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This paper presents a unified synchronization framework with application to precision formation flying

spacecraft. Central to the proposed innovation, in applying synchronization to both translational and rotational

dynamics in the Lagrangian form, is the use of the distributed stability and performance analysis tool, called

contraction analysis that yields exact nonlinear stability proofs. The proposed decentralized tracking control law

synchronizes the attitude of an arbitrary number of spacecraft into a common time-varying trajectory with global

exponential convergence. Moreover, a decentralized translational tracking control law based on oscillator phase

synchronization is presented, thus enabling coupled translational and rotational maneuvers. Although the

translational dynamics can be adequately controlled by linear control laws, the proposed method permits highly

nonlinear systems with nonlinearly coupled inertia matrices such as the attitude dynamics of spacecraft whose large

and rapid slew maneuvers justify the nonlinear control approach. The proposed method integrates both the

trajectory tracking and synchronization problems in a single control framework.

I. Introduction

M OTIVATED by distributed computation and cooperation,
abundant in both biological systems (e.g., fish swarms) and

artificial machines (e.g., parallel computers), formation flying
spacecraft has been a key research topic among many recent
advancements [1–4]. Multiple apertures flying in precise formation
are expected to provide unprecedented image resolution, both for
astronomy and reconnaissance [5], as well as unparalleled recon-
figurability. However, many significant technical challengesmust be
overcome before formation flying interferometers can be realized
(see two representative missions in Fig. 1). For instance, formation
flight requires extensive technology development for precise attitude
and position maintenance of multiple spacecraft.

The objective of this paper is to introduce a unified synchroni-
zation framework that can be directly applied to the position and
attitude synchronization, and cooperative control of formation flight
networks, composed of either identical or heterogenous spacecraft.
Synchronization is defined as a complete match of all configuration
variables of each dynamical system. We also introduce phase
synchronization where spacecraft follow an oscillatory trajectory
with some phase difference between spacecraft. In particular, we
show that we can synchronize the attitudes and positions of multiple
spacecraft faster than they track the common position and attitude
trajectories. The combined synchronization and tracking control law
can achieve more efficient and robust performance through local
interactions, especially in the presence of nonidentical disturbances

and uncertainties. Such local interactions are key to stellar formation
flight interferometers that depend on precision control of relative
spacecraft motions, indispensable for a coherent interferometric
beam combination (see Fig. 1).

A recent review paper [6,7] highlighted the three main areas for
future research that have not been thoroughly addressed in the
spacecraft formation flight literature: 1) rigorous stability conditions
for cyclic and behavioral architectures, 2) reduced algorithmic
information requirements, and 3) increased robustness/autonomy.
Although this paper does not provide complete solutions to these
three challenges, we compare this paper with prior work in the
aforementioned areas as follows:

1) Rigorous Stability Condition for Highly Nonlinear Time-
Varying Systems. Prior work on consensus and flocking problems
using graphs, particularly popular in the robotics research
community, tends to assume very simple dynamics such as linear
systems and single or double integrator dynamic models [8–11].
Such work can be generally applied to the synchronous spacecraft
position control problem, which fares well with linear control. In
contrast, the proposed strategy in this paper primarily deals with
complex dynamical networks consisting of highly nonlinear time-
varying dynamics that are controlled to track a time-varying
reference trajectory or leader. Examples of such a nonlinear system
include the attitude dynamics of spacecraft for large and rapid slew
maneuvers.

Some prior works on attitude synchronization rely on tracking a
common reference (leader) spacecraft or nearest neighbor without
local information flows [12–14]. Local coupling control laws are
suggested in [15], but individual spacecraft are synchronized to a
constant state, thus not permitting an arbitrary reference trajectory.
This is particularly true of consensus problems on graphs [8]. In [16],
a new coordination architecture for both attitude and translational
dynamicswas proposed to incorporate leader–following, behavioral,
and virtual-structure approaches. A decentralized control law using
the virtual-structure approach was presented for a potentially large
number of spacecraft in [17]. Decentralized attitude control laws
with global asymptotic convergence were introduced in [18].
Compared with one recent work [19,20] that studied formation
keeping and attitude alignment for multiple spacecraft with local
couplings, the present paper introduces both the new attitude
synchronization strategy with global exponential convergence and
the novel position consensus strategy using phase synchronization.
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Previously, phase synchronization of a simple planar phase model of
fish was studied in [21].

It should be noted that determining stability of nonlinear time-
varying dynamic network systems is more involved and difficult
[22–24]. Many mechanical systems exhibit nonlinear dynamics that
cannot be captured by linearization. Onemight argue that most space
systems are not required to follow demanding time-varying
trajectories, thus validating linearization or linear coupling control
laws. In particular, for the translational dynamics, a linear coupling
control law can effectively stabilize the formation flying spacecraft.
However, global exponential convergence of the attitude dynamics is
achieved only through nonlinear control. For instance, there is
increased interest in highly agile imaging spacecraft [25] that
undergowide and rapid slew angle changes.Moreover, in the context
of nonlinear control theory, the asymptotic convergence of linear
control, employed to stabilize nonlinear systems, may not be
sufficient for demanding future mission requirements. In essence,
ensuring exponential tracking stability for general nonlinear systems
is made possible only through nonlinear control, and the benefit of
exponential stability, in terms of improved tracking performance and
robustness, is illustrated in this paper.

We introduce contraction analysis [26–29] as our main nonlinear
stability tool for reducing the complexity and dimensionality
associated with multi-agent systems, thereby deriving exact and
global results with exponential convergence with respect to arbitrary
time-varying inputs (see the Appendix for the further treatment of
contraction theory).

2) Reduced Information Network. Another benefit of synchroni-
zation is its implication for model reduction. The exponential
synchronization of multiple nonlinear dynamics allows us to reduce
the dimensionality of the stability analysis of a large network. The
model reduction aspect of synchronization, also introduced for
spatially interconnected systems in [2], is further generalized and
strengthened in this paper. This implies that once the network is
proven to synchronize, we can regard a network as a single set of
synchronized dynamics, which simplifies any additional stability
analysis. As shall be seen later in the subsequent sections, this model
reduction has to do with the fact that there are two time scales
associated with the coupled nonlinear dynamics.

In addition, the proposed control laws are of a decentralized form
requiring only local velocity/position coupling feedback for global
exponential convergence, thereby facilitating implementation in real
systems. In contrast with some previous work using all-to-all
coupling or depending only on tracking the same leader (reference)
spacecraft without local interactions [13,14], our proposed approach
will not only reduce communication burdens, but also increase the
overall performance of relative formation flight through local
interactions. Further, wemathematically prove that the synchronized
maneuvers can also be achieved by sharing partial-state information.
This partial degrees-of-freedom coupling will further reduce the

amount of formation state information needed for formation flight.
Another recent work using the passive decomposition [30] described
a strategy of decoupling into the same system representing the
internal group formation shape and the locked system describing the
total group maneuver.

3) Robustness Issues. The proposed method in this paper
integrates both the trajectory tracking and synchronization problems
toward a single control framework. Although an uncoupled
trajectory control law, in the absence of external disturbances, would
achieve synchronization to a common trajectory, the proposed
control strategy can achieve more efficient and robust performance
through synchronization using local interactions, especially if the
external disturbances vary with each spacecraft [22]. In addition,
most previousworks do not discuss a property of robustness in detail.
In contrast, we show that the proposed decentralized control law
possesses a property of robustness to interspacecraft time delays and
bounded disturbances. An adaptive version of the proposed control
law is also presented to dealwith parametric uncertainties of dynamic
models.

4) Control of Relative TranslationalMotions.Whereas the present
paper presents the unified decentralized control method for the
Lagrangian dynamics of both rotational and translational motions of
the spacecraft, with focus on minimizing the tracking and
synchronization errors, the literature focused only on the relative
translational motions is abundant. A decentralized formation control
law is presented in [31]. A disturbance accommodating the control
design process is presented in [32] for minimizing the total fuel
consumption for the formation as well as maintaining the equal level
of fuel consumption for each spacecraft. Kasdin et al. [33] present a
Hamiltonian approach to modeling relative spacecraft motion based
on a derivation of canonical coordinates for the relative state-space
dynamics. A formation control law based on Gauss’s variational
equations was first introduced in [34], while a recent paper [35]
presented a new linear time-varying form of the equations of relative
motions developed from Gauss’s variational equations. A sliding
mode controller for Hill’s relativemotion equations was presented in
[36]. This paper presents a synchronization control law for the
nonlinear relative spacecraft dynamics, although the proposed
approach can be applied to any Lagrangian formulation of spacecraft
motions including Hill’s equations.

Compared with our recent paper [22] that first reported the
combined synchronization and tracking control law for multiple
robots, this paper presents the Lagrangian formulation of spacecraft
dynamics (Sec. II), introduces a new strategy for oscillator phase
synchronization that enables coupled rotational and translational
maneuvers (Sec. IV), and discusses the properties of robustness to
transmission delays and disturbances more thoroughly (Sec. V). A
few examples of formation flying spacecraft are given in Sec. VI for
validating the effectiveness of the proposed synchronization
framework.

Fig. 1 Representative future NASA missions using formation flying spacecraft.
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II. Lagrangian Formulation of Formation
Flying Spacecraft

The proposed synchronization framework is devoted to the use of
the Lagrangian formulation for its simplicity in dealingwith complex
systems involving multiple dynamics. We show herein that the
rotational maneuvers of a rigid spacecraft can be written in this
Lagrangian form, thereby permitting direct application of the
proposed synchronization strategy [4,22] to the rotational dynamics
of multiple spacecraft. Without loss of generality, the proposed
control law can be applied to the position synchronization of
formation flying spacecraft, or more generally to the coupled
translational and attitude dynamics.

A. Lagrangian Formulation

The equations of motion for a spacecraft with multiple degrees of
freedom (qi 2 R

n) can be derived by exploiting the Euler–Lagrange
equations:

Li�qi; _qi� �
1

2
_qT
i Mi�qi� _qi � Vi�qi�

d

dt

@Li�qi; _qi�
@ _qi

� @Li�qi; _qi�
@qi

� �i

(1)

where i (1 � i � p) denotes the index of spacecraft comprising a
spacecraft formation flight network, and p is the total number of the
individual elements. Equation (1) can be written as

M i�qi� �qi �Ci�qi; _qi� _qi � gi�qi� � �i (2)

where

g i�qi� �
dVi�qi�
dqi

and t is a generalized force or torque acting on the ith spacecraft.
It should be emphasized that, amongmany possible choices, theC

matrix is defined as

cij �
1

2

X

n

k�1

@Mij

@qk

_qk �
1

2

X

n

k�1

�

@Mik

@qj

�
@Mjk

@qi

�

_qk (3)

Then, it is straightforward to show that ( _Mi � 2Ci) is skew
symmetric, resulting in

x T� _Mi � 2Ci�x� 0; 1 � i � p (4)

for an arbitrary x 2 R
n. This skew-symmetric property can be

viewed as a matrix expression of energy conservation, which can
also be explained in the context of the passivity formalism [23]. In the
remainder of this paper, the property in Eq. (4) is extensively
exploited for stability analysis and control synthesis using
contraction theory [4].

We assume that the spacecraft system in Eq. (2) is fully actuated.
In otherwords, the number of control inputs is equal to the dimension
of their configuration manifold (n). However, we do not require the
communication of the full state information for the purpose of
synchronization, as shall be seen in Sec. VI.A.

B. Attitude Dynamics of Rigid Spacecraft

The aim of this section is to show that we can establish a
Lagrangian formulation given in Eq. (2) from the rotational attitude
dynamics of a rigid spacecraft (n� 3). We improve the approach in
[37] in two aspects. First, we introduce the generalized form to
explore the increasing interest in agile imaging spacecraft using a
control moment gyroscope (CMG) [25] and a variable speed control
moment gyroscope (VSCMG) [38]. Second, we incorporate the
modified Rodrigues parameters (MRPs) [39,40], in lieu of the
Rodrigues parameters, to overcome the singularity problem at the
rotation of�180 deg.

Using the Euler rotational equations of motion, the following
equation describes the angular velocity vector ! 2 R

3 of the
spacecraft in its body axes:

J s=c _! � �Js=c!� � !� u� dext (5)

where the internal control torque u, generated either by VSCMGs or
CMGs, is defined as [25]

u �� _h� h � ! (6)

Based on Eq. (6), a suitable algorithm, such as the pseudoinverse
steering logic [25], can determine the gimbal angle vector g once the
control input u is computed from the attitude control law.

Note that the matrix Js=c is the total moment of inertia of the
spacecraft, expressed in its body frame, and is symmetric positive
definite. Also, h and dext, all expressed in the spacecraft body-fixed
frame, denote the total control momentum vector by CMGs, and the
external disturbance torque such as the aerodynamic drag torque and
the gravity gradient torque. We also assume that the change of Js=c
due to the CMG gimbal angular rate is small (i.e., _Js=c � 0).

In the case of VSCMGs, the control momentum vector (h) and its

rate ( _h) can be written as [38]

h�AgIg _� �AsIw�

_h�AgIg �� �AsIw
_��AtIwdiag� _�� _�

(7)

where g and � denote the gimbal angles and wheel speeds of the
VSCMGs, respectively, while Ig and Iw are the moment of inertia of
the gimbal structure and the wheel. Also,Ag,As, andAt denote the
transformation matrices associated with the body-frame representa-
tion [38].

The purpose of introducing Eq. (7) is to show that Eq. (5) may
represent either the rotational dynamics of spacecraft with fixed-
speed CMGs (constant �) or reaction wheels ( _� � 0).

To avoid the singularity problem of the Euler angular
representation, it is often preferred to use quaternions to represent
an angular orientation between two different coordinate frames:

�1 � e1 sin
�

2
; �2 � e2 sin

�

2

�3 � e3 sin
�

2
; �4 � cos

�

2

(8)

where e� �e1; e2; e3�T is the Euler axis of rotation expressed in the
body frame and � is the rotation angle about e.

The modified Rodrigues parameters can be written as [39,40]

q � �q1; q2; q3�T � e tan
�

4
(9)

Then, the attitude of the spacecraft has the following relation:

_q� Z�q�! (10)

where

Z�q��1

2

�

I

�

1�qTq

2

�

�qqT�S�q�
�

�1

4

�1�q2
1�q2

2�q2
3� 2�q1q2�q3� 2�q1q3�q2�

2�q2q1�q3� �1�q2
1�q2

2�q2
3� 2�q2q3�q1�

2�q3q1�q2� 2�q3q2�q1� �1�q2
1�q2

2�q2
3�

2

4

3

5

(11)

and the skew-symmetric matrix function, S�x� for an arbitrary
x 2 R

3 is defined as

S �x� �
0 �x3 x2
x3 0 �x1
�x2 x1 0

2

4

3

5 (12)
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Also, note that the corresponding quaternions in Eq. (8) can be
obtained from the modified Rodrigues parameters by the following
transformation:

�i � 2qi=�1� qTq�; i� 1; 2; 3

�4 � �1 � qTq�=�1� qTq�
(13)

while its inverse transformation can be written

qi � �i=�1� �4�; i� 1; 2; 3 (14)

By combiningEqs. (5) and (10), the following equations ofmotion
are obtainedwith respect to themodifiedRodrigues parametersqi for
the ith spacecraft (1 � i � p)

M i�qi� �qi �Ci�qi; _qi� _qi � �i � �ext;i (15)

where

�i � Z�T�qi�u; �ext;i � Z�T�qi�dext;i

Mi�qi� � Z�T�qi�Js=c;iZ�1�qi�

Ci�qi; _qi� � �Z�TJs=c;iZ
�1 _ZZ�1 � Z�TS�Js=c;i!i�Z�1

(16)

Notice that the index i has been added to Js=c;i (hence, also toMi and
Ci) to permit complex formation networks composed of multiple
heterogeneous spacecraft. Also, note that

S �Js=c;i!i� � S�Js=c;iZ�1�qi� _qi�

from Eq. (10). Notice that all the terms in Eqs. (15) and (16) are left
multiplied by Z�T�qi�. However, we should not cancel out the
common term Z�T�qi� of Eqs. (15) and (16), which would result in
having a nonsymmetric Mi�qi�. In essence, we established a
Lagrangian formulation for the attitude dynamics of rigid spacecraft.
This allows us to apply a wealth of nonlinear control laws to
spacecraft dynamics, including the proposed control strategy in [22],
that were originally developed for robot dynamics. As discussed in
Eq. (4), the most important feature of Eq. (15) is to have a skew-

symmetric _M � 2C due to energy conservation. Indeed, we can
verify that

_Mi � 2Ci �
dZ�T

dt
Js=c;iZ

�1 � Z�TJs=c;i
dZ�1

dt

� 2Z�TS�Js=c;i!i�Z�1 (17)

is skew symmetric, which follows thatS�Js=c;i!i� is skew symmetric.
Without loss of generality, the control torque u generated by

momentum wheels ( _� � 0) can be defined as ui �� _hi. Then, the
S�Js=c;i!i� in Eq. (16) is replaced by S�Js=c;i!i � hi� to account for
the gyro stiffening effect of the wheels.

In the subsequent sections, the rotational dynamics formulation in
Eq. (15) is used to develop a nonlinear synchronization tracking
control law for multiple formation flying spacecraft.

C. Relative Translational Dynamics

If we assume that the influence of the attitude dynamics on the
translational dynamics is weak and ignored, the translational
dynamics, modeled as double integrators [6], can be easily
augmented with the attitude dynamics in Eq. (15). Alternatively,
similar to [14,41], the coupled translational and rotational motions of
formation spacecraft can bewritten in the Lagrangian form in Eq. (2).
Then, the proposed decentralized tracking control can be effectively
applied without loss of generality. For arbitrary translational
dynamics, synchronization corresponds to x1 � x2 � 	 	 	 � xp

where xi, 1 � i � p connotes a vector of biased variables
constructed from the position vector ri such that ri�t� � xi�t� �
bi�t� and the separation vector bi�t� is independent of the dynamics
[4]. Conceptually, such amethod follows that each position vector xi

can be defined from virtually shifted origins. In this paper, the goal is

to take a different approach in which the phase differences of the
position variables can synchronize on a spiral or circular trajectory.

In pursuit of this goal, this section presents relative translational
dynamics applicable to formation flight on a circular or spiral
configuration in low Earth orbit such that the formation translational
control is based on the relative dynamics with respect to the desired
formation center of mass (c.m.). For deriving a relative position
control law, it is more advantageous to work in the noninertial orbital
coordinates FRO as illustrated in Fig. 2. The orbital frame FRO is
defined in such away that its origin is attached to the center ofmass of
the formation with its y axis aligned with the position vector R0

representing the position of the formation center of mass in the Earth
centered inertial frame. The z axis points toward the orbital plane
normal and the x axis completes the right-hand system (see Fig. 2).

Although this derivation can also be done in an orbital frame
attached to the leader satellite, the leader satellite will be
maneuvering in general so its orbital velocity would not be a
constant. Therefore, it is more accurate to use an orbital reference
frame attached to the center of mass of the formation as opposed to
the leader satellite.

For simplicity, we will assume a circular reference orbit for the
formation center of mass for which the angular velocity of the
reference orbit is simply

!0 �
������

�e

R3
0

r

(18)

where �e is the gravitational constant of Earth
(398; 600:4418 � 109 m3=s2) and R0 is the radius of the formation’s
center of mass orbit.

Even though we consider the J2 effects as a source of disturbance
for simulation studies in this paper, we ignore the J2 terms for the
control law development. Then, the relative dynamics of the ith
satellite with respect to satellite k in the orbital frame FRO can be
written as [3]

�xi � 2!0 _yi � !2
0xi �

�exi

R3
i

� Fx � Fxd

m

�yi � 2!0 _xi � !2
0yi �

�e�R0 � yi�
R3
i

� �e

R2
0

�
Fy � Fyd

m

�zi �
�ezi

R3
i

� Fz � Fzd

m

(19)

where Fx, Fy, and Fz denote the control forces while Fxd, Fyd, and
Fzd represent the external disturbance forces, all expressed in the
orbital frame FRO. In addition, the distance between the Earth’s
center and the ith satellite is defined as

Ri �
�������������������������������������������

x2i � �yi � R0�2 � z2i

q

(20)

Ignoring the disturbances, Eq. (19) can be written in a Lagrangian
form with a constant mass matrix, similar to Eq. (2)

M �ri �C_ri �D�ri�ri � g�ri� � Fi (21)

Fig. 2 Geometry of different reference frames.
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where

M�
m 0 0

0 m 0

0 0 m

2

4

3

5; ri �
xi
yi
zi

0

@

1

A

C�
0 �2m!0 0

2m!0 0 0

0 0 0

2

4

3

5; Fi �
Fx

Fy

Fz

0

@

1

A

D�ri� �
�m!2

0 �m �e

R3
i

0 0

0 �m!2
0 �m �e

R3
i

0

0 0 �e

R3
i

2

6

4

3

7

5

g�ri� �
0

m��eR0

R3
i

� �e

R2
0

�
0

0

@

1

A

(22)

We make two important remarks regarding Eq. (21). First, as
opposed to the attitude dynamics of spacecraft in the preceding
section,M and C are constant, which simplifies the stability proofs.

Nonetheless, _M � 2C is skew symmetric, which unifies our control
law design for both attitude and translational dynamics. Note that the
C matrix in Eq. (21) is not obtained from Eq. (3). Second, if the
difference between Ri and R0 is reasonably small, D�ri� becomes a
constant matrix such that D� diag�0; 0; !2

0�. This may further
simplify the proposed control law in Sec. IV.

III. Decentralized Nonlinear Control for Attitude
Synchronization

We consider the attitude synchronization of multiple spacecraft
following a common time-varying trajectory in this section.

A. Attitude Synchronization of Spacecraft

The following decentralized tracking control law with two-way-
ring symmetry is proposed for the ith spacecraft in the network
composed of p spacecraft (see Figs. 3a and 3b):

�i �Mi�qi� �qr;i �Ci�qi; _qi� _qr;i � gi�qi� �K1si �K2si�1

�K2si�1 (23)

where a positive-definite matrixK1 2 R
n�n is a feedback gain for the

ith satellite, and another positive-definite matrix K2 2 R
n�n is a

coupling gain with the adjacent members (i � 1 and i� 1). For two-
spacecraft networks, the last coupling term with the i� 1th member
in Eq. (23) is not used. It should be emphasized that the assumption of
the bidirectional coupling in Eq. (23) can be relaxed without loss of
generality to account for a regular digraph [22]. Also, _qr;i and si are
defined such that

_qr;i � _qd�t� ���qd�t� � qi�
si � _qi � _qr;i � _qi � _qd�t� ���qi � qd�t��

(24)

where � is a positive diagonal matrix. The time-varying desired
trajectoryqd�t� can be the formationflying guidance command or the
trajectory of a leader spacecraft.

If we assume that a relative attitude metrology system, similar to
[42,43], is available in addition to each spacecraft’s own attitude
measurement with respect to the inertial frame, the relative attitude
errors (e.g., qi�1 � qi) can be computed. In turn, nonlinear observers
can estimate the velocity errors (e.g., _qi�1 � _qi), we can rewrite
Eq. (23) as

�i �Mi�qi� �qr;i �Ci�qi; _qi� _qr;i � gi�qi� � �K1 � 2K2�si
�K2
� _qi�1 � _qi� ���qi�1 � qi�� �K2
� _qi�1 � _qi�
���qi�1 � qi�� (25)

Fig. 3 Formation flying networks of a) identical or b) nonidentical spacecraft using local couplings considered in this paper. They are on balanced

bidirectional regular graphs, but a more complex geometry or leader–follower network can also be constructed by concurrent synchronization c) [22].

Also, without loss of generality, the bidirectional couplings can be extended to unidirectional couplings [22].
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This can be straightforwardly applied to the translational dynamics
with relative distance measurements [44], as shall be seen in Sec. IV.
This implies that such a relative sensing system can eliminate the
need for exchanging the state information of each spacecraft; no
intersatellite communication would be required. In essence, we can
implement the proposed decentralized control law by either the
communication links or the relative metrology system, as illustrated
in Fig. 3.

It should be noted again that one of the main contributions of this
paper lies with the use of a new differential stability framework,
yielding the exact proof of nonlinear stability under a variety of
conditions. Note that the above control law requires only the
coupling feedback of the most adjacent spacecraft (i � 1 and i� 1)
for exponential convergence (see Fig. 3). Consequently, the last
(pth) satellite is connected with the first satellite to form a ring
network as suggested in [28]. To construct amore complex geometry
rather than a single ring network (e.g., see Fig. 3c), concurrent
synchronization [45] can be used as expanded upon in [4,22].

Without loss of generality, we can extend the proposed control law
to adaptive control [23]

�i � Yiâi �K1si �K2si�1 �K2si�1 � M̂i �qr;i � Ĉi _qr;i

� ĝi�qi� �K1si �K2si�1 �K2si�1 (26)

The parameter estimate âi for the ith member is updated by the
correlation integral:

_̂a i ���YT
i si (27)

where � is a symmetric positive-definite matrix. The stability proof
of the adaptive control law, presented in [22], does not alter the main
proofs in this paper except that the convergence result reduces to
asymptotic instead of exponential. Hence, we will only focus on the
general control law in Eq. (2) for the sake of simplicity.

The closed-loop dynamics for the whole formation, by using
Eqs. (2) and (23), can be written as


M� _x� 
C�x� 
Lp
K1 ;�K2

�x� 0 (28)

where


M� �

M1�q1� 	 	 	 0

..

. . .
. ..

.

0 	 	 	 Mp�qp�

2

6

6

4

3

7

7

5


C� �

C1�q1; _q1� 	 	 	 0

..

. . .
. ..

.

0 	 	 	 Cp�qp; _qp�

2

6

6

4

3

7

7

5

; x�

s1

..

.

sp

0

B

B

@

1

C

C

A

(29)

Also, the pn � pn block matrix 
Lp
K1 ;�K2

� has K1 as its diagonal

matrix elements, neighbored by �K2. In other words, from the
definition of the controller in Eq. (23), 
Lp

K1 ;�K2
� has only three

nonzero matrix elements in each row (i.e.,K1,K2, and K2).
The network graphs illustrated in Fig. 3 are balanced due to

bidirectional coupling [8]. However, it should be noted that the
matrix 
Lp

K1;�K2
� is different from the standard weighted Laplacian

found in [8]. By definition, every row sum of the Laplacianmatrix on
a balanced graph is zero. Hence, the Laplacian matrix always has a
zero eigenvalue corresponding to a right eigenvector,
1� �1; 1; . . . ; 1�T [8]. In contrast, a strictly positive-definite

Lp

K1 ;�K2
� is required for exponential convergence for the proposed

control law in this paper.
We present the main theorems of the paper. First, the following

condition should be true for exponential convergence to a common
desired trajectory qd�t�.

Theorem III.1: Global Exponential Convergence to the Desired

Trajectory. If 
Lp
K1 ;�K2

� is uniformly positive definite, then every

member of the network follows the desired trajectory qd�t�

exponentially fast regardless of initial conditions. In other words, if
K1 � 2K2 > 0, then qi, (i� 1; 2; . . . ; p, p � 3) converges to qd�t�
exponentially fast from any initial conditions. For two-spacecraft
systems (p� 2), K1 �K2 > 0 needs to be true instead.

Proof: We present a new proof that emphasizes the hierarchical
combination structure of the proposed control law. Equation (28) of
the closed-loop dynamics corresponds to a conventional tracking
problem.

Recalling Theorem VII.2, we construct the following hierarchical
virtual system of y1 and y2:


M� 0

0 I

� �

_y1
_y2

� �

� 
C� � 
Lp
K1;�K2

� 0

�I 
��

� �

y1
y2

� �

� 0

0

� �

(30)

where the virtual system of y1 is obtained by replacing x with y1 in
Eq. (28), and the system of y2 is from the definition of the composite
variable in Eq. (24). Also, 
�� � diag��; . . . ;��.

It is straightforward to verify that Eq. (30) has two particular
solutions:

y1 � x

y2 � f ~qg

� �

and
y1 � 0

y2 � 0

� �

; where f ~qg �
q1 � qd

..

.

qp � qd

0

B

@

1

C

A

(31)

The differential virtual length analysis with respect to the
uniformly positive-definite metric,


M� 0

0 �I

� �

; 9� > 0 (32)

yields

d

dt

�y1

�y2

 !

T 
M� 0

0 �I

" #

�y1

�y2

 !

�
�y1

�y2

 !

T 
 _M� 0

0 0

" #

�y1

�y2

 !

� 2
�y1

�y2

 !

T 
M� 0

0 �I

" #

�_y1

�_y2

 !

�
�y1

�y2

 !

T 
 _M� 0

0 0

" #

�y1

�y2

 !

� 2
�y1

�y2

 !

T �
C� � 
Lp
K1;�K2

� 0

�I ��
��

" #

�y1

�y2

 !

�
�y1

�y2

 !

T �2
Lp
K1 ;�K2

� 0

2�I �2�
��

" #

�y1

�y2

 !

�
�y1

�y2

 !

T

B
�y1

�y2

 !

(33)

where we used the skew-symmetric property of 
 _M� � 2
C�.
The symmetric part of the matrix B is

B s �
1

2
�B� BT� � �2
Lp

K1 ;�K2
� �I

�I �2�
��

� �

(34)

According to Theorem VII.1, Eq. (30) is contracting if the
symmetric matrix Bs is uniformly negative definite. We can always
find � > 0 such that Bs is uniformly negative definite:

�I< 4
Lp
K1;�K2

�
��; 
Lp
K1 ;�K2

�> 0; and �> 0 (35)

Accordingly, all solutions of Eq. (30) converge to each other
exponentially fast, resulting in global exponential convergence of q
to qd�t�. The positive definiteness of 
Lp

K1;�K2
� corresponds toK1 �

K2 > 0 for two-spacecraft systems (p� 2). For a network consisting
of more than two spacecraft (p � 3), it can be shown thatK1 � 2K2
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is a sufficient condition of the positive definiteness of 
Lp
K1;�K2

�given
K1 > 0,K2 > 0.

We now focus on the synchronization of multiple spacecraft
dynamics. First, we introduce an orthogonal matrix, whose column
vectors constitute a superset of the flow-invariant subspace of
synchronization [22,45] such that VT

syncx� 0.
Since 
Lp

K1;�K2
� is a constant real symmetric matrix, we can

perform the spectral decomposition


Lp
K1;�K2

� � V
D�VT ; 
D� � VT 
Lp
K1 ;�K2

�V (36)

where 
D� is a block diagonal matrix, and the square matrix V is
composed of the orthonormal eigenvectors. Because the symmetry
of 
Lp

K1 ;�K2
� gives rise to real eigenvalues and orthonormal

eigenvectors [46], we can verify that VTV � VVT � Ipn.
The modified Laplacian 
Lp

K1;�K2
� defines a regular graph, where

each member has the same number of neighbors (�2 for p � 3). A
regular graph has the block column identify matrix

1� � 
In; In; . . . ; In�T=

����

p
p

as its eigenvectors associated with the
tracking convergence rate ��K1 � 2K2� for p � 3. Hence, we can
define a pn � �p � 1�n matrix Vsync constructed from the
orthonormal eigenvectors other than 
1� such that

VTV �

1�T

VT
sync

 !

� 
1� Vsync � �

1�T 
1� 
1�TVsync

VT
sync
1� VT

syncVsync

" #

�
In 0n��p�1�n

0�p�1�n�n I�p�1�n

" #

(37)

where we used the orthogonality between 
1� and Vsync.
The synchronization of multiple spacecraft q1 � q2 � 	 	 	 � qp

corresponds to

V T
sync

q1

..

.

qp

0

B

@

1

C

A
� 0 (38)

Theorem III.2: Synchronization of Multiple Identical or

Heterogeneous Spacecraft [22]. A network of p spacecraft
synchronizes exponentially from any initial conditions if 9 diagonal
matrices K1 > 0,K2 > 0 such that

V T
sync
Lp

K1;�K2
�Vsync > 0

In addition, � is a positive diagonal matrix defining a stable

composite variable si � _~qi �� ~qi with ~qi � qi � qd�t�.
If we have unidirectional couplings on a regular graph, the

preceding conditions are replaced by VT
sync�
Lp

K1 ;�K2
�

�
Lp
K1;�K2

�T�Vsync > 0 (see [22] for details). This Theorem

corresponds to synchronization with stable tracking. Multiple
dynamics need not be identical to achieve stable synchronization. It
should be noted that Theorem III.2 can be used, regardless of
Theorem III.1. For example, 
Lp

K1 ;�K2
� might be semipositive

definite, thus yielding indifferent tracking dynamics. In this case, we
do not need a common reference trajectory for the synchronization of
multiple spacecraft, and the spacecraft synchronize to the average of
the initial conditions (see [22] for details). It is useful to note that the
above condition corresponds toK1 �K2 > 0 for two-spacecraft and
three-spacecraft networks (p� 2, 3).

Note that we can make the system synchronize first, then follow
the common trajectory by tuning the gains properly. This indicates
that there exist two different time scales in the closed-loop systems
constructed with the proposed controllers. For two-spacecraft
systems, the convergence of exponential tracking is proportional to
K1 �K2, whereas the synchronization has a convergence rate of
K1 �K2. This multitime-scale behavior will be exploited in the
subsequent sections.

B. Proof of Exponential Synchronization

We summarize the proof of Theorem III.2 for the exponential
synchronization of multiple nonlinear dynamics, first reported in
[22]. The key result can be generalized for an arbitrary number of
spacecraft, even to more complex structures beyond a standard ring
geometry [22].

Suppose that M�q� is a constant inertia matrix M, thereby
resulting inC�q; _q� � 0. Then, we can easily prove s1 and s2 tend to
each other using Theorem VII.4. On the other hand, the difficulties
associated with nonlinear time-varying inertia matrices can be easily
demonstrated. In essence, M�q1� ≠ M�q2� makes this problem
intractable in general. We now present a solution to this open
problem, focused on the synchronization of multiple spacecraft with
nonconstant nonlinear metrics.

Recall the closed-loop dynamics given in Eq. (28). Premultiplying
Eq. (28) by VT and setting x� VVTx results in

�VT 
M�V�_z� �VT 
C�V�z� 
D�z� 0 (39)

where z� VTx.
Then, we can develop the squared-length analysis similar to

Eq. (33). Notice that �VT 
M�V� is always symmetric positive definite
since 
M� is symmetric positive definite.

UsingEq. (37), the block diagonalmatrix 
D�, which represents the
eigenvalues of 
Lp

K1 ;�K2
�, can be partitioned from Eq. (36)

VT 
Lp
K1;�K2

�V �

1�T 
Lp

K1 ;�K2
�
1� 
1�T 
Lp

K1 ;�K2
�Vsync

VT
sync
Lp

K1 ;�K2
�
1� VT

sync
Lp
K1;�K2

�Vsync

" #

�
D1 0n��p�1�n

0�p�1�n�n D2

" #

(40)

It should be noted thatD1 �K1 � 2K2 for p � 3 (orD1 �K1 �
K2 for p� 2) represents the tracking gain while D2 corresponds to
the synchronization gain. We can choose the control gain matrices
K1 and K2 such that

D 2 � VT
sync
Lp

K1 ;�K2
�Vsync >D1 � 
1�T 
Lp

K1;�K2
�
1� (41)

This will ensure that multiple spacecraft synchronize faster than they
follow the common desired trajectory. In other words, multiple
spacecraft synchronize first, then they converge to the desired
trajectory while staying together.

Now let us write the virtual system of y by replacing z in Eq. (39)
with y:

�VT 
M�V�_y � �VT 
C�V�y � 
D�y � 0 (42)

The above system has the following particular solutions:

y � yt
ys

� �

� 
1�Tx
VT

syncx

� �

and y � yt
ys

� �

� 0

0

� �

(43)

Now we need to prove that the system in Eq. (42) is contracting
(i.e., �y ! 0 globally and exponentially) to show that those two
solutions tend exponentially to each other. Performing the squared-
length analysis with respect to the symmetric positive-definite block
matrix VT 
M�V as the contraction metric yields

d

dt

�yt
�ys

� �

T 
1�T 
M�
1� 
1�T 
M�Vsync

VT
sync
M�
1� VT

sync
M�Vsync

� �

�yt
�ys

� �

��2 �yt
�ys

� �

T D1 0

0 D2

� �

�yt
�ys

� �

(44)

where we used the skew-symmetric property of �VT 
 _M�V�
�2�VT 
C�V�.

If 
D�> 0, or equivalently 
Lp
K1;�K2

�> 0, the combined virtual

system in Eq. (42) is contracting. This in turn implies that all
solutions of y tend to a single trajectory. As a result, 
1�Tx� �s1 �
	 	 	 � sp�=

����

p
p

and VT
syncx tend exponentially to zero. Note that

s1; . . . ; sp ! 0 has already been proven for Theorem III.1. What is

518 CHUNG, AHSUN, AND SLOTINE

D
o
w

n
lo

ad
ed

 b
y
 C

A
L

IF
O

R
N

IA
 I

N
S

T
 O

F
 T

E
C

H
N

O
L

O
G

Y
 o

n
 N

o
v
em

b
er

 3
0
, 
2
0
1
6
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/1

.3
7
2
6
1
 



new here is the proof of synchronization VT
syncx ! 0. Note that the

synchronization occurs even if the tracking dynamics are indifferent
(D1 � 0). Then, 
D� is positive semidefinite, and we can prove the
global asymptotic stability of the synchronization VT

syncx ! 0 by
using Barbalat’s lemma (see [22]). This special case agrees with the
average consensus problem on graphs.

By exploiting the hierarchical structure (Theorem VII.2) of the
composite variable defined in Eq. (24), we can show thatVT

syncx ! 0

and �> 0 also make q1; . . . ;qp synchronize exponentially (i.e.,
VT

sync�qT
1 ; . . . ;q

T
p�T ! 0). This straightforwardly follows the proof

of Theorem III.1.
In the case of identical spacecraft, this synchronization result also

implies that the diagonal terms of the metric VT
sync
M�
1� tend to zero

exponentially, thereby eliminating the coupling of the inertia term
VT 
M�V in Eq. (44). So far, we have assumed that qd�t� is identical
for each spacecraft. If qd�t� were different for each dynamics,
si ! sj would imply the synchronization ofqi � qj to the difference
of the desired trajectories, which would be useful to construct phase
synchronization of spacecraft positions. Such phase synchronization
is discussed in the subsequent section. It should be mentioned that
global asymptotic convergence of a linear coupling control law for
the nonlinear attitude dynamics is proven in [22] and compared with
the proposed nonlinear control law in Sec. VI.

C. Concurrent Synchronization of a Large Formation

Consider a complex spacecraft network that consists of multiple
identical or heterogeneous groups as shown in Figs. 1b and 3c. We
exploit the fact that there exist two different time scales of the
proposed synchronization tracking control law (D1 andD2). In other
words, we can exploit a desired reference trajectory qd�t� to create
multiple combinations of different dynamics groups. For instance,
Fig. 3c shows both the diffusive coupling structure proposed by the
tracking control law (solid lines) and the reference directional input
(dashed lines). Each spacecraft on the same network initially receives
a different desired trajectory input from the adjacent spacecraft of the
different (inner) network. Once the inner network synchronizes, the
outer network also ends up receiving the same desired trajectory to
follow, while they interact to synchronize exponentially fast.
Accordingly, we can achieve concurrent synchronization [45]
between multiple network groups. The proof straightforwardly
follows Theorem VII.2. Readers are referred to [22] for further
discussions.

IV. Decentralized Nonlinear Control for Relative
Translational Dynamics

We introduce a new method for the phase synchronization of
multiple spacecraft positions that follow a time-varying circular or
spiral trajectory with equal spacing between spacecraft, as shown in
Fig. 4. We also illustrate that the rotational and translational
dynamics can be combined to enable coupled rotational maneuvers,
which can realize a spiral trajectory. The UV coverage of an
interferometer defines the size and density of spatial points on the
two-dimensional modulation transfer function of an image [4,5]. By
spiraling out, a stellar interferometer can construct a virtually large
telescope, thereby accomplishing a suitable UV coverage, which in
turn results in a finer angular resolution and higher contrast ratio. The
kinds of stellar objects that will be observed will also contain
information at many spatial frequencies; thus the ability of stellar
interferometers to observe at multiple baselines will be key.

A. Rotational Phase Synchronization for Spacecraft Positions

This section extends the phase synchronization of a single variable
from [45] to Lagrangian systems of multiple degrees of freedom on a
three-dimensional plane with a hierarchical control law. A new proof
for phase synchronization is presented such that the angular
transformation terms in the Laplacian matrix disappear. By
combining the trajectory control with the synchronization coupling,
we can achieve much more efficient and robust performance that is
essential to precision formation flight of spacecraft.

For the relative translational dynamics presented in Eq. (21), the
following decentralized tracking control law with two-way-ring
symmetry is proposed for the ith spacecraft in the circular network
composed of p identical spacecraft (1 � i � p):

Fi �M�rr;i �C_rr;i �D�ri�ri � g�ri� � k1s
pos
i � k2T���sposi�1

� k2T
T���sposi�1 (45)

where k1 and k2 are positive constants, and the rotation matrix
T��� 2 SO�2� is defined as

T ��� �
cos � 0 � sin �

0 1 0

sin � 0 cos �

2

4

3

5 (46)

Note that TT��� � T�1��� � T���� and T�p�� � I since
�� 2	=p.

For two-spacecraft networks, the last coupling term with the
(i� 1)th member is not used. Also, the shifted reference velocity
vector _rr;i and the composite variable s

pos
i are defined as follows:

_rr;i � _rd;i � ��rd;i � ri�
s
pos
i � _ri � _rr;i � _ri � _rd;i � ��ri � rd;i�

(47)

where � is a positive constant. The time-varying desired trajectory
rd;i is different for each spacecraft because its phase is shifted from its
neighbors by��:

rd;1 � �a�t� cos!t; yd�t�; a�t� sin!t�T � rd

rd;2 � �a�t� cos
!t� ��; yd�t�; a�t� sin
!t� ���T � T���rd
..
.

rd;i � �a�t� cos
!t� �i� 1���; yd�t�; a�t� sin
!t
� �i � 1����T � T��i � 1���rd

(48)

Note that yd�t� can be a time-varying function, thereby constructing a
three-dimensional oscillatory trajectory. In the case of a two-
dimensional circular trajectory orthogonal to the orbital plane, the
radius a�t� becomes a constant and yd�t� reduces to zero.

The closed-loop dynamics for the ith satellite, constructed from
Eqs. (21) and (45), becomes

M _s
pos
i �Cs

pos
i � k1s

pos
i � k2T���sposi�1 � k2T

T���sposi�1 � 0 (49)

By inspecting Fig. 4, we can find the new flow-invariant set of
s
pos
i that is phase shifted from the original invariant set

Fig. 4 Geometry of a circular rotating trajectory. The x–z axes denote

FRO in Fig. 2.
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s
pos
1 � s

pos
2 � 	 	 	 � s

pos
p :

s
pos
1 � TT���spos2 � 	 	 	 � TT��p � 1���sposp (50)

where the matrix of the orthonormal eigenvectorsV is obtained from
Eq. (36).

Left multiplying Eq. (49) with TT��i � 1��� for each spacecraft
results in


Mpos� _xpos � 
Cpos�xpos � 
Lp
K1;�K2

�xpos � 0 (51)

where


Mpos� �
MT;1 	 	 	 0

..

. . .
. ..

.

0 	 	 	 MT;p

2

6

4

3

7

5


Cpos� �
CT;1 	 	 	 0

..

. . .
. ..

.

0 	 	 	 CT;p

2

6

4

3

7

5
; xpos �

s
pos
1

..

.

TT��p � 1���sposp

0

B

@

1

C

A

(52)

Also,

M T;i � TT��i � 1���MT��i � 1��� �M

and

C T;i � TT��i � 1���CT��i � 1���

where theM and C matrices are defined in Eq. (21). Hence,

_M T;i � 2CT;i ��2CT;i

is skew symmetric. Then, similar to the previous section, we can
prove the synchronization VT

syncx
pos ! 0 as well as the tracking

convergence s
pos
i ! 0 by constructing the virtual system and

performing the spectral decomposition as follows:

�VT 
Mpos�V�_y � �VT 
Cpos�V�y � 
D�y � 0 (53)

Note that Eq. (53) has

y � VTxpos � �
1�;Vsync�Txpos

and y � 0 as particular solutions. Because of the skew symmetry of
C, Eq. (53) is contracting with 
D�> 0, resulting in the tracking
stability s

pos
i ! 0 as well as

s
pos
1 $ TT���spos2 $ TT��i � 1���sposi $ TT��p � 1���sposp (54)

From the hierarchical combination of the composite variable and
the definition of rd;i, one can verify that

_ri � �ri � T��i � 1����_rd � �rd� � s
pos
i

_ri�1 � �ri�1 � T�i���_rd � �rd� � s
pos
i�1

(55)

Left multiplying the dynamic equation of ri in Eq. (55) with
TT��i � 1���, and that of ri�1 with TT��i��� results in

TT��i� 1���_ri � �TT��i� 1���ri � u�t�
TT�i��_ri�1 � �TT�i��ri�1 � u�t�

(56)

where the common input verifies u�t� � ��_rd � �rd� if the phase-
shifted composite variables synchronize, that is,

T T��i� 1���sposi � TT�i��sposi�1

From Eq. (56), � > 0 ensures that TT��i� 1���ri exponentially
tends toTT�i��ri�1 since _y � �y � 0 is contracting (TheoremsVII.1
and VII. 4). This concludes the proof of the phase synchronization of
the relative translational dynamics for the case of multiple identical

spacecraft on a circular or spiral trajectory. For heterogeneous
spacecraft, we can scale the control gains k1 and k2 according to the
mass ratio, and the proof essentially remains the same. Furthermore,
we can straightforwardly extend the constant phase shift � to
arbitrarily different phase shifts among spacecraft (i.e., �i ≠ �j with
i ≠ j).

B. Synchronized Rotational Maneuvers

One can easily construct the combined dynamics of both attitude
rotation and relative position as follows:


M� 0

0 
Mpos�

" #

�x

�xpos

 !

�

C� 0

0 
Cpos�

" #

_x

_xpos

 !

�

Lp

K1 ;�K2
� 0

0 
Lp
K1;�K2

�

" #

x

xpos

 !

� 0 (57)

where we used the control law (23) for the rotational attitude
dynamics and the control law (45) for the translational dynamics.

We can also demonstrate the synchronized rotationmaneuver [13]
by synchronizing the desired rotational rate of the attitude dynamics
from qd�t� and _qd�t�with the rotational rate ! of the desired circular
trajectory rd�t� defined in Eq. (48).

V. Effects of Communication Delays and
Model Uncertainties

Now let us discuss the robustness properties of the proposed
synchronization tracking control approach.

A. Synchronization with Time Delays

Based on [29], we show herein that contraction properties are
conserved in time-delayed diffusionlike couplings for multiple
Lagrangian dynamics of spacecraft. In particular, the proposed
synchronization coupling control law in Eqs. (23) and (45) can be
proven to synchronizemultiple dynamical systems as well as to track
the common trajectory, regardless of time delays in the
communication.

Let us consider two spacecraft transmitting their attitude state
information to each other via time-delayed transmission channels, as
shown in Fig. 5. While T12 is a positive constant denoting the time
delay in the communication from the first spacecraft to the second
spacecraft, T21 denotes the delay from the second spacecraft to the
first spacecraft.

Similar to [29], we can modify our original Lagrangian systems
consisting of two identical spacecraft in Eq. (28) as follows:

M�q1�_s1 �C�q1; _q1�s1 � �K1 �K2�s1 �G21�21 � 0

M�q2�_s2 �C�q2; _q2�s2 � �K1 �K2�s2 �G12�12 � 0
(58)

where G21 and G12 are constant matrices (Rn�n).
The communication between the two dynamics occurs by

transmitting intermediate “wave” variables, defined as [29]

u21 �GT
21s1 � k21�21 v12 �GT

21s1

u12 �GT
12s2 � k12�12 v21 �GT

12s2
(59)

where k21 and k12 are strictly positive constants. Time delays of T21

and T12 result in

Fig. 5 Synchronization of two identical spacecraft with transmission

delays.
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u 12�t� � v12�t� T12� u21�t� � v21�t � T21� (60)

Notice that the original dynamicswithout any communication delays
are contracting since K1 �K2 > 0. Expanding Eq. (58), using the
above relationships on the wave variables, yields

M�q1�_s1 �C�q1; _q1�s1 � �K1 �K2�s1

� 1

k21
G21�GT

12s2�t � T21� �GT
21s1�t�� � 0

M�q2�_s2 �C�q2; _q2�s2 � �K1 �K2�s2

� 1

k12
G12�GT

21s1�t � T12� �GT
12s2�t�� � 0

(61)

We can verify that Eq. (61) becomes equivalent to the original two-
spacecraft dynamics that can be written as in Eq. (28) by setting
k12 � k21 � 1 and G12 �G21 �

�������

K2

p
. Note that

�������

K2

p
is the

Cholesky decomposition of the positive-definite symmetric matrix,
K2.

The resultant equations reflecting the time-delayed transmissions
become

M�q1�_s1 �C�q1; _q1�s1 �K1s1 �K2s2�t� T21� � 0

M�q2�_s2 �C�q2; _q2�s2 �K1s2 �K2s1�t� T12� � 0
(62)

which can be shown to be semicontracting (asymptotically stable)
using the following differential length similar to [29]:

V � �zT�VT 
M�V��z� V1;2; z� VT�sT1 ; sT2 �T (63)

where

V1;2 �
Z

t

t�T12
�vT12�v12 d
�

Z

t

t�T21
�vT21�v21 d
 (64)

In conclusion, the formation flying spacecraft systems,
individually contracting (exponentially converging) and interacting
through time-delayed diffusionlike coupling, are asymptotically
contracting regardless of the values of the time delays. This shows
that the proposed control law and its closed-loop system in Eq. (28)
possess some robustness properties with respect to time delays.

B. Effect of Bounded Disturbances

Equation (39), in the presence of the external disturbance torque
�ext, can be written as

�VT 
M�V�

1�T _x
VT

sync _x

 !

� �VT 
C�V � 
D��

1�Tx
VT

syncx

 !

�

1�T

VT
sync

 !

�ext;1

..

.

�ext;p

0

B

B

@

1

C

C

A

(65)

which indicates that the disturbance input for the synchronization is
only the difference among each disturbance force/torque
VT

sync��Text;1; . . . ; �Text;p�T . As a result, the disturbance torque that is
invariant from spacecraft to spacecraft does not affect the
synchronization of the relative attitude, which might be of more
importance than the performance of trajectory following. For
example, stellar interferometers need precise control of relative
attitude and distance between spacecraft that carry telescopes.

Now we consider the bounded vanishing disturbance of the
individual tracking dynamics. Because of exponential tracking
convergence of the proposed scheme, the property of robustness to
bounded deterministic disturbances can easily be determined. For
example, consider the closed-loop system in Eq. (28), which is now
subject to a vanishing perturbation [24] such that d�t;x� 0� � 0:


M� _x� 
C�x� 
Lp
K1;�K2

�x� d�t;x� (66)

The perturbation term d�t;x� vanishes at the equilibrium manifold
x� 0. Let us further assume that it satisfies the linear growth bound
such that

kd�t;x�k � �kxk; 8 t > 0 (67)

where � is a positive constant.
The squared-length analysis yields

d

dt
��xT 
M��x� � 2�xT 
M�� _x� �xT 
 _M��x� 2�xT��
C��x

� 
Lp
K1 ;�K2

��x� �d�t;x�� � �xT 
 _M��x

� �2�xT�
Lp
K1 ;�K2

� � �I��x (68)

where we used the skew-symmetric property of 
 _M� � 2
C�.
Hence, the closed-loop system in Eq. (66) is contracting in the

presence of the bounded disturbance if 
Lp
K1;�K2

�> �I. As a result,

the trajectory tracking gain (slower gain) also determines how robust
the closed-loop system is with respect to a bounded disturbance.

For a nonvanishing perturbation such that

kd�t;x�k � �kxk �� (69)

where � is bounded, the comparison method [24] can
straightforwardly be developed to derive a bound on the solution.
Alternatively, we can follow the analysis of contraction with respect
to a property of robustness [26,45].

We assume that P1�t� represents a desired system trajectory and
P2�t� the actual system trajectory in a disturbed flow field given in
Eq. (66). Also, consider the distance R�t� between two trajectories
P1�t� and P2�t� such that

R�t� �
Z

P2

P1

k�zk �
Z

P2

P1

k��x��xk (70)

where ��x�T��x� � 
M� (see the Appendix).
Then, by combining the results from Eqs. (68) and (69) and [26],

we can show that any trajectory converges exponentially to a ball of
radius of R around the desired trajectory such that

R�t� � supx;tk��x��T�k=�max (71)

where the contraction rate �max, in the context of contraction theory,
is defined with respect to �z���x��x and is given by

M��1�
Lp

K1;�K2
� � �I� from Eq. (68). It should be emphasized that

the exponential stability of the closed-loop system facilitates such a
perturbation analysis, which showcases another benefit of
contraction analysis. In contrast, the proof of robustness with
asymptotic convergence is more involved [24].

VI. Extensions and Examples

Let us examine the effectiveness of the proposed control law in a
few examples.

A. Synchronization with Partial Degrees-of-Freedom Coupling

In this section, we consider multiple spacecraft with partially
coupled variables. For instance, we can assume that only the first and
third MRP variables (q1 and q3) are coupled in a two-spacecraft
system such that

�1 �M�q1� �q1r �C�q1; _q1� _q1r � g�q1� �K1s1

�K2
_~q1 0 _~q3

� �

T
q2
�K2� ~q1 0 ~q3

� �

T
q2

�2 �M�q2� �q2r �C�q2; _q2� _q2r � g�q2� �K1s2

�K2
_~q1 0 _~q3

� �

T
q1
�K2� ~q1 0 ~q3

� �

T
q1

(72)

Nonetheless, Theorems III.1 and III.2 are true with diagonal
matricesK1,K2, and�, which can be verified bywriting the closed-
loop system as
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M�q1�_s1 �C�q1; _q1�s1 � �K1 �K2P�s1 � u�t�
M�q2�_s2 �C�q2; _q2�s2 � �K1 �K2P�s2 � u�t�
u�t� �K2P�s1 � s2�

(73)

where P� diag�1; 0; 1�.
We can prove that Theorems III.1 and III.2 still hold by showing

that K1 �K2P and K1 �K2P are still uniformly positive definite,
enabling exponential synchronization and exponential convergence
to the desired trajectory, respectively. Hence, we did not break any
assumptions in the proof of Theorem III.2.

B. Attitude Synchronization of Two Spacecraft

The proposed control law in Eq. (23) is simulated for two identical
spacecraft, as shown in Fig. 6a. The spacecraft inertial matrix is

J s=c �
150 0 �100
0 270 0

�100 0 300

2

4

3

5
kg 	m2� (74)

The control gains are defined as K1 � 300I, K2 � 100I, and
�� 20I. The reference trajectories are defined as
q1d � 0:3 sin�2	�0:01�t�, q2d � 0:2 sin�2	�0:02�t� 	=6�, and
q3d � 0. The first spacecraft is initially at �0:05;�0:1; 0�T rad, with
zero angular rates, whereas all the initial conditions for the second
spacecraft are zero.

The synchronization gain of s1 and s2 corresponds to
K1 �K2 � 400I, which is larger than the tracking convergence
gainK1 �K2 � 200I. As a result, we can see in Fig. 6 that the first
and second spacecraft exponentially synchronize first. Then, they
exponentially converge together to the desired trajectory.

To compare the effectiveness of the exponential tracking, a simple
proportional and derivative (PD) diffusive coupling, introduced in
[4,22], is simulated for the comparison purpose, as shown in Fig. 6b.
The control law for two spacecraft can be given as

�1 ��K1� _q1 �� ~q1� �K2� _q2 �� ~q2�
�2 ��K1� _q2 �� ~q2� �K2� _q1 �� ~q1�

(75)

whose global asymptotic stabilitywith respect to a constant reference
input is proven in [4,22]. For a fair comparison, we selected the PD
gains in Eq. (75) as K1 � 1000, K2 � 300, and �� 0:3 such that
the level of control efforts is comparable to that of the nonlinear
control approach in Eq. (23). As shown in Fig. 6b, the PD coupling
control law is not effective in following a time-varying trajectory.
This is because simple linear control cannot be expected to handle the
dynamic demands of efficiently following time-varying trajectories.
In contrast, the proposed nonlinear approach shown in Fig. 6a
exponentially synchronizes the attitude states, while the tracking
errors tend exponentially to zero. Specifically, achieving exponential
convergence ensures more effective tracking performance than
asymptotic convergence by linear PD control. The proposed
nonlinear control law with the given initial condition and control
gains introduces a large control effort initially. However, the results
do not change, even if the torque actuators saturate at�6 N 	m.

C. Four Spacecraft Example

To illustrate the effectiveness of the proposed approach for a larger
formation, a result of simulation for four nonidentical spacecraft is
presented in Fig. 7. The spacecraft inertia matrices are

Fig. 6 Synchronization of the attitude dynamics of two identical spacecraft.
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150 0 �100
0 270 0

�100 0 300

2

4

3

5;

100 0 �50
0 150 0

�50 0 250

2

4

3

5

20 0 �5
0 50 0

�5 0 65

2

4

3

5;

250 0 �150
0 350 0

�150 0 400

2

4

3

5 in 
kg 	m2�

(76)

respectively. The desired trajectories are the same as in the previous
section, and the control gains remain the same as well, such that the
tracking convergence gain isK1 � 2K2 � 100I> 0. Figure 7 shows
that the four spacecraft synchronize themselves while following the
desired trajectory together.

D. Position and Attitude Synchronization of Two Spacecraft

Under J2 Effect

Afull 6DOF simulation of a two identical satellite formation using
the proposed phase synchronization control law (45) and with the
attitude tracking Eq. (2) was prepared. Full nonlinear attitude and
translational dynamics including the J2 effect were simulated for
each satellite in the formation. The mass of each satellite is assumed
to be 500 kg. The spacecraft inertia matrix is given by Eq. (74). The
attitude control gains were defined as K1 � 30I, K2 � 20I, and
�� 20I. The attitude reference trajectories were defined to be
q1d � 0:3 sin�2	 � 0:001t�, q2d � 0:2 sin�2	 � 0:002t� 	=6�,
and q3d � 0, which are similar (but at a lower frequency) to the
previous example.

For the translational control the gains were defined to be the same
for both the satellites as k1 � 10, k2 � 5, and �� 2. The desired
trajectory for the formation was defined so that the satellites would
follow a spiral trajectory such that both satellites maintain a phase
angle of 180 deg. The desired spiral trajectory was defined as
rd � 
a�t� sin!t; 0; a�t� cos!t�T from Eq. (48), where a�t� � 5�
0:0001t and !� 2	=500 (see the actual plot of this spiral trajectory
generated from the actual simulation in Fig. 8). The formation was
placed in a polar circular orbit at an altitude of 500 km and it was
subject to J2 perturbations in the nonlinearmodel. Figure 9 shows the
robust synchronization performance in the presence of nonidentical
disturbance such as the differential J2 effect. It should be noted that
this scheme requires information from only the adjacent spacecraft;
thus this scheme is suitable for implementing a distributed control
architecture.

VII. Conclusions

We have introduced the new unified synchronization framework
that integrates both the exponential tracking of a demanding time-
varying trajectory and the synchronization of spacecraft motions
either through local coupling feedback or a relative sensing
metrology system. The new decentralized control laws, developed
by using the Lagrangian formulations of the translational dynamics
and attitude dynamics of spacecraft, enable coupled rotational
maneuvers and phase synchronization of the attitude and position,
thereby facilitating a further analysis on stability, adaptation, and
robustness. To rigorously address the threemain areas of research for
the realization of future spacecraft formation flying missions, we
have focused on the three research areas: 1) the exact nonlinear
stability conditions of multiple spacecraft dynamics, 2) the reduced
information networks through partial-state couplings and local
interactions, and 3) the properties of robustness with respect to
uncertain models and time delays of the communication. In
particular, in contrast with prior work which used simple single or
double integrator models, the proposed method is applicable to
highly nonlinear systems with nonlinearly coupled inertia matrices
such as the attitude dynamics of spacecraft. A main contribution of
this paper is to provide exact proofs of nonlinear stability and
convergence under a variety of conditions, based on nonlinear
contraction theory, a comparatively recent analysis tool. Contraction
analysis, overcoming a local result of Lyapunov’s indirect method,
yields global results based on differential stability analysis. The
benefit of constructingmultiple time scales of the closed-loop system
is that exponential synchronization, with a convergence rate faster
than that of the trajectory tracking, enables reduction of multiple
dynamics into a simpler synchronized form, thereby simplifying the
additional stability analysis. The proposed bidirectional coupling has
also been generalized to permit partial-state coupling, thereby further
reducing communication requirements. We illustrated the effective-

Fig. 7 Synchronization of four heterogeneous spacecraft.

Fig. 8 Three-dimensional simulation of the phase synchronization on a

spiral trajectory.
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ness of the proposed approach by comparing with the simple PD
coupling control law, and simulating the combined rotational and
translational maneuvers in the presence of variation in the second-
degree zonal harmonic J2 of the Earth’s gravitational potential.

Appendix: Contraction Theory

We exploit the partial contraction theory [28] to prove the stability
of coupled nonlinear dynamics. Lyapunov’s linearization method
indicates that the local stability of the nonlinear system can be
analyzed using its differential approximation. What is new in
contraction theory is that a differential stability analysis can be made
exact, thereby yielding global results on the nonlinear system.Abrief
review of the results from [26–28] is presented in this section.
Readers are referred to these references for detailed descriptions and
proofs on the following theorems. Note that contraction theory is a
generalization of the classical Krasovskii’s theorem [23].

Consider a smooth nonlinear system

_x�t� � f�x�t�;u�x; t�; t� (A1)

where x�t� 2 R
n, and f: Rn � R

m � R� ! R
n. A virtual displace-

ment �x is defined as an infinitesimal displacement at a fixed time—a
common supposition in the calculus of variations.

Theorem VII.1: For the system in Eq. A1, if there exists a
uniformly positive-definite metric,

M �x; t� ���x; t�T��x; t� (A2)

where � is some smooth coordinate transformation of the virtual
displacement, �z���x, such that the associated generalized
Jacobian F is uniformly negative definite, that is, 9� > 0 such that

F �
�

_��x; t� ���x; t� @f
@x

�

��x; t��1 � ��I (A3)

then all system trajectories converge globally to a single trajectory
exponentially fast regardless of the initial conditions, with a global
exponential convergence rate of the largest eigenvalues of the
symmetric part of F.

Such a system is said to be contracting. The proof is given in [26].
Equivalently, the system is contracting if 9� > 0 such that

_M�
�

@f

@x

�

T

M�M
@f

@x
� �2�M (A4)

It can also be shown that for a contracting autonomous system of
the form _x� f�x;u�x��, all trajectories converge to an equilibrium
point exponentially fast. In essence, contraction analysis implies that
stability of nonlinear systems can be analyzed more simply by
checking the negative definiteness of a proper matrix, rather than
finding some implicit motion integral as in the Lyapunov theory.

The following theorems are used to derive stability and
synchronization of the coupled dynamics systems.

Theorem VII.2: Hierarchical Combination [27,28]. Consider two
contracting systems, of possibly different dimensions and metrics,
and connect them in series, leading to smooth virtual dynamics of the
form

d

dt

�z1
�z2

� �

� F11 0

F21 F22

� �

�z1
�z2

� �

Then the combined system is contracting if F21 is bounded.
Theorem VII.3: Partial Contraction [28]. Consider a nonlinear

system of the form _x� f�x;x; t� and assume that the auxiliary
system _y � f�y;x; t� is contracting with respect to y. If a particular
solution of the auxiliary y system verifies a specific smooth property,
then all trajectories of the original x system verify this property
exponentially. The original system is said to be partially contracting.

Theorem VII.4: Synchronization [28]. Consider two coupled
systems. If the dynamics equations verify

Fig. 9 Simulation of the proposed control law for the combined translational and rotational dynamics.
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_x 1 � f�x1; t� � _x2 � f�x2; t�

where the function f�x; t� is contracting in an input-independent
metric, then x1 and x2 will converge to each other exponentially,
regardless of the initial conditions. Mathematically, stable
concurrent synchronization corresponds to convergence to a flow-
invariant linear subspace of the global state space [45].
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