0O|DO]|-
S|10|0|1 0|1 |1}]21]1 0|1 0|10
60| 0|1 1 0|0}22]1 0|1 1 0|1
710(0f(1f(1| 11231 |0|1|1|1]|@DO
g1 0|1 0| 0| 0|0O}24] 1 1 o|(o|0|0O
g|o|t1|yo0|jo0o|1|1y2)1{1{0|0|1|0
1010 1 0|1 0|02 1 1 0| 1]0]| -
mjyo(1(o0of1|1|1y27y1|1|0f{1(1]|80
121 0| 1 1 0(0]|1)28]|1 1 1 ojo0|1
3yo0|1|1|jof1|1)28)1(1(1|0|1]|0D0
“4y0|1(1|1|0|-y30)1|1}1]1|0]-
150 0| 1 1 1 11 =131 1 1 1 1 111

Using Table 6, let’s compose the PDNF of the given
5-bit function from the blocks for which the function re-
ceives the value of 1, that is, for the sets 1, 4, 5, 7, 9, 11,
12, 13, 16, 17, 18, 22, 28, 31:

F(xuxz,xe”xmxs): X1 X X3 X4X5+ X X9X3 X4 X5+
+ Xy XoXg X4 X5+ Xy XoX3X X5+ XXy X3 X4 X5+

+ XX X3 X4 X5 + X X9X5 X4 X5 + Xy X0X5 Xy X5 +

+ XXy Xy Xg X5+ X Xy X3 X405+ XXy X3X X5+

+ X1 X9X3X4 X5 + X1 X003 X5+ XXX 3X4X5. (27)

Recall that the value of «—» of the function F means
an arbitrary state indicating that such set of input variables
is not expected and the value of the function can be arbit-
rary — zero or one in the process of minimization.

Let’s complete the definition of the function by sub-
stituting the value of the «—» function by one. After this
substitution, the truth table (Table 6) takes on the following
form (Table 7).
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Tahle 7

Table of truth of logic function F(xq,xp,x3,X4,X5) after changing
the value of the «—» function to one

No.lxt | 2 | x3 | x4 | x5 | F|No.| xy | 2 | x3 | x4 | x5 | F
gjo|o|o0|0|jO|OJ16y1|0]|0|0|0]|1
1jo0|o0j0|0|1|1})17]1|0|0]|]0]|1]1
2|0|(0f0|1|j0|1|1B)y1|0|O0|1|0O|1
3|o(0f(0f1]1]1}|19y1|0|0|1|]1]@0
4|10(0f(1|0|j0|1}|2001|0|1|[0|0{|1
5{0(0f(1|(0|1]|1}21)J1|0|1|0|1]|@O
60| 0|1|1|0|0Of2]1|0(1|1]|0]|1
70|01 1|1|1}|23)1|0|1|1|1]|@O
g8|0|1|0|0|0|0DJj24)1|1|0|0|0]| 0
g|jo|1|0|0|1|1|25)1|1|0|0|1]|0
wyo|j1|jo0oj1|jo0o|0Oj)2)1|1(0]|]1]|]0]|1
1myoj1|o|1|{1}j1)27p1|1|0]|]1]1]80
12y 0| 1|1|0|0|1)28)1|1(1|0|0]|1
13y0|1|1|0[1]1})29)1|1|1]|]0]|]1]@0
14y0| 111|013 1|(1(1|]1]|]0]|1
5o 11|11 |[1}31}) 1] 1] 1]1]1]1

Using Table 7, it is necessary to write the PDNP of
the 5-bit function from the blocks for which the function
gets the value of 1, that is, for the sets 1, 2, 3, 4, 5, 7,
9, 11, 12, 13, 14, 15, 16, 17 , 18, 20, 22, 26, 28, 30, 31:
F(201,200,003,004, 005 ) = Xy X X3 X425 + 2y Xy X4 X+

+ X1 X9 X3X X5+ X1 X9gX3 X4 X5+ X1 X9gX3X4X5 +

+ X XX5X 4 X5+ X1 X9 X3 X4 X5 + XXy Xy Xy X5 +

+ XXX 3 X4 X5 + X X9 X3 X4 X5 + Xy X0 X5, X5 +

+ X1 X9 X3 X4 X5+ X1 X9y X3 X4 X5+ X1 X9y X3 X4 X5+

+ XXy X3X4 X5+ Xy XoX3 X0 X5 + Xy XoX3X4 X5 +

+ X105 X3X4 X5 + XX X3 X4 X5+ XXX 34 X5 +

+ X X9X3X 4 X5. (28)

Table 8

The truth table of a perfect disjunctive normal form F(xy, xp, X3, X4, X5)
which blocks receive the value of a unit

No.|xg | x| x3 | x4 | x5 | F|No.| x1 | 0 | x5 | x4 | x5 | F
1jojojojojt1|1j12pyo[1[1j1}1}1
21]0|0|0|1|0|1}J13)1|]0|0|0|0]|1
3|jo/o0jo0f(1|1|1)14y1|0|]0|O0]|1]|1
410|0f1|(0)j0O)|1 1510|011 |0|1
5{]0(0f1|(0|]1]1}|16)1|0|1|[0|0{|1
sjojoj1|1|[1|11701|0|1]1]0]|1
770|100 1|1|1B8)1{1|{0|1]|]0]|1
g|jo|1|jo0|1|1|1189)1(1(1|0|0]|1
gjoj1jt1|jo0foj1j2001|1|1]1]0]|1
wypo|1|1|]0]1]1
alol 1 110l 2111|111 1(1}1

At the first stage, the constituants are stick together
and the variables are substituted. Using a partial binary
combinatorial system with a repetition of 2-(n, x/b)-design
for a 5-bit logical function, blocks 1-12 (Table 8) al-
locate a left column with common zeros. The other four
columns will form an incomplete combinatorial system
with a repetition of 2-(4, 12/16)-design.

The process of minimizing blocks 1-12 (Table 8) is

possible in two ways.

The first option: sticking, substituting and sticking of

variables.
xy001
xy010
xy 011 — -
7% xy 010
xy100] |- -
- - x 001 [xy010
xy101] |- —
- = x 011 | 0 1
xy 1 11] |- —
- =lx 100/=x 10 |=
xy001] |- —
- x 101 [xy110
xyO011] |- —
- xy110] |x 111
xy100] |-
- x 111
xy 101
xy 110
xy 111
xy01 xy01 - -
,y ,y xy 01
x 0 1 |« 0 1] |-
- - x 10
=lx 10 [=lx 10 |=|-
— — xyl
xyl1 xyl —
- - X 1
x 111 jx 1 1

The second option: sticking, substituting, sticking, sub-

stituting, sticking and substituting of variables.

xy001

xy010

xy 011 —_

- xy001 ——
xy 100 =2 xy 001
- — xy01 - -
xy 101 |- xy01
- - xy10 -

xy 111 |- x 10
— =lxy111=- - =
xy 001 |- xyl11
- xy0 1| |-

xy 011 |- xy0 1
- xy10 -
xy100] |- xyl1
_ xyl1

xy101

xy110

xyltt

xy0 1] —— o

- xy01 xy01
xy01 - _

— x 10 x 10
x 10 - _

== =lx 111=x 1 1=
x 111 |- _

— x 0 1] |x 0 1
xy 0 1 |- _

_ xyl1 xyl1
xyl1

xy01 xy01

e 10 | | 10

x 1 |x 1

xytt xyl
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In blocks 13-21 (Table 8), the left column with com-
mon units is selected. The other four columns will form
an incomplete combinatorial system with a repetition of
2-(4, 9/16)-design.

The process of minimizing blocks 13—-21 (Table 8) is
possible in two ways.

The first option: sticking, sticking and substituting of
variables.

xy000
xy 001
xy010
xy100
xy110|°
xy010
xy 100
xy110
xyl11
xy00

x 1

0
1 o[
xyl1

X

The second option: sticking, sticking and substituting
of variables.

xy000

1g001 x;/00

Ty OO T 010 [xz00
xgiOO_x;1 ol lx o0tol
xylio_xy010_x 1 0_
ry010 xyt 0 lxyl1ll
Ty 100111

xy110

xy 111

xy00

E 10

laotoof

xyl1

In the second step, the substitution and generalized

sticking of the variables is performed.

To further minimize PDNF F(x;,x,,3,4,%;5), let’s com-
bine the results of minimization of 1-12 and 13-21 co-
lumns of Table 8 into one matrix:

xy01 xy01 - - xy01

— - xy01 _ -

x 10 x 10 — x 10 X

— — x 10 _ —

x 1] |« 1 = x RES

— — x 1

xyl _|lxy1 _ —lxy 00 |_|x

y00 y00 ry00 10 |»

x x x 2

y Y x 10

X 10| |x 10 100
x 1 0

x 1 0 [x 1 0 x 1 0
y 11

xy 1l y11 y11

In the first combined matrix, a variable substitution is
performed, in 2—4 joint matrices carrying out a generali-
zed sticking of the variables.

Algebraic transformations of the second combined mat-
rix, the result of which is recorded in the third joint
matrix, define a generalized sticking of variables for 2, 4
and 8 blocks.

X1 X3 X4 + X1 X9 X3 + X X3X4 =

=X X3 X4+ XpX3 X4 + X XpX3 = X X3 X4 + X X3 X4,

Algebraic transformations of the third combined matrix,
the result of which is written in the fourth joint matrix,
define the generalized sticking of the variables for 2 and

7 blocks:

XXX+ X1 X3X5 = X X3X 4 + X1 X3X5 + X3X3X X5 =

=X X3X4 + X1 X3 X5+ X3X4 X5.

Algebraic transformations of the fourth joint matrix,
the result of which is written in the fifth joint matrix,
are defined as:

— generalized sticking of variables for 5, 6 and 7 blocks:

X3 X5 X5+ X1 X5 X5 = X3 Xg X5 + XX, X5 + X X305 X5 =

= X3 X4 X5+ X1 X5 X5 + X1 X3 X5 = X3 Xy X5 + X404 X5

— generalized sticking of variables for 2, 6 and 7 blocks:

X1 X5+ X3 X4 X5+ X X3 X5 =X X5+ X3X4 X5.

Attempts to further apply algebraic transformation ope-
rations do not give a result, which leads to a deadlock
DNF of the function F(x1,x2,x3,x4,x5), which is presented
in Table 8.

F (201,20, 203, 204, 205 ) = 20,005 + 201 00 3 X4 +

+ XXy X5+ X1 X9 X3X 4+ XoX3 Xy + X3X4 X5.

The third step involves testing each simple implant
in PDNF for redundancy to remove it and verifying the
resulting function using a truth table (Table 8).

Further, the problem of finding the minimal DNF is
solved on the basis of the coverage table (Table 9). In
general, in order to obtain the minimum DNF it is ne-
cessary to remove all superfluous simple implicants from
the dead-end DNE

In the columns of Table 9 there are simple
implicants of the reduced DNF function repre-
sented by the fifth joint matrix. The rows of

y 01 Table 9 represent the constituents of the unit
1 of the PDNF function, which is presented in

_ Table 7.
y00 | A simple implicant absorbs a certain con-
10 stituent unit when it has its own part. The cor-
100 responding cell of Table 9 at the intersection
y11 of the column (with the simple implicant under

consideration) and the line (with constituent
unit) is indicated by a circle @ of black color.
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Tahle 9 Tahle 10
F(x1,x2,%3,4,x5) function cover eable Function Flx1,xp,%3,x4,x5) cover table with remote sets
—  — S — — of unpredictable variables
Constituants X1 Xs XX Xz Xy| X1X4Xs |Xy Xp X3Xy4| XoX3X, | XzX4 Xg — — — —
00001 PY — — — — — Constituants X1 X5 |X1Xp X3 X4| X1X4Xs | Xy Xp XzX4| XpXzXy | X3X4 Xs
00010 B B B PY B B 00001 [ J - - - - -
00011 PY _ _ _ _ _ 00100 - - - - - [ J
00101 ® _ _ _ _ _ 00111 [ J - - - - -
00111 ° _ _ _ _ _ 01001 [ J - - - - -
01001 ® - - - - - 01011 L - - - - -
01011 [ ) - - - - - 01100 - - - - - [ J
01100 - - - - - [} 01101 [ J - - - - -
01101 [ ) - - - - - 10000 - [} - - - -
01110 - - - - [ ] - 10001 - [ ] - - - -
01111 [ ) - - - [ J - 10010 - - [ J - - -
10000 - [ ] - - - - 10110 - - ° _ _ _
10001 - [ J - - - - 11100 - - - - - [ ]
10010 - - [ ] - - - 11111 _ _ _ _ Y _
10100 - - - - - [ J
10110 _ _ [ _ _ _ Tahle 11
11010 _ _ ° _ _ B The result of Flxq,xz,x3,%4,%5) functionminimization
11100 — — - — — Y «Symmetric maps» method
11110 - - [ J - [ J - F(xl,xz,XS,x,,,xs):xjxs+x1;2;3;4+
11111 - - - - ) - + X Xg Xg + XaXaXy + Xg Xg Xo.

Considering Table 9 it can be seen that there are no
excess implicants, and, consequently, Table 9 represents the
minimum DNF of the function (28), presented in Table 7.

F(x1,x2,x3,x4,x5)=;1x5 X100y 205 X4+

+ XXy X5+ X1 X9 X3X 4+ XXXy + X3X4 X5.

(29)

The truth table (Table 7) helps to make minimization
more convenient. It should be noted that the original logical
function (28) is represented by a truth table (Table 6),
in which there are sets of unpredictable variables. The
value of the function F for such sets is affected by «—»
and means its arbitrary state.

In this regard, the search for the minimum DNF func-
tion, represented by the original truth table (Table 6), is
solved using the coverage table (Table 9), removing sets
of unpredictable variables from its rows. After that, the
table takes on the following form (Table 10).

Considering Table 10 it is possible to see that the
implicant x, x, x;x, is an excess, which is removed from
the expression of the function (29):

F (2, %5,203, 204, %5) =

= X, X5 + X Xy Xy Xq + X404 X5+ XXX + Xy X4 Xs.

(30)

Expression (30) represents the dead-end and minimum
DNF of the initial function (27), presented in Table 6.

Table 11 presents the results of minimizing the func-
tion by the method of «symmetric charts» [17, 18] and
combinatorial method.

F(X1,X2:X3:X4:X5) = X1X5 + Xp X3 X4 X5 +

+ Xy Xp X5 + XpX3X4 + X3 X4 Xs.

Combinatorial method

F(X1/X2:X3:X4/X5) = Xi1X5 + X1 Xy X3 Xy +

+ X1 X4 X5 + XpX3X4 + X3 X4 X5.

The main difference between the minimal functions
(Table 11) is the third implicant x,x, 5. For the minimi-
zation function, the implicant method requires two inver-
ters to support their functionality, whereas for a function
minimized by a combinatorial method (implicant xx,x;5),
one is needed. For the hardware implementation of the
function (30), one inverter will need less in this case, if
one chooses, for example, CMOS (complementary metal-
oxide-semiconductor structure) technology.

The minimized logic function (30) satisfies a given
truth table (Table 6).

5.5. 6-hit Boolean functions minimization. Example 10. To
minimize a logical function by a combinatorial method [19]:

F (201,20, 203,204, 205, X ) =
=(0,1,0,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,
1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,1,1,1,1,0,0,1,1,0,0,1,1,1,1,1,
L1,1,1,1).

Let’s compile the truth table of a given 6-bit function
from blocks for which the function gets the value of 1,
that is, for the sets: 1, 3, 10, 11, 12, 13, 26, 27, 28, 29,
32, 33, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63.
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11000001 00000101 10001111
31000011 00010101 10011111
10001010 00100101 10101111
11001011 00110101 10111111
121001100 01000101 11001111
13001101 01010101 11011111
260011010 01100101 11101111
27101 1 0 1 1 01110101 11111111
28011100 10000000[ 10001010
291011101 10010000 10011010
321100000 0000 1 10100000[[10101010
33100001 00101 10110000 10111010
36/100100] 100110 0000 11 10000 1 11000000/ 11001010
371100101 01101 0 101 101 11010000/ (11011010
F=/401101000 101110 410 110 11100000 11101010
A0 100 1=10000 J=/ "0 1=l o o [[GD F={t1110000[[t1111010]=
421101010 (10010 | {1 10000001 {t0001001
43101011/ 1101 110 1 | 11 1 10010001/ [10011001
44101100 111001 10100001 (10101001
45101101 111011 10110001 10111001
461101110 111 11000001| (11001001
a7ito1 11t 11010001/ (11011001
501110010 11100001 (11101001
511110011 11110001 [11111001
24/1110110 10000010[]10001000
551110111 10010010/ [t0011000
61111000 10100010/ 10101000
ST 11001 10110010/ [10111000
81111010 11000010 (11001000
9111011 11010010 11011000
60[1111100 11100010/ 11101000
611111101 11110010 11111000
621111110 10000111
63111111 10010111
To the blocks 40—-47 and 56—63 of the first matrix of Loroottt
the block-design (31), a super-sticking rule for variables is 10110111
applied, where the 2-(3, 8)-design systems are highlighted 11000111
in red. For the remaining blocks of the first matrix, simple 11010111
sticking of variables is carried out with the recording of 11100111
the result of the image transformations into the second 11110111
matrix. In the second matrix of the block-diagram block-
design (31), simple sticking of variables is carried out, 0 0101
and in the third — the rc.placcmcr.lt‘of Variablc§. 1 0000
As a result, let’s obtain the minimum function:
1 0001
o _ _ 0 0101
F =X Xy X3 X406 + X3 X405 + X3X, X5+ 1 0010 1 00
- =1 0111= =
+ XXy X5 + X1 X5 + XX X5, (32) ) it 1 010
1 111
The result of minimization by combinatorial method (32) 1 1010
coincides with the result of minimization obtained by 1 1001
means of a three-dimensional Carnot map [19]. Example 10 1 1000
demonstrates the less computational complexity of Boolean 0 0101
function minimization by combinatorial method. 1 00
5.6. 8-hit Boolean functions minimization. Example 11. = . (33)
To minimize the logical function [20] by the combinatorial 1 0 0
method specified by the following truth table: 1 111
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For every eight blocks of the first matrix of the block-
design (33), the rule of super-sticking of variables is
framed, since in each <«eight» of blocks there is a com-
plete combinatorial system with a repetition of 2-(3, 8)-de-
sign (highlighted in red). In the second matrix of the
block-design (33), the super-sticking rule is applied (there
are 2-(2, 4)-design, the matrix blocks are highlighted in
red) and rule (10) (the matrix blocks are highlighted
in blue). The sticking result is recorded in the third matrix.
In the third matrix, there is a perfect incomplete sticking
of variables with the record of the result to four matrices.

As a result, let’s obtain the minimum function:

F= x1 X5X(X7XS+X1XG X7+ X1 Xg Xg+ X1 XgX7Xg.

(34)

Table 12 shows the results of function minimization
by the Carnot map [20] and the combinatorial method.

Table 12

The result of Flxy,xz,x3,x4,%5,Xg,X7,%g) function
minimization

Carnot map

F(X11X21X31X4lXEIXEIX7IXE) = XX X7 + Xy XgX7 X +

+ X XgX7Xg + Xy XsXg X7Xg

Combinatorial method

F(thz,xzzxmxslxslxmxa) = X1Xg Xy + X1 Xg Xg +

+ X1 XgX7Xg + Xy X5 Xg XgXg

Considering Table 12 it is easy to see that the combi-
natorial method gives the second conjuncterm of a Boolean
function with a smaller number of input variables.

6. Research results

The complexity of the Boolean function minimization
algorithm is a quantitative characteristic that reflects the
resources consumed by the algorithm during
its execution. The main resources that eva-

luate the complexity of the algorithm are the L, 140
calculus and the memory space necessary to  §
implement this calculation using this algorithm. ~ § 120
To evaluate the algorithmic complexity of the g 100
process of Boolean function minimization by %z
combinatorial method, the shaped transfor- £ 30
mation operations that are performed when g
searching for the minimal function are used g 60
as consumed algorithmic resources. One ope- E
ration of super-sticking, simple sticking, ge- e 40
neralized sticking, absorption and substitution .2 20
of variables is adopted as one transformation. §
The number of these transformations depends %

on the Boolean function capacity, the num-
ber of output conjuncts of the function, and
the structure of the truth table. The possible
number of such transformations, depending on
the Boolean function capacity, is presented in
Table 13.

Tahle 13

Spent shaped transformations of the
combinatorial method

Capacity The number of sl'.laped.transfurmatiuns
of the combinatorial method
4 4-5
5 7-18
B 8-32
7 10-58
8 15-117

Fig. 2 shows the dynamics of the growth of the number
of shaped transformations by the combinatorial minimiza-
tion method with increasing the capacity of the Boolean
function.

From the available data, it is possible, in the first ap-
proximation, to consider the complexity of the algorithm
by combinatorial method to be linearly dependent on the
number of image transformations with the complexity es-
timate — O(n) for n<7. With an increase in the num-
ber of variables from n=6 to 8, the growth dynamics of
the number of transformations is characterized by the
law O(n?), followed by the growth of O(f(n)) with the
increase in Boolean function capacity according to the
polynomial law.

Table 14 presents a comparison of the processes of
Boolean functions minimization by the method of pa-
rallel splitting of conjuncterms [14] and combinatorial
method.

Boolean function minimization by combinatorial method
allows to do without automation of the process of mini-
mizing a function with a number of variables up to 10.
For a number of cases, manual minimization of a logical
function is possible with a number of variables greater
than 10.

= %/
o—4 1 I

4 5 6 7 8

Boolean function capacity

Fig. 2. Dynamics of growth of shaped transformations
of the combinatorial minimization method, with increasing
the Boolean function capacity
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Tahle 14

Comparison table of two methods for Boolean functions minimization

The method of parallel splitting
of conjuncterms

Combinatorial method

The first step in Boolean function minimization

The method of parallel splitting of
conjuncterms belongs to the class
of heuristic methods for minimizing
a logical function. The procedure
of parallel splitting of conjuncterms
is in overlapping on the double
minterms m, my, ..., my function f
of the masks of literals of the
column matrix, resulting in the
formation of a matrix of conjunc-
tures from the submatrix of un-
bound conjuncts 1-, 2-, ..., (n=1)-,
n-ranks. The number of identical
disconnected conjuncts-copies is
determined, which depends on the
number k of given minterms. In the
special matrix, the formed conjunc-
terms-copies are distinguished,
and the selection of the covering
elements is performed with priority
for matrices of lower rank

Minimization of the logical function
by combinatorial method is based on
shaped transformations that increase
the informative value of the minimiza-
tion process in comparison with the
verbal algebraic method of minimizing
the function. At the first stage, let's
identify blocks with variables that can
be stick together In the second step,
let's search for sets of pairs of blocks
with the possibility of minimizing them
by sticking, absorbing, substituting, and
generalizing the sticking of variables.
The resulting sets of blocks are again
minimized in a similar way, etc., until
a dead-end DNF is obtained

The second step in Bo

olean function minimization

The removal of excess implicants
and the production of MDNF are
carried out. To do this, the consti-
tuent's coverage table is built. The
identification of the minimal func-
tion is possible under the algebraic
Petrick’'s method

An attempt to minimize the dead-end
DNF by the Blake-Poretsky method: all
generalized sticking of the variables —
xy+xz=xy+xz+yz (1) is performed
with the subsequent carrying out of
all the absorption, or by carrying out
less than two operations of generalized
sticking of variables by the formula
Xy+Xxz+yz=xy+Xxz for one opera-
tion (1). The specified procedure for
converting the function is also possible
at the first stage of minimization

Automating the process of Boolean function minimization

Since the method uses the mathe-
matical apparatus of matrices, sub-
matrices, masks, and other calcula-
tions, the application of the method
requires its automation

Applying the operation of super-sticking
of variables, the combinatorial method
can do without automating the process
of Boolean functions minimization with
a number of variables up to 10

7. SWOT analysis of research results

Strengths. The strength of the combinatorial method
is the reduction in the complexity of the algorithm for
Boolean function minimization, it makes it possible to
dispense without automating the process of minimizing
Boolean functions with a number of variables up to 10.
This is more advantageous in comparison with analogues
for the following factors:

— lower cost of development and implementation, since

a significant proportion of functions are minimized by

functions with a number of variables of no more than

16, and therefore, in general, the need for automation

of the process of minimizing the function decreases;

— increase in manual minimization of 4—10 bit func-

tions that facilitates control and study of the algorithm

for minimizing the logic function.

Weaknesses. The weak side of the combinatorial method
with manual minimization is associated with an increase
in the complexity of computation with increasing num-
ber of variables of the logical function. Negative internal

factors are inherent in the combinatorial method of manual
minimization of a Boolean function and consist in increasing
the time of obtaining the minimum function with increasing
number of variables of a given function.

Opportunities. The opportunities of further studies of
the combinatorial method can be the development of a
protocol for optimal alternation of algebraic transforma-
tions in order to improve the accuracy of solving the
problem of minimizing the function. Additional features
that the implementation of the combinatorial method of
Boolean function minimization can bring are the creation
and support of the library of graphic images in order to
optimize the algorithm for finding the minimal function
by the selected criteria.

Threats. The protocol for Boolean function minimization
of the combinatorial method is independent of the protocols
of other minimization methods, so the threat of negative
impact on the object of research of external factors is
minimal. To a certain extent, the Quine-McCluskey method
is an analog of the combinatorial method for Boolean func-
tion minimization. At the moment, the Quine-McCluskey
method is the best because it already has an algorithm for
automating the search for a minimal function.

1. The implementation of the algebraic operation of
super-sticking of variables makes it possible to simplify
the procedure for minimizing the Boolean function without
loss of its functionality.

2. The algebraic operation of super-sticking of variables
is performed if there is a complete binary combinatorial
system with repetition or an incomplete binary combina-
torial system with repetition in the truth table structure.
The operation of super-sticking of variables is most ef-
fective when there is a complete binary combinatorial
system with repetition. The efficiency of the operation of
super-sticking of variables in the presence of an incomplete
binary combinatorial system with repetition decreases not
significantly.

3. Tt is established that the results of verification of the
minimized function obtained using the super-sticking rule
for variables that satisfy the output protocol for calcula-
ting a given function and, therefore, indicate an optimal
reduction in the number of function variables without
losing its functionality. The complexity of the algorithm for
finding the minimal function by a combinatorial method
is O(n) and is linear for n<7. With an increase in the
number of variables from n=6 to 8, the growth dynamics
of the number of transformations is characterized by the
law O(n?), followed by the growth of O(f(n)) with the
increase in the degree of the Boolean function according
to the polynomial law.

4. The efficiency of the combinatorial method is de-
monstrated by examples of minimizing functions borrowed
from the work of other authors for the purpose of com-
parison:

— Example 4 [13], Example 5 [14], Example 6 [15],

Example 8 [16] — minimization of 4-bit Boolean func-

tions;

— Example 7 [14] — minimization of the system of

4-bit Boolean functions;

— Example 9 [17, 18] — 5-bit Boolean functions mini-

mization;
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— Example 10 [19] — 6-bit Boolean functions mini-

mization;

— Example 11 [20] — 8-bit Boolean functions mini-

mization.

Taking these examples into account, the combinatorial
method of the function minimization gives grounds for the
expediency of applying it in the processes of minimizing
the logical function.

References

1. Quine—McCluskey algorithm [Electronic resource] // Wikipe-
dia. — August 1, 2017 — Available at: \www/URL: https://
en.wikipedia.org/wiki/Quine%E2%80%93McCluskey algorithm

2. Riznyk, V. Minimization of Boolean functions by combinatorial
method [Text] / V. Riznyk, M. Solomko // Technology Audit
and Production Reserves. — 2017. — Vol. 4, No. 2 (36). —
P. 49-64. doi:10.15587,/2312-8372.2017.108532

3. Solairaju, A. Optimal Boolean Function Simplification through
K-Map using Object-Oriented Algorithm [Text] / A. Solairaju,
R. Periyasamy // International Journal of Computer Applica-
tions. — 2011. — Vol. 15, No. 7. — P. 28-32. d0i:10.5120,/1959-2621

4. Kumar, R. Cubical Representation and Minimization through
Cubical Technique A Tabular Approach [Text] / R. Kumar,
S. Rawat // International Journal of Applied Engineering
Research. — 2016. — Vol. 11, No. 7. — P. 4822-4829. — Avail-
able at: \www/URL: https://www.ripublication.com/ijaer16/
ijjaerv11n7_27.pdf

5. Stergiou, S. A Fast and Efficient Heuristic ESOP Minimiza-
tion Algorithm [Text] / S. Stergiou, K. Daskalakis, G. Papa-
konstantinou // Proceedins of the 14th ACM Great Lakes sym-
posium on VLSI — GLSVLSI ‘04. — Boston, 2004. doi:10.1145/
988952.988971

6. Dusa, A. Enhancing the Minimization of Boolean and Multivalue
Output Functions WitheQMC [Text] / A. Dusa, A. Thiem //
The Journal of Mathematical Sociology. — 2015. — Vol. 39,
No. 2. = P. 92-108. doi:10.1080,/0022250x.2014.897949

7. Voudouris, D. Exact ESCT minimization for functions of up to
six input variables — PRELIMINARY VERSION |[Electronic
resource] / D. Voudouris, M. Sampson, G. Papakonstantinou. —
2005. — 17 p. — Available at: \www/URL: http://mule.cslab.
ece.ntua.gr/xor/docs/xmin6.pdf

8. Valli, M. A State of Appraoches on Minimization of Boolean
Functions [Text] / M. Valli, R. Periyasamy, J. Amudhavel //
Journal of Advanced Research in Dynamical and Control Sys-
tems. — 2017. — No. 12. — P. 1322-1341. — Available at: \www/
URL: http://www.jardcs.org/abstract.php?archiveid=1323#

9. Boyar, J. A New Combinational Logic Minimization Technique
with Applications to Cryptology [Text] / J. Boyar, R. Peralta //
Lecture Notes in Computer Science. — 2010. — P. 178-189.
doi:10.1007,/978-3-642-13193-6_16

10. Eungi, K. Derivations of Single Hypothetical Don’t-Care Min-
terms Using the Quasi Quine-McCluskey Method [Text] /
K. Eungi // Journal of the Korea Industrial Information Systems
Research. — 2013. — Vol. 18, No. 1. — P. 25-35. d0i:10.9723/
jksiis.2013.18.1.025

11. Dubrova, E. Minimization of Multiple-Valued Functions in Post
Algebra [Electronic resource] / E. Dubrova, Y. Jiang, R. Brayton. —
2001. — 5 p. Available at: \www/URL: https://pdfs.semantic-
scholar.org/e9fa/a422aad8b92c¢0448eb8d41425852717¢b637.pdf

12. Anjuli, S. A. 2-Bit Magnitude Comparator Design Using Dif-
ferent Logic Styles [Text] / A. S. Anand // International
Journal of Engineering Science Invention. — 2013. — Vol. 2,
No. 1. — P. 13-24. — Available at: \www/URL: http://www.
ijesi.org/papers/Vol(2)1%20(version%202)/C211324.pdf

13. Buniak, A. Elektronika ta mikroskhemotekhnika [Text] / A. Bu-
niak. — Kyiv: Aston, 2001. — 382 p.

14. Rytsar, B. Ye. Minimization of logic functions system by kon-
juncterms parallel splittingmethod [Text] / B. Ye. Rytsar //
Bulletin of the Lviv Polytechnic National University. Radio
Electronics and Telecommunications. — 2013. — No. 766. —
P. 18-27. — Available at: \www/URL: http://nbuv.gov.ua/
UJRN/VNULPPT 2013 766 6

15. Rytsar, B. Ye. New minimization method of logical functions
in polynomial set-theoretical format. 1. Generalized rules of
conjuncterms simplification [Text] / B. Ye. Rytsar // Upravli-
aiushchie sistemy i mashiny. — 2015. — Vol. 2. — P. 39-57. —
Available at: \www/URL: http://dspace.nbuv.gov.ua/handle/
123456789,/87194

16. Samofalov, K. G. Prikladnaia teoriia tsifrovyh avtomatov
[Text] / K. G. Samofalov, A. M. Romlinkevich, V. N. Valuiskii,
Yu. S. Kanevskii, M. M. Pinevich. — Kyiv: Vishcha shkola,
1987. — 375 p.

17. Plehanov, A. Simmetrichnye karty kak sredstvo minimizatsii
bulevyh funktsii [Electronic resource] / A. Plehanov // Geek-
times. — March 8, 2016. — Available at: \www/URL: https://
geektimes.ru/post/272294/

18. Plehanov, A. Eshche raz o minimizatsii bulevyh funktsii [Elec-
tronic resource] / A. Plehanov // Habrahabr. — May 5, 2016. —
Available at: \www/URL: https://habrahabr.ru/post/283030/

19. Triohmernaia karta Karno [Electronic resource] // Cyclowiki. —
February 9, 2016. — Available at: \www,/URL: http://cyclowiki.org/
wiki/Tpéxmepnasi_kapra_Kapuo

20. Karta Karno [Electronic resource] // Wikipedia. — Septem-
ber 30, 2017. Available at: \www/URL: https://ru.wikipedia.org/
wiki/Kapra_Kapmo

NMPHMEHEHHE ANTEEPAHYECKOH OMEPALIMK CYNEP-
CKNEMBAHHA NEPEMEHHBIX ANA MHHUMU3ALMHK EYNEBBIX
PYHKUUA KOMEMHATOPHLIM METOOM

PaccmoTrpena HOBas Ipoleaypa aaredpsl JOTHKH — CYIep-
CKJIeMBaHUEe TIePEMEHHBIX, KOTOpas MPUMEHSETCS IIPU HATHYUHI
B CTPYKType TaGJuIlbl UCTUHHOCTH ITIOJHON OUHApHOW KOMOu-
HATOPHON CHCTEMBI C TIOBTOPEHWEM WJHU HEIOJHONH OUHApHOU
KOMOMHATOPHON cHCTeMBI ¢ TOBTOpeHreM. DhHEKTUBHOCTD aired-
pandecKoii oreparun cynep-cKIenBaHus MePeMEeHHbIX CYIeCTBEHHO
YIPOIAeT aJIrOPUTM MUHUMM3AUU OyJIeBbIX (YHKIHMH, 4TO MO-
3BOJISIET OCYIIECTBIIATh PYUYHYI0 MUHUMHU3AINIO (QYHKINI ¢ YHCIOM
nepemennsix 0 10.

Kmouesre cnoga: Gysesa GyHKIMS, METO MUHUMU3AIIUM, MU-
HUMU3AIUSA JIOTHIECKO# (DyHKIMM, OIOK-CXeMa C MOBTOPEHUEM,
MUHTEPMBI, CyHep-CKIeNBaHNe IePeMEHHBIX.
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