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Abstract Novel experimental and sequencing techniques have led to an exponen-

tial explosion and spiraling of data in viral genomics. To analyse such data, rapidly 

gain information, and transform this information to knowledge, interdisciplinary 

approaches involving several different types of expertise are necessary. Machine 

learning has been in the forefront of providing models with increasing accuracy due 

to development of newer paradigms with strong fundamental bases. Support Vector 

Machines (SVM) is one such robust tool, based rigorously on statistical learning 

theory. SVM provides very high quality and robust solutions to classification and 

regression problems. Several studies in virology employ high performance tools 

including SVM for identification of potentially important gene and protein func-

tions. This is mainly due to the highly beneficial aspects of SVM. In this chapter we 

briefly provide lucid and easy to understand details of SVM algorithms along with 

applications in virology.
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1  Introduction

Accurate annotation employing domain information extracted from sequence/struc-

ture and related attributes immensely enhances our current understanding of viral 

genomes. A major role is played by data driven modelling in recent advances made 

in vaccine development, epidemiology studies, pathogenicity determination, and 

drug design [1]. Introduction of NGS technology coupled with novel experimental 

techniques have provided very large volumes of data requiring accurate machine 

learning based modelling techniques. These techniques can be broadly categorized 

into supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning can be explained with a classic example of function annota-

tion (see Fig. 1). In this task we have knowledge of certain number of sequences 

belonging to functional ‘class1’ from prior experimental annotation and knowledge 

of another set of sequences known not to be annotated as ‘class2’. As shown in 

Fig. 1, a knowledge based model is built which separates data into two classes. This 

knowledge may be in terms of domain attributes extracted from sequences\struc-

ture, etc. The set of domain attributes are known as input data. Experimentally 

annotated class information is known as output data. The supervised learning model 

derives a functional relation between input and output. This model can be used to 

classify a query example to identify the functional class employing this model. This 

approach can be extended to classification into multiple functional classes.

In Unsupervised learning, we do not have prior knowledge about the classes. 

Unsupervised Learning is a class of Machine Learning techniques which enables us 

to discover patterns in the data. The data given to the unsupervised algorithm are not 

labelled, which means only the input variables (X) representing sequences\structure 

are presented to the algorithm with no corresponding output variables (Fig. 1). This 

type of learning is used extensively in viral biology to infer Phylogeny. The unsu-

pervised learning method groups data without any prior knowledge of class labels. 

After the model is built one can derive knowledge about examples clustered in any 

Fig. 1 Supervised vs. unsupervised learning
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specific group. While supervised and unsupervised learning learn from data, the 

reinforcement learning paradigm learns from experience. In the following sections 

we provide details of SVM algorithms, a list of domain attributes presented to the 

algorithm, selection of informative attributes, and finally a discussion on some 

applications of SVM in viral biology.

2  Support Vector Machines for Classification

Support Vector Machines can be used both for supervised and unsupervised learn-

ing tasks. In viral biology, SVM is used mainly for supervised learning. SVM clas-

sifiers are a set of universal feed-forward network-based algorithms that have been 

rigorously formulated from statistical learning theory by Vapnik [2]. They are very 

popular machine learning paradigms which are routinely used in different branches 

of science and engineering.

2.1  SVM Binary Classifier for Linearly Separable Data

Let us take a simple case study to explain principle of SVM Linear Classification. 

The task is to build a model to separate a set of sequences belonging to functional 

class 1 from another set of sequences belonging to functional class 2. Class 1 exam-

ples can be peptides having antiviral activity while class 2 examples are not known 

to possess any antiviral activity. The input data vector for ith example is denoted by 

xi and the corresponding class label is denoted yi. The output of any example belong-

ing to class 1 is represented by the subset yi = +1 and those belonging to class 2 are 

represented by the subset yi = −1. The hyperplane for the linearly separable data can 

be defined as:

 

w x
i

• + =b 0

 

This hyperplane (Fig. 2) separates the data into two different classes. ‘w’ refers 

to the weight vector with elements equal to the number of attributes. The problem 

here is to find out the best values of the elements of the weight vector, which maxi-

mize separation of the two classes with reference to a given performance measure 

(e.g. accuracy). This amounts to finding a hyperplane which maximizes the margin. 

This implies that at the training stage the examples belonging to class1 should be 

maximally separated from examples belonging to class 2. It can be shown that such 

a problem can be formulated as a Convex Quadratic Optimization problem [2]. The 

solution for such a convex optimization problem has only one global optimum as 

opposed to multiple local optimum solutions (algorithm can get stuck up in any of 
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the inferior local optima) like other candidate algorithms like neural network etc. 

have. It is this highly beneficial aspect coupled with superior performance has 

attracted researchers and practitioners from different fields to employ Support 

Vector Machines. After model building, the weight vectors can be obtained from 

only a subset of training examples. This subset is known as Support Vectors and 

hence the name Support Vector Machines. It must be noted here that SVM converts 

the original “N” dimensional problem into a one dimensional problem using dot 

products between the examples.

2.2  Non-linear Support Vector Machines

Biological data are inherently non-linear. A linear hyperplane cannot satisfactorily 

separate such non-linear data (Fig. 3). To handle these data SVM first transforms the 

data to a higher dimensional feature space and then employs a linear hyperplane. 

There are two inherent difficulties in the above approach: (i) It is difficult to find a 

suitable transformation by trial-and-error. (ii) We may have to employ a transforma-

tion to a very high dimensional space for reasonable classification accuracy which 

becomes computationally intractable. To solve these problems SVM employs 

appropriate kernel functions. Kernel functions are defined as a function of dot prod-

ucts in the original space and they are equivalent to the dot products in the higher 

dimensional feature space. SVM separating surface can now be defined as a linear 

Fig. 2 Maximum margin-minimum norm classifier
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hyperplane in the high dimensional feature space and introduction of appropriate 

kernel functions make it possible to do all the computations in the original space 

itself. Kernel functions have to satisfy Mercers Theorem; They have to satisfy the 

axioms of Hilbert space and have to be positive definite. The most popular kernel 

functions are Polynomial, Gaussian Radial Basis Function (RBF), and Multi-layer 

Perceptron kernel functions. Apart from these there are several domain dependent 

kernel functions. In computational biology, string kernels and Fisher kernels are 

very popular. Formulation as described above is known as Hard-margin SVM 

classification.

2.3  Soft Margin SVM

If we try to find a hyperplane which yields the maximum possible training accuracy, 

the margin obtained may become very narrow. Such a hyperplane while classifying 

the training set very well, over-fits the data and may fail miserably in unseen query 

test examples. It may be possible to increase the margin with slight loss of training 

accuracy (Fig. 4). This will generalize better than the one having a narrow margin 

and has more robust prediction capabilities. This trade-off between margin maximi-

zation and misclassification error in soft margin formulations can be obtained by 

optimizing a new parameter ‘C’.

Fig. 3 Non-linearly separable data
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3  Brief Details of Classification of Real-Life Binary Datasets

Given a dataset we must first find the optimal hyperplane in the original dimension. 

In SVM terminology this is known as a linear kernel and after building the model 

we must estimate the required performance measure (e.g. accuracy). If it is not sat-

isfactory, we must resort to nonlinear separation and employ conventional kernels 

like Polynomial, Gaussian Radial Basis Function (RBF), Exponential Radial Basis 

Function, Multi-layer Perceptron kernel functions etc. For every kernel, there are 

kernel parameters. With each kernel, apart from finding the best kernel parameters 

one must also tune the ‘C’ parameter as discussed in earlier section. If these kernels 

also are not satisfactory then we must resort to domain dependent kernels.

4  Support Vector Machines for Regression

In classification examples are grouped into discrete sets. In regression, a functional 

relationship is found between input data and output having continuous values. Many 

problems require a nonlinear model to adequately regress the data. The methodol-

ogy described in the previous sections can be easily extended to employ SVM to 

handle nonlinear regression (Schölkopf et al. 1999) [2]. The methodology for linear 

regression is same as that of conventional models for regression; examples which 

are linearly classifiable can be done in the original dimension itself. What is differ-

ent in SVM linear regression is that a novel epsilon- insensitive loss function is 

defined, which is robust against outliers in the data [3, 4]. For data that cannot be 

regressed linearly, a principle similar to the one implemented in classification prob-

lems can be extended easily; for such kind of problems, data needs to be taken to a 

higher dimensional feature space and subsequently regressed linearly. Appropriate 

kernel functions can again be defined to simplify computation.

Fig. 4 Trade off: increasing margin/reducing misclassification
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5  Attributes Used in Viral Biology Problems

In viral biology we encounter a variety of attribute types, with each type providing 

huge magnitudes of domain attributes. Broadly, these attributes can be classified as 

sequence based, structure based, spectrum of light or radiation based (i.e. spectro-

scopic), microarray gene expression profiles etc. Protein sequence k-mer features 

range from amino acid (AA) (k = 1), dipeptide (k = 2), tripeptide (k = 3) to tetrapep-

tide (k = 4) and so on. It is possible to extract physiochemical properties like hydro-

phobicity, charge, hydrophilicity etc., from each of the AA alphabets. The simplest 

discrete set of features is the AA composition. Conversion of sequence information 

in terms of AA composition reduces the protein sequence into a 20 letter alphabet. 

While this is beneficial, we lose all sequence information. Recently Chou defined 

and introduced different types of pseudo- AA (PseAA) compositional attributes of 

protein sequences; these are a set of discrete numbers derived from AA sequences 

possessing some sort of sequence order or pattern information [5]. Ever since the 

first PseAA composition was formulated, these attributes have been successfully 

employed in several protein function identification tasks. Two classes of attributes 

frequently used in viral biology are listed below:

5.1  QSAR Descriptors

In quantitative structure activity relationship modelling, domain information about 

a molecule is provided in terms of different types of descriptors. The initially devel-

oped QSAR descriptors comprise hydrophobic, electric, and stearic parameters. 

Currently, descriptors of different dimensions ranging from 0 to 3 are routinely 

employed in modern QSAR analysis. Zero-dimensional descriptors comprise of 

atom counts, bond counts, molecular weight, sum of atomic properties; one dimen-

sional descriptors two-dimensional descriptors deal with topological descriptors 

and three dimensional descriptors provide geometrical information. Originally 

QSAR is regression problem in which a functional relationship is obtained between 

activity of a molecule and the descriptors. This relationship can be linear or non- 

linear so a regressor like SVM or random forest can be employed for this job. This 

is illustrated in Fig. 5.

5.2  PSSM Descriptors

Evolutionary information, one of the most important types of information in assess-

ing functionality in biological analysis, has been successfully used to encode pro-

tein in many applications. PSIBLAST is used to repeatedly search specific databases, 

using a multiple alignment of high scoring sequences found in each search as input 
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in the next round of searching. Normally iterations are continued until user specified 

number of iterations and at the end, the final Position Specific Scoring Matrix 

(PSSM) is generated. Such a matrix provides remote homology information and 

using PSSM attributes as descriptors in SVM would be useful if remotely connected 

sequences have similar functionalities. In the view of the fact that SVM requires the 

fixed length feature vectors, a vector of dimension 400 can be recovered from PSSM 

score matrix for use as input in SVM classifier.

Apart from the attributes described above, many different types of attributes are 

used, depending on the particular domain problem encountered.

5.3  Attribute Selection

Not all attributes are informative in data sets. Features which are non-informative 

will act as noise, do not have discriminative power & interfere with the classifica-

tion process. Hence the model will have very little predictive accuracy. In Protein 

function identification in viral biology, several sequence and structural features can 

be extracted [6, 7]. For example the AA, dipeptide & tri-peptide compositional fea-

tures put together amount to 8400 in number & not all of them will be important in 

a particular function annotation task. To select a subset of informative features by 

bruit force, we need to evaluate huge number of subsets of features which becomes 

Fig. 5 QSAR regression using SVM
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computationally time consuming. Various feature/attribute selection methods are 

available to simplify the process of subset selection. Feature selection techniques 

help us to avoid overfitting and improve model performance to provide faster and 

more cost-effective models; they also provide invaluable domain information. 

However, feature selection techniques have to employ appropriate search tech-

niques, they bring in an additional level of complexity and computational cost. 

Feature selection techniques differ from each other in the way they incorporate this 

search in the added space of feature subsets in the model selection. Figure  6 

 illustrates the advantages of feature selection. These methods can be broadly classi-

fied as filter, wrapper and embedded methods.

5.3.1  Filter Ranking Methods

Filter ranking methods use some heuristics to score and rank the features (Fig. 7). 

In the example given above once the 8400 features are ranked by an appropriate 

filter method, the most informative subset of features can be selected, and the model 

can be built on this subset to maximize performance. Most popular filter methods 

include mutual information, student t-test, correlation-based feature selection (CFS) 

and several variants of the Markov blanket filter method, Minimum Redundancy- 

Maximum Relevance (mRmR) and Uncorrelated Shrunken Centroid (USC) algo-

rithm. We give below some of the methods used in viral biology related problems:

5.3.1.1 Information Gain

Information gain score for any given attribute is calculated as the difference between 

entropy of the entire data set and the conditional entropy of for each possible value 

of the attribute. This can be done by binning each attribute and counting the fre-

Fig. 6 Advantages of feature selection
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quency of occurrence of different labels for the range of the attribute in each bin. 

Based on the score, top ranking attribute subset can be easily identified to build 

the model.

5.3.1.2 mRmR

The attributes are selected in such a way they are mutually dissimilar, non- redun-

dant and maximally relevant simultaneously.

5.3.1.3 Mutual Information

Mutual information is a measure between random variables, that quantifies the 

information obtained about one of them, through the other. For the purpose of fea-

ture selection, mutual information between the subset of selected features and the 

target variable should be maximal.

5.3.1.4 Correlation Filter

The Correlation Feature Selection (CFS) selects subset of features that uncorrelated 

to each other but maximally correlated to the output variable.

Fig. 7 Filter ranking & classification accuracy
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5.3.1.5 Chi-Square

The chi-square test is a statistical test computes a score reflecting of independence 

to determine the dependency of two variables. We need to calculate chi-square sta-

tistics between every feature variable and the target variable and observe the exis-

tence of a relationship between the variables and the target. If the target variable is 

independent of the feature variable, we can discard that feature variable. If they are 

dependent, the feature variable is very important. For continuous variables, chi- 

square can be applied after “Binning” the variable.

5.3.2  Wrapper Methods

While filter methods are fast, they are not very accurate as they do not encode fea-

ture correlation. Wrapper methods employs a learning classifier for repeated evalu-

ation of different subsets of features. These methods include forward selection & 

backward selection algorithms. In forward selection we start with an empty set and 

add features one by one which maximally improve accuracy until all features are 

added in the set. A subset can then be chosen which exhibits maximum accuracy. In 

backward selection we start with all features and remove least significant features 

one by one.

Recently recursive feature elimination wrappers have become very popular. In 

SVM recursive feature elimination algorithm, viz., SVM-RFE, the simulations start 

with all features and the algorithm weights are determined. Then features with least 

absolute value of weight are recursively removed until no feature is left out. Here 

again best performing subset can be easily identified which is used in the final 

model (see Figs. 8 and 9). Several wrapper based methods are population based and 

use Genetic algorithms, Ant Colony Optimization or other swarm intelligent meth-

ods. These methods mimic some nature inspired phenomena and evolve optimal 

solutions. Fie e.g. ACO is based on co-operative search behaviour of live ants. 

Biogeography is the study of distribution and dynamics of a large number of species 

geographically over a period of time. Biogeography based optimization (BBO) 

Fig. 8 Wrappers: schematic representation
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involves mimicking the natural processes of migration over a population in iterative 

generations, simulating discrete time. Atulji Srivatsava et  al. employed BBO 

Simultaneous Feature Selection and MHC Class I Peptide Binding Prediction using 

Support Vector Machines and Random Forests [8].

5.3.3  Embedded Methods

In embedded class of feature selection techniques, optimal subset search is facili-

tated within the classification model. In random forest there are two inbuilt feature 

ranking methods, viz., Gini importance and variable importance. In SVM recur-

sive feature elimination algorithm, viz., SVM-RFE, the simulations start with all 

features and the algorithm weights are determined. Then features with the least 

absolute value of weight are recursively removed until no feature is left out. Here 

again best performing subset can be easily identified which is used in the 

final model.

Fig. 9 Wrappers & classification accuracy
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6  Performance Measures

While accuracy is the conventional performance measure, it may not be appropri-

ate in all situations. In some examples we may require maximizing the positive 

accuracy while in some other situations negative accuracy may be the desired 

performance measure. Also, in imbalanced datasets, where we have more exam-

ples in one class than the other we have to optimize both positive and negative 

accuracies.

Referring to Fig. 10, true positives are the examples which are originally posi-

tive and are predicted positive by SVM. True negatives are the examples which are 

originally negative and predicted negative. False positives are the examples which 

are originally negative but predicted positive. False negatives are the examples 

which are originally positive, but predicted negative. With these definitions, we can 

define positive and negative accuracies. True positive rates or sensitivities are 

defined as;

 

TPR =
number of true positive examples

total number of positivve examples

TP

TP FN
=

+
 

True negative rate or specificity can be defined as:

 

TNR =
number of true negative examples

total number of negativve examples

TN

TN FP
=

+
 

Fig. 10 Distribution of examples classified by the model
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Precision or positive predictive value can be defined as:

 
PPV =

+

TP

TP FP  

F1 score is a harmonic mean of precision and sensitivity:

 

PPV =
∗
+







=

+ +( )
2

2

2

PPV TPR

PPV TPR

TP

TP FP FN
 

Apart from these Matthew Correlation Coefficient is used as measure which pro-

vides optimal positive and negative accuracy and can be defined as:

 

MCC

TP FP TP FN TN FP TN FN

=
∗ − ∗

+( ) +( ) +( ) +( )

TP TN FP FN

 

MCC score of −1 indiciates very poor classification and +1 indicates highest pos-

sible performance. In case of imbalance datasets it is customary to use MCC as the 

desired performance measure.

6.1  Cross Validation Measures

A simple way to test the performance is to split the data with 80% train and 20% 

test. The model id built on the 80% train data and tested on 20% test data. While this 

can be done for quickly estimating the performance of the model may not be fully 

adequate. To remove statistical bias two different cross validation measures are 

used to gauge the performance and obtain the best algorithm parameters. In K-fold 

cross validation, the training set is randomly divided into K-folds. To start with, the 

first fold is used as the test set and the remaining k − 1 folds are used to build SVM 

hyperplane model. This model is evaluated by using the examples in the first fold. 

Similarly, each of the other k folds are used as test sets and the remaining k − 1 

folds are employed to build the models respectively. From these k experiments the 

cross validation accuracy is estimated as the average of k test accuracies. In leave 

one out cross validation procedure, each time one example is left out as a test exam-

ple and the remaining n − 1 examples are used to build the model. The built model 

is tested with the left out example. Conventionally fivefold or tenfold measures are 

used (k = 5 or k = 10). In k-fold cross validation, irrespective of the number of 

examples in the datasets, k different models are always built, whereas in leave-one-

out cross validation, number of models is equal to number of examples in the 

training set.
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7  SVM Extension to Solve Multi-class Type of Classification 

Problems

There are different algorithms, which address multi-class classification problem. 

Two well-known techniques include one-against-all method (Weston and Watkins 

1999) and one-against-one technique [9]. One-against-all method considers the 

multi-class problem as a collection of binary classification problems. In general, k 

classifiers are needed to solve the k class problem. The kth classifier constructs a 

hyper-plane between class k and the k − 1 other classes. A majority vote across the 

classifiers is applied to classify the new test point. In one-against-one technique 

k(k + 1)/2 classifiers are needed. In each classifiers a model is built with examples 

of one class against examples of another class. Here again for a test example major-

ity vote is needed to decide the class label.

8  Other SVM Types

8.1  Least Square SVM (LSSVM)

Least Square SVM classifier were proposed by Suykens and Vandewalle [10]. In 

their version of least square SVM they add a term in the objective function which 

penalizes square of error between prediction and actual class label. In this version, 

the problem is now formulated as a set of linear equations, instead of the convex 

quadratic problem for classical SVMs. Such a formulation makes computation sim-

pler and faster. Several problems in bioinformatics has been solved using 

LSSVM. LSSVM formulation has also been extended for solving SVM problems.

8.2  One Class SVM

Several real-life datasets are highly imbalanced. Function annotation problems in 

viral biology have a small number of positive examples, while the negative exam-

ples can be very large. So such a distribution causes imbalance in the datasets and 

the minority class prediction accuracy will be very poor. One class SVM has been 

proposed in the literature to overcome this issue. In One class SVM only the data 

belonging to the majority class examples is used to build the model. There are two 

different version proposed in the literature for One class SVM. In the Tax and Duin’s 

version [11], a model for the smallest hyper-sphere including all the majority class 

examples is formed. A new example is predicted as a majority class example if it 

falls inside the sphere. Otherwise it is predicted as a minority class example. For 
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non-linearly separable patterns appropriate kernel functions can be defined as in the 

case of binary SVMs. In the other version of the One class SVM, a hyperplane 

model is used instead of a hypersphere model [12]. One class SVM can also be used 

to detect anomalies and faults.

9  Applications of SVM in Virology

In this section, we outline a few important problems in viral biology where SVMs 

have been successfully applied on many case studies.

9.1  Quantitative Structure Activity Relationship (QSAR) 

Applications

Rapid assessment of desired activities of a large number of small-molecule com-

pounds can be achieved by High throughput screening (HTS). QSAR analysis has 

been playing a key role in screening of compounds by building knowledge-based 

models [13]. This greatly reduces the experimental screening load. QSAR method-

ology focuses on finding a model, which allows for correlating the experimentally 

determined activity of a family of compounds with their molecular structure. Once 

a high performance model is built, it can be used to identify the activity of any new 

compound based on appropriate domain attributes extracted from their molecular 

structure. The set of atoms and covalent bonds between them can define a molecular 

structure. However, creation of structure-activity relationship models cannot be 

directly done from the structure of the molecule. Domain information has to be 

presented to the algorithm in the form of descriptors; molecular descriptors range 

from physicochemical and quantum-chemical to geometrical and topological fea-

tures. The methodology of building QSAR models consists of four steps: (a) extract-

ing descriptors from molecular structure (b) choosing most informative descriptors 

as per activity (c) building a model based on filtered molecular descriptors (d) 

screening molecule for activity in question. In Table 1, different example of descrip-

tors as listed. These examples are categorised based on structural conforma-

tions [13].

Quantitative structure–activity relationship (QSAR) modelling with descriptor 

selection has become increasingly important because of a large number of descrip-

tors of different types can be extracted in principle. Descriptor selection can improve 

the accuracy of QSAR classification studies and reduce their computation complex-

ity by removing the irrelevant and redundant descriptors. Descriptor selection is an 

important pre-processing tool for QSAR studies. The sparse support vector machine 

(SSVM), one of the embedded methods, is of particular interest because it can per-

form descriptor selection and classification simultaneously.
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Further explanation is included in Sect. 5.3.

SVMs have been found to provide robust and accurate QSAR models for several 

problems encountered in viral biology. Two types of QSAR models can be build. 

First one is a regression problem in which a model is built against descriptors vs. 

experimentally annotated activities. This is a regression problem, schematically 

shown in Fig. 11. The second problem can be posed as classification problem. For 

this a threshold value for the experimental activities has to be defined. Compounds 

having activities less than these threshold activities are grouped into ‘class1’. The 

other compounds are grouped into ‘class2’. SVM classification model is built to 

separate compounds into two groups. A new query compound can then be classified 

as active or inactive as schematically represented in Fig. 12.

Human immunodeficiency virus (HIV) affects and destroys the immune system 

and causes acquired immunodeficiency syndrome (AIDS) disease. As per the 

UNAIDS report [14], 77.3 million [59.9 million–100 million] people have become 

infected with HIV since the start of the epidemic and 35.4 million [25.0 million–49.9 

million] people have perished from AIDS-related illnesses since the start of the 

epidemic. Numerous molecular modelling approaches have been attempted to 

address the design of new anti-HIV compounds. Most of them are based on QSAR 

[15]. In an interesting and comprehensive study [15] QSAR based attributes were 

selected for predicting inhibiting activity of the compound against HIV proteins 

including protease (PR), reverse transcriptase (RT) and integrase (IN). Around 

18,000 molecular descriptors which include geometric, electrostatic, structural, 

constitutional, path and graph fingerprints etc. were extracted utilizing the open 

source PaDEL software. To reduce the number of descriptors Attributes selection 

was carried out using ‘Best-First’ as the search method in Waikato Environment for 

Knowledge Analysis (Weka) suite. SMO regression algorithm in the Weka suite was 

Table 1 Examples of 

different descriptors based on 

structural conformation [15]

Category Descriptors

2D QSAR descriptors Constitutional descriptors

Electrostatic and quantum- 

chemical descriptors

Topological descriptors

Geometrical descriptors

Molecular fingerprints & 

fragment-based descriptors

3D QSAR descriptors Comparative molecular 

similarity indices analysis

Comparative molecular 

moment analysis

Weighted holistic invariant 

molecular descriptors

VolSurf approach

Grid-independent descriptors
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Fig. 12 SVM classification model

Fig. 11 SVM regression model
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used to classify the data into active and inactive sets. The models were able to 

achieve excellent values of Pearson correlation coefficient for all the three data sets, 

viz, PR, RT, IN.  An integrated web based Platform HIVprotI [16] was further 

developed using this model.

The tetra-hydro-imidazo[4,5,1-jk][1,4]-benzodiazepines (TIBOs), constitute a 

group of potent system inhibitors of HIV-1 reverse transcriptase. With a view to 

segregate TIBO compounds into high and low classes of inhibitors of HIV-1 reverse 

transcriptase, Hdoufane et al. carried out SAR studies on 89 TIBO derivatives using 

different classifiers, such as support vector machines, artificial neural networks, ran-

dom forests, and decision trees [17]. They successfully employed seven molecular 

descriptors characterizing hydrophobic, electronic, and topological aspects of the 

molecules and obtained excellent training and test accuracies.

The successful identification of HIV proteins may have important significance in 

treatment since epidemiological and biological characteristics of HIV-1 and HIV-2 

are quite different., Juan Mei et al. employed SVM along with other classifiers to 

predicted HIV-1 and HIV-2 proteins based on pseudo AA compositions and incre-

ment of diversity (ID) algorithm [18]. With jack knife tests, SVM models gave the 

highest prediction accuracy of 0.9909.

Both HBV and HCV are of immense significance as leading causes of liver can-

cer as well as co-infection with HIV. A potentially important study included 172 

positives and 8998 negative cases and built a classification model of the HBV data-

set; in the same study HCV dataset included 533 positives and 7287 negatives [19]. 

The data had obvious imbalance in the number of examples in the positive and nega-

tive data sets. Three different imbalance handling methods, viz., (i) Downsize, (ii) 

Multi downsize, and (iii) SMOTE were used. SMOTE provided the best perfor-

mance; SVM prediction accuracies of 64% for HBV and 71% for HCV were 

reported for this model.

Influenza, a respiratory virus, is correlated with high morbidity and mortality 

rates. Neuraminidase (NA) and haemagglutinin (HA) are two major glycoproteins 

found on the surface of the influenza virus. Compounds that inhibit neuraminidase 

can protect host cells from viral infection and retard the spread of the virus among 

cells. A two staged approach has been used to build a QSAR classification model 

separating neuraminidase as active and inactive [20]. In the first stage minimum 

redundancy maximum relevance criteria was employed to select the most informa-

tive descriptors. The second stage employs the selected descriptors as input to 

SSVM L1-norm classifiers. The dataset consisted 479 neuraminidase inhibitors of 

H1N1 virus whose experimentally measured IC50 values were available. These set 

of training compounds were separated by thresholding the activity into two catego-

ries: active compounds with IC50 <20μM, while those with IC50 >20 μM were 

considered to be weakly active compounds. The 7 top descriptors selected gave an 

SVM classifier accuracy of 90.62% which is far higher than the earlier SVM 

approaches.
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The classification of protein quaternary structure complex is of significant interest 

in computational biology research. Chi-Chou Huang at.al have developed a two- 

staged architecture for five class classification of grouping protein quaternary struc-

ture of a complex; the five classes are monomer, dimer, trimer, tetramer, and other 

subunit classes [21]. AA frequency, Shannon entropy and accessible surface areas 

were employed as domain attributes. One against all SVM classifiers were used of in 

which positive data consisted of examples of given class and negative data consisted 

of all the remaining classes. Due to this division number of examples in the positive 

side of the classifier was much less than the negative side. This created imbalance 

and reduced classification accuracy. To counter this, the author employs a bootstrap 

method for repeated sampling and generated different subsets of data. The majority 

class was further subjected to random sub-sampling. Mathews Correlation coeffi-

cient was used as performance measure. The bootstrapping method was able to pro-

duce an MCC of 0.696 and above. List of examples are given in Table 2.

Table 2 Illustrative examples for QSAR applications

Sr. 

no. Reference Brief description of work

Attributes and attribute 

selection

1. A binary QSAR model for 

classifying neuraminidase 

inhibitors of influenza A 

viruses (H1N1) using the 

combined minimum 

redundancy maximum 

relevancy criterion with the 

sparse support vector machine 

[20]

To predict the 

neuraminidase inhibitors as 

active and inactive based 

on QSAR using 479 

neuraminidase inhibitors of 

H1N1 virus with 

experimentally measured 

IC50 values.

Molecular structures of the 

compounds were sketched 

using Chem3D software.

Dragon software (version 

6.0) was used to generate 

4885 molecular descriptors 

including all 29 blocks based 

on the optimized molecular 

structures, 2881 left after 

cleaning up

2. In Silico SAR Studies of 

HIV-1 Inhibitors [17]

Classify TIBO compounds 

into two groups: High and 

low inhibitors of HIV- 

1reverse transcriptase based 

on QSAR studies.

500 molecular descriptors 

from five different classes 

(geometrical, topological, 

constitutional, electrostatic, 

and quantum-chemistry 

descriptors).

3. HIVprotI: An integrated web 

based platform for prediction 

and design of HIV proteins 

inhibitors [16]

A web server to predict 

inhibition activity of a 

compound against HIV 

proteins namely protease 

(PR), reverse transcriptase 

(RT) and integrase (IN).

18,000 molecular descriptors 

extracted using PaDEL 

software which include 

geometric, electrostatic, 

structural, constitutional, 

path and graph fingerprints

4. PClass: Protein quaternary 

structure classification by 

using bootstrapping strategy as 

model selection [21]

A web server for protein 

quaternary structure 

complex classification into 

5 categories namely: 

Monomer, dimer, trimer, 

tetramer, and other subunit 

classes

AA freq. Shannon entropy 

and accessible surface areas

(continued)
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9.2  SVM Applications Based on Next Generation Sequencing 

(NGS) Data

The term ‘Next-Generation’ Sequencing (NGS)’ refers to the advancement in 

nucleic acid sequencing technologies. Numbers of sequence reads generated per run 

has progressively increased with time, due to improved understanding of molecular 

biology as well as technological advances. Current sequencing platforms are capa-

ble of generating enormous numbers of sequence reads in quick turnaround time, 

allowing researchers to explore all possible aspects of biomedical studies at molecu-

lar level and dig deeper in the genetic aspects. NGS has proven to be an efficient, 

Table 2 (continued)

Sr. 

no. Reference Brief description of work

Attributes and attribute 

selection

5. Prediction of HIV-1 and HIV-2 

proteins by using Chou’s 

pseudo amino acid 

compositions and different 

classifiers [18]

To predict of HIV-1 and 

HIV-2 proteins by using 

Chou’s pseudo amino acid 

compositions

(i) 20 AA compositions (A1)

(ii) 400 dipeptide 

compositions (A2)

(iii) AA hydropathy 

compositions (H1)

(iv) 36 hydropathy dipeptide 

compositions (H2)

6. iPHLoc-ES: Identification of 

bacteriophage protein 

locations using evolutionary 

and structural features [96]

Tool to discriminates 

between host located and 

non-host located phage 

proteins (PH & non-PH) 

and membrane and 

cytoplasm located host 

proteins (PHM & PHC).

PSSM, AA composition and 

structural features of the 

sequences

Above features are generated 

using

  (1) PSSM file generated 

from PSI-BLAST and

  (2) SPD file generated 

from SPIDER2 software.

7. Enhancement of hepatitis virus 

immunoassay outcome 

predictions in routine 

pathology data by data 

balancing and feature selection 

before the application of 

support vector machines [19]

Prediction of HBV and 

HCV for negative and 

positive using Balancing 

methods to counter 

negative samples.

25 variables from laboratory

8. QSAR studies of the 

bioactivity of hepatitis C virus 

(HCV) NS3/4A protease 

inhibitors by multiple linear 

regression (MLR) and support 

vector machine (SVM) [97]

Predict bioactivity of 

hepatitis C virus (HCV) 

NS3/4A protease inhibitors

MACCS fingerprint, 20 

global molecular descriptors 

and 88 2D property- 

weighted autocorrelation 

descriptors calculated using 

CORINA Symphony

9 A computational model for 

predicting transmembrane 

regions of retroviruses [98]

Identify transmembrane 

regions in envelope 

glycoproteins of 

retroviruses (HERV, HIV, 

HTLV, SIV, MLV)

10 physicochemical and 

PSSM score features
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fast and reliable approach to solve problems in studies of evolution, ecology and 

genetics, overcoming the limitation of traditional molecular approaches [22]. 

Another great advantage of NGS approach over traditional molecular studies is that 

it is also cost efficient. End-to-end human genome can be sequenced in few hours 

using NGS technology, whereas, it took over a decade to sequence and assemble 

human genome using Sanger Sequencing. Based upon the chemistry, a number of 

NGS platforms have been developed since last decade. Bioinformatics knowledge 

plays an important role in assembling the fragments sequenced in parallel by map-

ping all the read sequences to the human genome reference. Depth of the sequenc-

ing, i.e. number of times the template has been sequenced, assures accuracy of 

sequencing, making sure that observed variation in sequenced data is the result of 

mutations, and not of sequencing errors. NGS can be used to sequence targeted 

regions identified in a genetic study, or entire genome including all coding genes 

(whole exome sequencing).

The variations in human genome can be a few nucleotide base changes (substitu-

tions), insertions, and deletions of DNA, large genomic deletions of exons or whole 

genes and rearrangements such as inversions and translocations. All these anoma-

lies are collectively termed ‘mutations’. Traditional methods of sequencing were 

only able to discover handfuls of mutations including small insertions and deletions. 

This led to the development of dedicated assays, to discover additional types of 

variations. Some of the examples includes fluorescence in situ hybridization (FISH) 

for conventional karyotyping, or comparative genomic hybridization (CGH) 

 microarrays to detect sub-microscopic chromosomal copy number changes such as 

microdeletions.

With recent advancements in NGS technologies and better understanding of life 

at genomic level, various questions have been answered using whole genome 

sequencing. Areas of applications includes genome diversity, metagenomics, epi-

genetics, discovery of non-coding RNAs and protein-binding sites, and gene- 

expression profiling by RNA sequencing [22–26]. Apart from high-throughput 

whole genome sequencing, typical applications of NGS methods in microbiology 

and virology are discovery of new microorganisms and viruses by using metage-

nomic approaches, investigation of microbial communities in the environment and 

in human body for understanding healthy and disease conditions, analysis of viral 

genome variability within the host, detection of antiviral drug-resistance mutations 

in patients with human immunodeficiency virus (HIV) infection or viral hepati-

tis, etc.

In the context of Microbial Analysis, the term metagenomics designates the anal-

ysis of all of the nucleic acid present in a given sample. Without isolating and cultur-

ing individual microbial species, entire communities of microorganisms can be 

explored. NGS applications in metagenomic studies include the discovery of novel 

viruses from clinical samples in human and animal diseases, e.g. the new Ebola 

virus Bundiubugyo [27], identification of a viral etiology of disease outbreak in 

honeybees [28], and involvement of a new arenavirus in transplant-associated dis-

ease clusters [29]. Scope of applications also include characterization of the viral 

community in the environment [30, 31], in animals [32], and viral community in 
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humans [33–36]. Due to high replication capacity and low fidelity of the replication 

enzyme, high intra-host variability is shown by reverse transcriptase-dependent 

viruses (e.g. hepatitis B virus, human immunodeficiency virus) and RNA viruses 

(e.g. hepatitis C virus, influenza virus). Such a set of closely related genomes within 

a given host allows a viral population to swiftly adapt to dynamic environments and 

evolve resistance to vaccines and antiviral drugs [37]. Significant work using NGS 

has been done for the characterization of intra-host variability of influenza virus 

[38, 39], HCV, HIV and HBV.

Jian’an Jia et al. designed an approach to distinguish between 2 disease groups 

caused by Hepatitis B Virus  – Chronic Hepatitis B (CHB) and Hepatocellular 

Carcinoma (HCC) [40]. NGS was used to sequence the pre-S region of a large num-

ber of CHB and HCC individuals. The attributes used were word pattern frequency 

vector of various lengths ranging from k = 2 to k = 8. Maximum CV mean AUC of 

0.93 k = 5. The prediction accuracy was found to be much higher than prediction 

results using KNN classifiers.

To investigate HBV genotypes and predict HCC status, Xin Bai et al. used NGS 

to sequence the pre-S region of the HBV sequence of 94 HCC patients and 45 

chronic HBV (CHB) infected individuals [41]. Word pattern frequencies among the 

sequence data of all individuals were calculated and compared using the Manhattan 

distance. The individuals were grouped using principal coordinate analysis (PCoA) 

and hierarchical clustering. Word pattern frequencies were also used to build predic-

tion models for HCC status using both K-nearest neighbours (KNN) and support 

vector machine (SVM). In the independent data set of 46 HCC patients and 31 CHB 

individuals, a good AUC score of 0.77 was obtained using SVM.

Apart from applications viral disease diagnosis, a recent study demonstrates use-

fulness of a hybrid approach in early assessment of the risk by predicting the host of 

influenza viruses using the Support Vector Machine (SVM) classifier based on the 

word vector, representation and feature extraction method for biological sequences 

[42]. Accuracies for host prediction in avian, human & swine influenza viruses were 

99.7%, 96.9% & 90.6%, respectively. Table  3 contains some examples of SVM 

application using NGS data to address problems in virology studies.

9.3  SVM Applications Based on Spectroscopy Data

From array of several spectroscopic techniques, Raman spectroscopy and Infrared 

(IR) absorption spectroscopy have led to major breakthroughs in biological, phar-

maceutical, and clinical research [43–45]. With use of visible-light laser beams, 

Raman spectroscopy can be used as a non-invasive characterization technique and 

achieve resolution same as fluorescence microscopy. The inelastic scattering of 

light photons by vibrating molecules in the samples is called as Raman scattering. 

Information about molecular vibrations produced due to change in frequencies of 

the photons are useful in diagnostic studies. Such change in frequencies are result 

of interactions of molecular bonds. Initial changes in almost all the types of diseases 
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(including cancer and viral infections) occur at molecular level. Laboratory tests are 

inadequate in identifying such changes due to some limitations. Raman  spectroscopy 

has the potential to monitor these changes at molecular level at early stage of the 

disease [46]. Information about abnormalities can be retrieved from the spectral dif-

ferences between normal and diseased samples, which is used for the purpose of 

diagnosis. With diverse areas of applications, Spectroscopy is a promising clinical 

tool for the real-time diagnosis of diseases and assessment of living healthy and 

cancerous tissue, cells and their subcellular compounds and structures. It can also 

be used to track the mode of action of drugs on a molecular level.

Due to its high sensitivity and selectivity Raman spectroscopy requires only a 

small sample volume and minimal preparation efforts. The high resolution, ease of 

sample preparation, and very short data collection time required make the technol-

ogy ideal for use in the study of viruses and virally infected cells. As the acquisition 

can be fast, processes in real time can be studied. In different conditions and envi-

ronments, informative molecular details can be extracted since water environment 

can disturb these spectra to a slight extent. Therefore, this technique is ideal for 

studies like viral protein assembly, dynamics, interactions and structural alterations, 

compared to other available methods. The stereochemistry and structures of pro-

Table 3 Illustrative examples for SVM applications based on NGS approach

Sr. 

no. Reference Brief description of work Attributes and attribute selection

1. Next-generation 

sequencing revealed 

divergence in deletions of 

the preS region in the 

HBV genome between 

different HBV-related 

liver diseases [40]

Distinguish between 2 

disease groups caused by 

Hepatitis B Virus – 

Chronic Hepatitis B 

(CHB) and Hepatocellular 

Carcinoma (HCC)

Nucleotide deletion % obtained 

from sequences.

It is defined as 100 × (counts of 

reads with deletion in single 

nucleotide site)/(total number of 

reads including such a nucleotide 

site)

2. Deep sequencing of HBV 

pre-S region reveals high 

heterogeneity of HBV 

genotypes and 

associations of word 

pattern frequencies with 

HCC [41]

Investigate HBV 

genotypes and to predict 

HCC status using 

sequences of pre-S region 

of the HBV sequence of 

HCC and HBV patients.

Word pattern frequency vector of 

various lengths ranging from k = 2 

to k = 8

3. Predicting the host of 

influenza viruses based on 

the word vector [42]

Predict the host(human, 

avian & swine) of 

influenza viruses based on 

the word vector

200-dimension vectors of all 

proteins and DNA sequences 

generated using “word2vec”

To vectorize protein, the sequence 

is separated into overlapping 

words of size 2–4. The word 

vector of all the words are 

summed up and averaged that 

results in 200-dimension vector 

for each protein. Same done for 

DNA

S. Modak et al.



385

teins and nucleic acid components of viruses, can be determined using spectroscopy 

[47, 48]. The conformational changes that leads to viral procapsid and capsid 

assembly was identified using Raman spectroscopy [49, 50]. Raman spectroscopy 

is effective also in distinguishing between even the homogenous viruses, thereby 

increasing its possible role even further in diagnostic medicine.

Dengue fever, Yellow fever, Japanese encephalitis, Murray Valley encephalitis, 

tick-borne encephalitis and West Nile encephalitis are diseases attributed to flavivi-

rus infection. Early detection is important to prevent these diseases from progress-

ing into the severe or terminal stages. Non-structural protein 1 (NS1) is acknowledged 

as one of the biomarkers for flavivirus related diseases. Radzol AR et al. defined a 

model for PCA-SVM with MLP kernel for classification of flavivirus biomarker, 

NS1 molecule, from Surface Enhanced Raman Spectroscopic (SERS) spectra of 

saliva [51]. Best PCA-SVM (MLP) model defined in this study yielded accuracy 

of 96.9%.

Another example of life-threatening viral infection is Hepatitis B, that attacks the 

liver. In a study analysing hepatitis B virus (HBV) infection in human blood serum 

using Raman spectroscopy combined with pattern recognition technique, SVM 

model with two different kernels i.e. polynomial function and Gaussian radial basis 

function (RBF) were investigated for the classification of normal blood sera from 

HBV infected sera based on Raman spectral features [52]. Best performance 

achieved for polynomial kernel of order-2 with accuracy of 98% using fivefold 

cross-validation.

In case of chronic hepatitis C, liver biopsy has been the reference for staging the 

degree of fibrosis until the last decade. For obvious reasons, non-invasive tests e.g. 

blood tests measuring the markers that are either involved in the synthesis or degra-

dation of extracellular matrix, has to be the preferred alternatives for assessment of 

hepatic fibrosis. However, the performance of these non-invasive methods is limited 

in differentiating between mild and moderate stages of fibrosis and in evaluating the 

effect of treatments on liver fibrosis process. Use of Fourier transform infrared 

(FTIR) spectroscopy applied to the serum in the assessment of hepatic fibrosis, was 

demonstrated by Scaglia et al. [53]. Infrared spectral characteristics exhibited by 

serum from patients, were employed in differentiation of chronic hepatitis C patients 

with extensive hepatic fibrosis from those without fibrosis and thus predicting the 

degree of hepatic fibrosis. With leave-one-out cross-validation, the accuracy 

achieved was 97.7%.

A similar study was performed for the classification of dengue suspected in 

human sera. SVM models built on the basis of three different kernel functions 

including Gaussian radial basis function (RBF), polynomial function and linear 

function were employed to classify the human blood sera based on features obtained 

from Raman Spectra [54]. With the tenfold cross validation method, best results 

were obtained for the polynomial kernel of order 1 with diagnostic accuracy of 

about 85%.

The applications are not limited to only medicinal diagnosis. Viruses could infect 

over hundreds of different species of plants, including crops of tobacco, tomato, 
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pepper, cucumber, etc. Viruses can survive outside the plant, and remain in a dor-

mant state to infect growing crops. Once the plant is infected, no chemical cure is 

effective, and usually all the infected crops should be removed. For detecting seeds 

infestation caused by cucumber green mottle mosaic virus (CGMMV), near- infrared 

(NIR) hyperspectral imaging system was used to discriminate virus-infected seeds 

from healthy seeds with partial least square discriminant analysis (PLS-DA) and 

least square support vector machine (LS-SVM) [55]. The classification accuracy for 

virus-infected watermelon seeds were 83.3% with the best model.

Whereas Jiyu Peng et al. proposed an approach to discriminate TMV-infected 

tobacco based on laser-induced breakdown spectroscopy (LIBS) [56]. Two different 

kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for 

spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was 

used to establish classification models. In prediction set, 94.4% and 94.7% accura-

cies obtained for observed emission lines of dried & fresh leaves. Compared to 

PLS-DA, SVM was proved to be efficient to eliminate influences of moisture con-

tent. Some other examples are listed in Table 4.

9.4  SVM Applications for Epitope Prediction

An epitope is a specific target of a few AA residues on an antigen molecule that is 

recognized by B-cells or T-cells of the immune system [57, 58]. A B-cell epitope is 

the antigen portion that binds to B-cell Receptor (BCR) on B-cells, where BCR 

contains membrane-bound antibody. There are 2 types of B-cell epitopes based on 

their orientation. One is linear epitope that comprises of a continuous string of AA 

s. The second one consisting of most B-cell epitopes is conformational epitope 

which is made up of discontinuous AAs that comes close with protein folding [59, 

60]. A T-cell epitope binds to the major histocompatibility complex (MHC) on sur-

face of antigen-presenting cells (APCs) and MHC presents the antigen to the T-cell 

receptor (TCR) on T-cells [59]. The major histocompatibility complex (MHC) or 

human leukocyte antigen (HLA) is the gene family that helps the immune system to 

identify and destroy the foreign substance [61].

Vaccines have proven to be useful tools to control various viral diseases like 

influenza, smallpox, polio, hepatitis and rotavirus. The conventional methods of 

developing vaccines include attenuated or killed whole pathogen that improves 

immunity to a specific disease and involve only experimental methods of epitope 

identification. Vaccine development takes a long time with conventional methods 

because of the time consuming experimental screening of huge number of potential 

candidates [62]. The fact that only few AA residues are detected by B- and T-cells 

instead of whole pathogen is leveraged for vaccine development, understanding dis-

ease etiology, disease diagnosis and immune monitoring [58, 59]. Moreover, with 

advances in next-generation sequencing methods, proteomics, and transcriptomics 
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Table 4 Illustrative examples for SVM applications using spectroscopy

Sr. 

no. Reference Brief description of work

Attributes and 

attribute selection

1. Detection of cucumber 

green mottle mosaic 

virus-infected watermelon 

seeds using a near-infrared 

(NIR) hyperspectral 

imaging system: Application 

to seeds of the “Sambok 

Honey” Cultivar [55]

Classification of infected and healthy 

watermelon seeds using a near- 

infrared (NIR) hyperspectral imaging 

system. Hyperspectral imaging data 

51 healthy & 45 infected samples 

were used.

Near infrared 

spectrum

2. PCA criterion for SVM 

(MLP) classifier for 

flavivirus biomarker from 

salivary SERS spectra at 

febrile stage [51]

Classification of flavivirus biomarker, 

NS1 molecule, from Surface 

Enhanced Raman Spectroscopic 

(SERS) spectra of saliva. SERS 

spectra of 64 NS1 adulterated dataset 

and 64 control dataset were used.

Spectral data with 

1801 features per 

spot per sample.

3. Analysis of hepatitis B virus 

infection in blood sera using 

Raman spectroscopy and 

machine learning [52]

Analysis of hepatitis B virus (HBV) 

infection in human blood serum 

using Raman spectroscopy. Serum 

samples of 119 confirmed HBV 

infected patients and 84 healthy 

volunteers were used.

Raman spectral 

features

4. Noninvasive assessment of 

hepatic fibrosis in patients 

with chronic hepatitis C 

using serum Fourier 

transform infrared 

spectroscopy [53]

Non-invasive differentiation of 

chronic hepatitis C (CHC) patients 

with extensive hepatic fibrosis from 

those without fibrosis using Fourier 

transform infrared (FTIR) 

spectroscopy of serum. Serum 

samples of 12 patients with no 

hepatic fibrosis and 11 patients with 

extensive fibrosis were used.

Fourier transform 

infrared spectral 

profiles.

5. Fast detection of tobacco 

mosaic virus infected 

tobacco using laser induced 

breakdown spectroscopy 

[56]

Detect TMV-infected tobacco based 

on laser-induced breakdown 

spectroscopy (LIBS).

Full spectrum and 

observed emission 

lines of laser-induced 

breakdown 

spectroscopy (LIBS) 

for fresh & dried 

leaves.

6. Analysis of dengue infection 

based on Raman 

spectroscopy and support 

vector machine (SVM) [54]

Classification of dengue suspected 

human blood sera; use of Raman 

spectroscopy combined by 

deciphering spectral differences 

between dengue positive and normal 

sera. Raman spectra of 31 were 

dengue positive and 53 were negative 

were used.

Features obtained 

from Raman Spectra

Application of Support Vector Machines in Viral Biology



388

as well as ever increasing immune system data and databases, epitopes can be iden-

tified in few years. Once the epitopes are predicted using computational methods, 

the peptides can be experimentally tested for its binding affinity and ability to elicit 

desired immune response. Immunoinformatics involves the development of bioin-

formatics tools that analyses data to predict B- and T-cell epitopes which can stimu-

late immune response. In-silico prediction methods of epitope prediction can be 

beneficial to decrease the number of potential epitopes for experimental confirma-

tion, develop epitope-based vaccines for hypervariable viruses and develop  chimeric 

vaccines [59, 62]. Epitope based-vaccines can be safer and less expensive than con-

ventional methods [62].

Predicted epitopes should take into account the desirable features of epitopes 

such as they should be conserved in different parts of viral lifecycle, their binding 

affinity and efficacy, they should bind to more than one allele of immune system 

molecules and most of them are proteins [59, 62]. Most epitope prediction methods 

are based on proteins and their different descriptors including physicochemical 

properties related profiles of proteins, evolutionary data, sequence motifs and quan-

titative matrices (QM) [58, 59]. SVM has been one of the most popular methods 

used for both B-cell & T-cell epitope prediction.

9.4.1  T-Cell Epitope Prediction

T-cell epitopes are processed within a cell, linked with MHC & presented on T-cell 

surface to be recognized by T-cell receptor. Each of these steps decide the immuno-

genicity of T-cell epitopes. However, most of the T-cell epitopes focus on the step 

where a peptide is linked with MHC-I & MHC-II [59]. MHC-1 binds to peptides of 

length 9–11 AA s and its pockets prefers peptides with certain physicochemical 

properties. Hence, peptide-MHC-I binding prediction methods work on peptide 

sequences of 9 AA residues. On the other hand, MHC-II binds to longer peptides but 

the prediction methods focus on peptide part that binds to the MHC-II groove. Large 

number of databases like IEDB, EPIMHC and AntiJen, store epitopes verified 

through experimental approaches [59]. These have served as rich sources of positive 

examples for several prediction methods.

Different computational methods/models have been used to predict epitopes like 

use of Sequence Motif, motif matrix, quantitative affinity matrices (QAM) etc. . 

However, machine learning (ML) methods have proven to be the most robust 

method for prediction [63]. With high dimensionality of the data and the limited 

observations, SVM comes as a better method. In a study, 36 stimulatory peptides 

and 167 non-stimulatory peptides were gathered, and physical properties of 20 AA 

s were used to develop models from Artificial Neural Network, Decision Tree & 

SVM. SVM proved to outperform prediction of stimulatory peptides with maxi-

mum sensitivity of 0.76 [64].

MHC2Pred is one of the freely available tools based on SVM to predict MHC-II 

binding peptides [65]. To develop a model for MHC2Pred, binding & non-binding 

peptides, based on IC50, were collected from MHCBN and JenPep database. 
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Peptides with less than 9 AA residues were discarded and rest of the peptides were 

looked for 9 AA s that would bind the MHC-II groove using Matrix Optimization 

Techniques (MOT) package. A vector of length 20 was created for each AA in 

9-mer peptide where binders were given +1 and non-binders a −1. Each peptide was 

thus represented by 180 (9 × 20) length vectors. This data was used to develop SVM 

model which was later validated using fivefold cross validation and got an overall 

accuracy of method is >78% [65].

SVMHC is another tool for prediction of both MHC class I and class II binding 

peptides [66]. For MHC-I prediction model, peptides of length 8–10 were repre-

sented by a binary sparse encoding. For MHC-II peptide binding prediction, matri-

ces by Sturniolo et al. [67] were used. These matrices represent HLA-DR peptide 

binding specificity where HLA-DR is an MHC-II cell surface receptor [67] (see sr. 

no. 1 of Table 6).

Predicting immunogenicity of epitopes can help in vaccine design and POPISK 

is a tool that predicts reactivity of T-cells to peptides and identify positions that are 

recognized by TCR [68]. POPISK uses SVM model with a weighted degree string 

kernel (see sr. no. 2 of Table 6).

9.4.2  B-Cell Epitope Prediction

B-cell epitopes can be predicted based on physicochemical properties like hydro-

philicity, flexibility, polarity, and exposed surface as well as secondary & 3D struc-

tures [62]. There are 566 AA indices that represents physicochemical properties of 

AA s listed in AAindex [69].

Linear epitopes can be predicted using antigen sequences by calculating AA pro-

pensity scales based on physicochemical properties. AA Propensities (AAP) calcu-

lation considers an overlapping window of length k AA s in a protein sequence and 

for each window, average propensity value of AA s is calculated, where propensity 

value can be hydrophilicity, accessibility, flexibility, polarity, antigenicity, beta- 

turn, surface exposed scale, etc. The average value is assigned to the AA in middle 

of the window. AA s residues that passes the threshold are considered as potential 

epitopes. A combination of different propensity values can be used with specific 

weights [70].

Due to poor performance of AA propensity scales, Machine learning (ML) meth-

ods were later adopted to distinguish B-cell epitopes from non-epitopes. BCPREDS 

and SVMtrip [71] are epitope prediction tools based on Support Vector Machine 

(SVM) [59]. More information on SVMtrip is provided in sr. no. 3 of Table 6.

Conformational B-cell epitopes can be predicted using features related to the 

structure of the proteins. One of the studies have used combination of physico-

chemical features, evolutionary PSSM features and structural features as protrusion 

index (PI), accessible surface area (ASA), relative accessible surface area (RSA) 

and B-factor [72] (see sr. no. 4 of Table 6). Physicochemical properties of AA s were 

derived from AAIndex. PSSM represents the attributes extracted from repeated 

multiple sequence alignment of sequences that can be generated using PSI-BLAST 
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with specific number of iterations. It is a scoring matrix where each position in the 

multiple sequence alignment is given an AA substitution scores. PSSM is used to 

incorporate evolutionary information of a peptide [73–75]. Another study by Ansari 

et al. [76] on conformational B-cell epitope uses 3 types of features namely binary 

profile of pattern (BPP), physiochemical profile of patterns (PPP) and composition 

profile of patterns (CPP) (see sr. no. 5 of Table 6). In this study, patterns of different 

lengths were created from the sequences. Then for each pattern 3 feature vectors 

were created, (1) BPP, a vector of length 21 based on binary number for occurrence 

and non-occurrence of AA, (2) PPP, a vector of length 5 based on 5 physicochemical 

properties named Hydrophobicity, Flexibility, Polarity_Grantham, Polarity_

Ponnuswami, Antigenicity and (3) CPP based on composition of patterns. CBTope 

server uses this method for predicting B-cell epitopes [76].

Listed in Table 5 are some freely available T-cell & B-cell epitope prediction web 

servers based on SVM.

Information on some more SVM based epitope prediction studies have been pro-

vided in Table 6.

9.5  Applications of SVM Involving Protein-Protein Interaction 

in Virology

Proteins are the workhorses of a cell that carry out majority of the functions in a cell. 

Eighty percent of proteins are not functional in isolated forms but they operate in 

complexes by interacting with other molecules [77, 78]. Protein-protein interaction 

(PPI) is the physical & functional interactions of proteins that controls wide range 

of molecular processes in a cell, like signal transduction, cell-cell communication, 

transcription, replications etc. [79]. PPIs can be responsible for altering kinetic 

properties of enzyme, modifying proteins activity, changing specificity of protein 

binding, constructing new binding sites and regulatory function. Alteration or mal-

function of these interactions can lead to diseases [79]. The collection of all the 

protein-protein interaction of cell or an organism is called interactome. The study of 

PPIs can help in predicting a biological process involving protein of unknown func-

tion, fasten the pace of understanding functional pathways or to know biochemistry 

Table 5 List of freely available epitope prediction servers

Sr. no. Server Reference link Epitope predicted

1. MHC2Pred http://www.imtech.res.in/raghava/mhc2pred/ T-cell epitope

2. SVMHC http://abi.inf.uni-tuebingen.de/Services/SVMHC T-cell epitope

3. SVRMHC http://svrmhc.biolead.org/ T-cell epitope

4. BCPRED http://ailab.ist.psu.edu/bcpred/ B-cell epitope

5. SVMTriP http://sysbio.unl.edu/SVMTriP/prediction.php B-cell epitope

6. EPSVR http://sysbio.unl.edu/EPSVR/ B-cell epitope

7. CBTOPE http://crdd.osdd.net/raghava/cbtope/ B-cell epitope
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Table 6 Illustrative examples of epitope prediction based on SVM

Sr. 

no Reference Brief description of work

Attributes and attribute 

selection

1. SVMHC: A server for 

prediction of MHC- 

binding peptides [66]

Purpose: Identification of MHC-I 

and MHC-II binding peptides

Dataset: MHC-binding peptides of 

different lengths were extracted from 

the MHCPEP and SYFPEITHI 

databases.

For MHC-I – Binary 

sparse encoding of 

8–10 k-mer length of AA s

For MHC-II – Matrices 

representing HLA-DR 

peptide binding specificity

2. POPISK: T-cell 

reactivity prediction 

using support vector 

machines and string 

kernels [68]

Purpose: Predict immunogenicity of 

peptides by predicting T-cell 

reactivity i.e. if a peptide is 

immunogenic or non-immunogenic 

using SVM with a weighted degree 

string kernel.

Dataset: Extracted peptide binders of 

length 9 along with their associated 

human MHC class I alleles and 

immunogenicity from three 

databases, MHCPEP, SYFPEITHI 

and IEDB.

Negatively annotated peptides were 

used as non-immunogenic peptides

Final dataset – 558 immunogenic and 

527 non-immunogenic peptides

Matched sub-sequences of 

length p at a position in 2 

sequences

3. SVMTriP A Method to 

Predict Antigenic 

Epitopes Using 

Support Vector 

Machine [71]

Purpose: Predict linear B-cell 

epitopes using SVM with RBF 

Kernel

Dataset: Dataset constructed by 

extracting non-redundant linear 

B-cell epitopes (10AA, 12AA, 

14AA, 16AA, 18AA, and 20AA) 

from IEDB. For negative dataset, 

non-epitope part of corresponding 

antigen used.

Final dataset: 4925 non-redundant 

epitope sequences each for positive 

and negative dataset.

Tripeptide similarity using 

Blosum62 matrix and 

propensity scores

4. Positive-unlabeled 

learning for the 

prediction of 

conformational B-cell 

epitopes [73]

Purpose: PUPre (Positive-Unlabeled 

Prediction) method to – (1) identify 

non-epitope residues using weighted 

SVM and (2) model to distinguish 

epitope and non-epitope residues

Dataset: 2123 residues labelled as 

epitopes and 16,615 unlabeled 

residues by processing data from 

PDB

Feature vector of 239 

features including

  205 physico-chemical 

features collected from 

AAIndex

  21 evolutionary PSSM 

features

  13 structural features.

Attribute selection: 

Wilcoxon rank-sum test 

was applied to select 

informative features and 

resulted in 89 selected 

features

(continued)
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of a cell [77, 79, 80]. Knowledge of specific PPI can also help in identification of 

drug targets [79].

PPI data can be mapped to large scale networks where nodes represent proteins 

and edges represent their physical or functional interactions. These networks are 

known as PPI networks (PIN) [77, 79]. PPI networks can be used to extract various 

information like functionality of a protein based on its placement in the network as 

the closely linked proteins can have similar biological activity. PPI can also be used 

to decipher which complex a protein belongs to and the diseases related to a protein 

[79]. The knowledge that is encapsulated in the PPI can help improve the biological 

and biomedical applications [77].

Virus-host proteins interactions are key to viral infection and subsequent patho-

genesis. Many PPIs are involved between virus and host during a viral infection 

where the virus proteins take over the host transcriptional machinery [78]. It has 

been believed that viral proteins bind to the host protein that are highly connected 

[81]. Endogenous interface, with respect to virus-host systems, are responsible for 

interactions in their own system i.e. host-host PPI and virus-virus PPI. On the other 

hand, exogenous interfaces are responsible of virus-host interactions. Both virus 

and host compete for endogenous and exogenous interfaces [81]. Mutations at pro-

tein interfaces can reduce or increase their binding affinities by changing protein 

electrostatics and structural properties. Virus and host proteins change their surface 

Table 6 (continued)

Sr. 

no Reference Brief description of work

Attributes and attribute 

selection

5. Identification of 

conformational B-cell 

epitopes in an antigen 

from its primary 

sequence [76]

Purpose: Use SVM with RBF 

Kernel to identify conformational 

B-cell epitopes

Dataset: 187 antigenic protein chains 

having 2261 amino acid residues that 

were antibody interacting and 

107,414 amino acid residues as 

non-antibody interacting

Binary profile of patterns 

(BPP), Physico-chemical 

profile of patterns (PPP), 

composition profile of 

patterns (CPP)

Explanation of features in 

Sect. 9.4.2

6. SVM-based prediction 

of linear B-cell 

epitopes using Bayes 

Feature Extraction 

[100]

Purpose: Identification of linear 

B-cell epitopes using SVM string 

kernel prediction model

Dataset: Linear B-cell epitopes of 

lengths 12- to 20-mers extracted from 

EL-Manzalawy dataset [101]

Sequences encoded in 

bi-profile manner where 

they have attributes from 2 

pools – positive position- 

specific and negative 

position-specific profiles

Feature extraction: 

Bayes Feature Extraction 

(BFE)

7. Application of support 

vector machines for 

T-cell epitopes 

prediction [64]

Purpose: T-cell epitope prediction 

with an MHC I restricted T-cell 

clone.

Dataset: 36 stimulatory peptides and 

167 non-stimulatory peptides which 

were further divided into positive and 

negative set by random sampling

188 physical properties of 

20 AA s

Attribute selection: ‘Ten 

factors extraction from 

188 physical properties of 

20 AA s
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resides through mutations as an evolutionary result to compete for binding partner. 

However, host tends to be less variable than viruses. Viruses diversify through vari-

ous modes of molecular evolution, including conservation, horizontal gene transfer, 

gene duplication and molecular mimicry [81]. Viral proteins constantly inhibit host- 

host interactions and therefore, blocking such interactions between virus & host can 

aid in biomedical applications by identification of drug targets and developing anti-

viral therapies [81]. For e.g. a drug, Maraviroc, binds the cellular co-receptor CCR5, 

a receptor on white blood cells involved in immune system, preventing it from inter-

acting with GP120 of HIV1 which is essential for entry of HIV-1 in host [82]. As 

viruses pose a global threat, understanding of virus & human PPIs can help in devel-

opment of vaccines for treatment.

Comprehensive PPI networks have been generated using experimental methods. 

These experimental methods employ different techniques like tandem affinity puri-

fication, affinity chromatography, coimmunoprecipitation, protein arrays, protein 

fragment complementation, phage display, X-ray crystallography, and NMR spec-

troscopy [79]. However, due to the huge PPI data and the time consuming experi-

mental methods, computational methods are increasingly becoming popular to 

analyse the PPI networks and find out the functions of unexplored proteins. 

Computational methods of PPI detection are based on sequences, structure of mol-

ecules, gene fusion, phylogenetic tree and gene expression [79].

Detection of virus-host interactions using machine learning methods have proved 

to be very useful. Several SVM models have been developed for the same purpose; 

known PPIs as positive set, are used to train the models to predict whether two pro-

teins interact or not. Positive set data can be extracted from experimental data avail-

able in the databases. Selecting negative dataset is complicated. Negatome, a 

database of negative interactions developed using text mining, can be used to gather 

negative data set [83, 84].

Emamjomeh et  al. [85], developed SVM model to predict PPI interactions 

between human and hepatitis C virus (HCV) [D32]. In this study, SVM was com-

bined with other learning methods like random forest (RF), Naïve Bayes (NB) and 

multilayer perceptron (MLP) Feature vectors were generated for HCV & human 

proteins which included six different AA composition (ACC), pseudo AA composi-

tion (PAC), PSSM as evolutionary information feature, network centrality mea-

sures, tissue information and post-translational modification (PTM) information 

[85]. AA composition is the simplest descriptor used to represent a protein sequence. 

However, with this descriptor the sequence order of AA s is lost and hence, pseudo 

AA is used which involves AA composition as well as sequence order-based fea-

tures [5] (see sr. no. 1 of Table 7).

Cui et al. [86] developed an SVM model for prediction of virus-host PPI for 2 

viruses, human papillomaviruses (HPV) and hepatitis C virus (HCV). This SVM 

model is based on relative frequency of AA triplets (RFAT) between virus & host 

AA sequences and GO annotations of protein. RFAT generates fixed length for vari-

able length proteins and enables models to achieve a better accuracy. In this study, 

a vector based on AA triplets & biochemical similarity is generated. Based on 

 biochemical properties of AA residues, 6 categories are defined as {IVLM}, 

{FYW}, {HKR}, {DE}, {QNTP}, and {ACGS}. Using this classification of AA s, 
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Table 7 Illustrative examples Protein-Protein interaction studies based on SVM

Sr. 

no Reference Brief description of work Attributes and attribute selection

1. Predicting protein–

protein interactions 

between human and 

hepatitis C virus via 

an ensemble learning 

method [85]

Purpose: Predicting PPI 

between human and hepatitis C 

virus using SVM combined with 

RF, NB and MLP.

Dataset: 657 positive 

interactions from human-HCV 

PPI from IntAct database and 

2910 negative interactions

AA composition, pseudo AA 

composition, PSSM, network 

centrality feature, tissue 

information feature, 31 PTM 

types

2. Prediction of 

protein-protein 

interactions between 

viruses and human 

by an SVM model 

[86]

Purpose: Prediction of 

protein- protein interactions 

using SVM binary classifier.

Dataset: Training dataset had 

500 positive and negative 

interactions.

Test set had 195positive and 

negative interactions.

Positive dataset was extracted 

from the infection mapping 

project (I-MAP) whereas 

negative from HPRD by random 

selection of human proteins

Feature vector of relative 

frequency of 216 AA triplets

Details of attribute Sect. 9.5

3. An improved method 

of predicting 

interactions between 

virus [89]

Purpose: An improved method 

of predicting interactions 

between virus and proteins 

including human 

papillomaviruses (HPV) and 

hepatitis C virus (HCV), using 

SVM with RBF kernel.

Features used: Relative frequency 

of AA triplets (RFAT), the 

frequency difference of AA 

triplets (FDAT) between virus 

and host proteins, and AA 

composition (AC).

RFAT feature generation- 

clustered 20 AA s into 4 groups 

based on chemical properties of 

side chain of the AA s yields 64 

AA triplets

4. A generalized 

approach to 

predicting PPI [78]

Purpose: Prediction of PPI 

between virus and host using 

SVM with RBF kernel. 

Additionally, a generic model to 

predict PPI of any virus & host

Dataset: Multiple training and 

test datasets used

Features used – RFAT, FDAT, 

AC, normalized frequency of 

each AA group, transition & 

distribution.

RFAT feature generation – 20 

AAs into 7 groups based on 

dipoles & volumes of side chains 

of AA s yielding 343 possible AA 

triplets. A vector of 

343 + 343 = 686 was generated 

for virus-host pair

(continued)

S. Modak et al.



395

there are 6 × 6 × 6 = 216 possible AA triplets [86]. The protein sequence is con-

verted into AA triplets and the vector of 216 length is created that contains the fre-

quency of each category in sequences of variable length. LIBSVM [87] was used to 

generate model with the radial basis function (RBF) as a kernel function. For data-

set, HCV & human interaction data was extracted from the infection mapping proj-

ect (I-MAP) whereas for HPV, data was extracted from NCBI Bio Systems Database. 

For HCV accuracy of 85.1 was achieved whereas for HPV it was 87.5 [86] (see sr. 

no. 2 of Table 7).

RFAT has been used in many studies with different combinations of categories 

and k-mer. In a study of HIV and human PPI [88], four-mer sequences were used 

instead of triplet. With 7 categories and 4-mer sequences, RFAT vector of 4802 (7^4 

∗ 2) length was generated (see sr. no. 5 of Table 7).

Kim et al. [89] used 4 categories based on chemical properties of side chain of 

the AA s making 64 AA triplets combination (see sr. no. 3 of Table 7).

In another study of PPI by Zhou et al. [78] and Shen et al. [90], a similar feature 

vector of triplets is produced but 7 categories of AA residues are used instead of 6 

and these categories are based on diploes and volumes of the side chains of AA s. 

With 7 categories 343 (7 × 7 × 7) AA triplets are possible. RFAT feature vector had 

686 elements i.e. 343 for host and 343 for virus. Zhou et al. [78] uses more features 

as frequency difference of AA triplets (FDAT) between virus and host proteins, AA 

composition (AC) in each pair of host and virus proteins, normalized frequency of 

each AA group, transition and distribution of AA groups. As a result of these 6 

 features, a feature vector of length 1175 was created. Again, LIBSVM [87] with 

RBF was used to develop model. Best performance was obtained with combination 

of all these 6 features with accuracy of 85.64% (see sr. no. 4 of Table 7).

Most of the prediction methods are specific to a virus-host combination. However, 

there are SVM based methods that are generic enough to predict PPIs of virus and 

host that were not used for training set. The approach by Zhou et al. [78] is one of 

such methods i.e. it does not require model for each host-virus pair. Another method 

called DeNovo, is a generic method that can predict novel PPIs. This method is 

based on SVM that trains on different virus-host PPIs [91].

Table 7 (continued)

Sr. 

no Reference Brief description of work Attributes and attribute selection

5. Supervised learning 

and prediction of 

physical interactions 

between human and 

HIV proteins [88]

Purpose: Prediction of 

human-HIV PPI using SVM 

with a linear kernel.

Dataset: 1028 human–HIV PPIs 

from four public databases, 

Biomolecular Interaction 

Network Database, the Database 

of Interacting Proteins, IntAct, 

and Reactome

Negative dataset was generated 

by randomly pairing human and 

HIV proteins.

Four-mers sequence, protein 

domains responsible for 

interactions and PPI network 

information.

Four-mers sequence and 7 

categories of AA, were used to 

generate feature vector of 4802 

(7^4 ∗ 2)
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Table 7 shows some studies on SVM model that are used for protein-protein 

interaction of virus-host.

10  Miscellaneous Examples

Apart from above examples, there are some noticeable studies employing other 

approaches to address problems in virology. Microarray is a method that uses 

microscopic chip where each spot-on chip has a DNA/cDNA sequence attached. 

These sequences bind to the complementary unknown sequences & thereby detects 

gene expressions of thousands of genes. In Virology, Microarray is used to screen 

viruses for which genomes are available in GenBank by looking at the conserved 

viral sequences. Microarray gene expression profiles are also used to detect the 

immune response that can further help in classifying disease caused by viruses, that 

is conventionally done using quantitative real time PCR (qPCR). SVM can be used 

to detect immune response by using microarray gene expression data. Due to big 

size of microarray data, important features are extracted using feature selection 

methods.

In a study [92], the authors have reported that DNA microarray technology can 

be used as a high-throughput method to analyse polymorphisms within a short 

region of the FMDV genome encoding relevant functions in antigenicity and recep-

tor recognition. Their SVM based methodology classifies the samples based on their 

hybridization signal. This prediction methodology has wide ranging applications to 

fine genotyping including studies of heterogeneous viral populations, genetic 

changes in virus, bacteria, and genes of rapidly evolving cells, such as tumor cells.

Predicting the hosts of newly discovered viruses is important for pandemic sur-

veillance of infectious diseases. Li and SUN [93] investigated the use of alignment- 

based and alignment-free methods and support vector machine using mononucleotide 

frequency and dinucleotide bias to predict the hosts of viruses, and applied these 

approaches to three datasets: rabies virus, coronavirus, and influenza A virus [93] 

also showed that SVM predicts the hosts of viruses with a high degree of accuracy.

The phosphorylation of virus proteins by host kinases is linked to viral replica-

tion leading to an inhibition of normal host-cell functions. Unravelling of phos-

phorylation mechanisms in virus proteins can aid in drug design and treatment. In 

this study [94] a two-layered Support Vector Machines (SVMs) was applied to train 

a predictive model for identification of phosphorylation sites.

Replication of their DNA genomes is a central step in the reproduction of many 

viruses. [V4] proposes a novel least-squares support vector machines (LS-SVMs) 

model with viruses of herpes family along with data sets involving a collection of 

caudoviruses coming from three viral families under the order of caudovirales. The 

LS-SVM approach provides superior performance as compared to those given by 

the previous methods. Ensembled with previously proposed methods, the LS-SVM 

approach further improves the prediction accuracy for the herpesvirus replication 

origins. Recursive feature elimination was used to extract the most informative attri-
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butes and provides important domain knowledge in terms of the most significant 

features of the data sets [95] further conclude LS-SVMs can potentially be a very 

reliable and robust tool for viral replication origin prediction.

11  Web Server

SVM has been used in a variety of studies on viruses across different data types. 

Some of the tools mentioned in these studies are available as standalone tools 

whereas others are used in the backend of freely available web-servers. Web servers 

are user friendly and more intuitive making it easy for user to input data and analyse 

the output. Table 8 shows some of the web servers based on SVM models that are 

used in virology.

Table 8 Examples of SVM based web servers SVM for Virology Studies

Sr. 

no Reference Brief description of work Attributes and attribute selection

1. A genotypic method for 

determining HIV-2 

coreceptor usage enables 

epidemiological studies 

and clinical decision 

support [99]

Purpose: Geno2pheno is a 

web service to ensure that the 

virus can use only the CCR5 

coreceptor (R5) and cannot 

evade the drug by using the 

CXCR4 coreceptor 

(X4-capable) using V3 loop 

of the HIV-2 glycoprotein

Link: https://www.

geno2pheno.org/

Dataset: To build model, 126 

pairs of HIV-2 amino-acid 

sequences and phenotypic 

coreceptor usage as R5 or 

X4-capable

V3 loop region of the HIV-2 

glycoprotein

2. AVCpred: An integrated 

web server for prediction 

and design of antiviral 

compounds [102]

Purpose: AVCpred is a web 

server for prediction of 

antiviral compounds (AVC) 

for HIV, HCV, HBV, HHV & 

26 other viruses with 

QSAR-based model

Link: http://crdd.osdd.net/

servers/avcpred

Dataset: Antiviral 

compounds extracted from 

ChEMBL bioactivity 

database – 389 compounds 

for HIV, 467 for HCV, 124 

for HHV, 112 for HBV, and 

1391 for other 26 viruses

18,000 chemical descriptors (1D, 

2D, and 3D) using PaDEL

Attribute selection: Filter 

named ‘RemoveUseless’ 

followed by ClassifierSubsetEval 

(attribute evaluator) with 

BestFirst (search method) 

module available in Weka 

package

(continued)
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12  Concluding Remarks

In this review, we illustrated the use of Support Vector Machines as a tool for build-

ing learning models in viral biology. SVM plays a vital role in building Quantitative 

structure activity relationship models. The robustness and accuracy of SVM models 

based rigorously on statistical learning theory has paved the way for quicker, faster 

and reliable methods of identification of potent molecules in drug design. SVM 

models have also enabled development of tools for rational design of novel vac-

cines. Recent advances in NGS technology could also be easily incorporated with 

SVM for building models with increased performance. We have also listed large 

number of case studies and examples in different areas of viral biology where SVM 

has been deployed with productive results
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