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ABSTRACT  
Motivated by the tradeoff between security and efficiency 
performance parameters that has been imposed on all modern 
wireless security protocols, we designed a novel security system 
that gained in both parameters. Our system is based on stream 
ciphers for their speed, but maintaining a much more solid and 
proven security. Such security strength stems from the novel 
deployment of permutation vectors and the data records in the 
regeneration of the secret key. Moreover, the involvement of the 
former results in an adaptive and efficient data integrity 
mechanism that relies on error propagations in the data stream. 
Simulation results show that our security protocol is much faster 
than peer mechanisms such as WEP and CCMP. Hence, we 
anticipate a great opportunity to deploy our system in 
environments with scarce bandwidth, which are the most 
vulnerable; specifically the wireless domain. 

Categories and Subject Descriptors 
C.2.2 [Network Protocols]: Applications (SMTP, FTP, etc.) 

General Terms 
Performance, Design, Experimentation, Security, Human Factors, 
Standardization. 

Keywords 
Mobile network security, dynamic encryption, permutation 
vectors, flexible integrity, integrity violations, seamless handover. 

1. INTRODUCTION 
The main advantage of wireless communications is seen in 
ubiquitous and location-independent computing in restricted 
spatial domains such as offices, factories, enterprise facilities, 
hospitals, and campuses [2]. In such environments, wireless 
networks complement and expand the coverage areas of existing 
wired networks. Wireless networks are attractive because of their 

cost-effectiveness in terms of installation and communication. 
One particular advantage of wireless networks is the fact that they 
can be quickly installed in an ad hoc configuration, without 
preplanning and without a supporting backbone network. Even 
though, many efficient wireless protocols have been developed, 
however, we are still faced with the great challenge of securing 
wireless communications efficiently.  The rapid progress in 
wireless communication prompts organizations to develop new 
security mechanisms that are equivalent to the existing wired-
based security protocols. These wired-based protocols presume 
that the existing wired network jacks are located inside buildings 
that are already secured from unauthorized access through the use 
of keys, badge access, etc [5]. In contrast, a wireless access point 
(AP) may be accessed from off the premises if the signal is 
detectable. 

The 802.11 standard [3] for wireless LAN communications 
introduced the Wired Equivalent Privacy (WEP) protocol in an 
attempt to bring the security level of wireless systems closer to 
that of wired ones. The primary goal of WEP is to protect the 
confidentiality of user data from eavesdropping. The integration 
of WEP in wireless network cards helped in its widespread use. 
Unfortunately, WEP failed to accomplish its security goals, 
despite deploying the believed- to-be-secure RC4 stream cipher 
[3][14]. Hence, a temporal key integrity protocol (TKIP) was 
introduced to strengthen the WEP, albeit with the cost of slowing 
down the protocol. Finally, the proliferation of the stream cipher 
approach led to the introduction if a new, faster and more secure 
block cipher protocol. The Counter-Mode-CBC-MAC-Protocol 
(CCMP), with the Advanced Encryption System (AES) as its 
encryption engine and Cipher Block Chaining Message 
Authentication Code (CBC-MAC) for integrity, definitively 
replaces the TKIP. CCMP is a data-confidentiality protocol that 
handles both packet authentication and encryption. The extra time 
and packet size overhead required by the CCMP motivated us to 
design a new protocol that returns to the stream cipher approach, 
yet manifests all of the security strength of CCMP (if not more), 
with much faster speed.   

Motivated by the aforementioned problems in the wireless 
security techniques, we designed a novel security mechanism that 
alleviates the existing security and efficiency problems in the 
wireless domain. Our mechanism is proof that the philosophy of 
stream ciphers is still sound, if a system is implemented properly. 
Moreover, gains of security and efficiency are not really out of 
reach. 
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The rest of this paper is organized as follows. Section 2 is devoted 
to WEP protocol, enhancements and deficiencies. In Section 3, we 
will describe briefly the new 802.11 proposed standard (Counter 
Mode CBC-MAC Protocol). Our proposed security protocol is 
illustrated in detail in Section 4, including confidentiality, 
authentication, and integrity services. Section 5 presents wireless 
simulation results corresponding to the deployment of the three 
aforementioned security mechanisms. Section 6 is the conclusion. 

2. WIRED EQUIVALENCY PROTOCOL 
2.1 WEP Secur ity 
The 802.11 standard describes the protocol of wireless local area 
networks (WLANs). The Wired Equivalent Privacy (WEP) 
algorithm [4] is used to protect wireless communication from 
eavesdropping. WEP relies on a secret key that is shared between 
a supplicant mobile station (e.g., a laptop with a wireless card) 
and an access point (AP) base station. The secret key is used to 
encrypt packets before they are transmitted, and an integrity check 
is used to ensure that packets are not modified in transit by an 
intruder. The standard does not discuss how the shared key is 
established. In practice, most installations use a single key that is 
shared among all mobile stations and access points. 

WEP uses the RC4 stream cipher encryption algorithm [4] [9]. A 
stream cipher operates by expanding a short key into an infinite 
pseudo-random key stream. The sender applies XOR to the key 
stream with the plaintext to produce ciphertext. The receiver holds 
a copy of the same key, and uses it to generate an identical key 
stream. XORing the key stream with the ciphertext yields the 
original plaintext. To ensure packet integrity, WEP uses an 
Integrity Check (IC) field in the packet. To avoid encrypting two 
plaintexts with the same key stream, an Initialization Vector (IV) 
is used to augment the shared secret key and produce a different 
RC4 key for each packet. The IV is also included in the 
transmitted packet. However, both of these measures are 
implemented inaccurately, resulting in poor security. 

2.2 WEP Vulnerabilities 
The first attack on the WEP was due to the limited space of the IV 
permutations in the RC4 (only 224). In a heavily trafficked 
network, a passive eavesdropper can intercept all wireless packets 
with repeated IVs. By XORing two packets that use the same IV, 
the attacker obtains the XOR of the two plaintext messages 
[4][15][16]. The resulting XOR can be used to infer the contents 
of the two messages, given that the IP traffic is often very 
predictable and includes much redundancy. Such redundancy can 
be used to eliminate many possibilities for the contents of 
messages. Further educated guesses about the contents of one or 
both of the messages can be used to statistically reduce the search 
space of possible messages, and in some cases it is possible to 
determine the exact contents, hence cracking the WEP key. 

The second attack is also a direct consequence of the problems 
described previously. If an attacker knows the exact plaintext for 
one encrypted message, such knowledge can be used to forge 
valid encrypted packets [4]. The procedure involves constructing 
a new message, calculating the CRC-32, and performing bit flips 
on the original encrypted message to change the plaintext to the 
new message. The basic property is that RC4(X) xor X xor 
RC4(Y) =Y. This fake packet can be sent to the access point or 
mobile station, and it will be accepted as a valid packet. 

2.3 WEP Enhancements: Temporal Key 
Integr ity Protocol 
In order to alleviate the above attacks, the TGi company 
responded to the need to improve the security of the already-
deployed 802.11 equipment [9]. TGi (IEEE 802.11i) has proposed 
a temporal key integrity protocol (TKIP) as a mandatory security 
enhancement for 802.11, and patches implementing it will likely 
be available for most equipment. TKIP is a suite of algorithms 
wrapping WEP that is used to achieve the best security that can be 
obtained, given the problem design constraints. The TKIP 
algorithms are designed explicitly for implementation on legacy 
hardware, hopefully without unduly disrupting performance. 
TKIP adds four new algorithms to the WEP: 1) A cryptographic 
message integrity code, or MIC, called Michael, defeating any 
forgery attempts; 2) A new IV sequencing discipline, eliminating 
any replay attacks from the attacker’s arsenal; 3) A per-packet key 
mixing function, de-correlating the public IVs from weak keys; 
and 4) A rekeying mechanism, providing fresh encryption and 
integrity keys, undoing the threat of attacks stemming from key 
reuse. The TKIP key mixing function can construct at most 216 
IVs, which implies that TKIP requires a key-update mechanism 
operating at least every 216 packets. The instantiation of new 
temporal keys requires careful coordination, using special rekey 
messages. The rekey message distributes keying material from 
which both the station and AP derive the next set of temporal 
keys. This exchange must itself be secure, or an attacker can 
compromise the temporal keys by compromising the rekey 
message. 

This general outline of rekeying is necessary but not sufficient to 
provide TKIP security [9][17]. Other problems must be resolved. 
One major issue is how to support roaming by stations from one 
access point to another in large infrastructure deployments. A full 
reauthentication by the 802.1X authentication server can be too 
slow to support real-time applications like voiceover IP traffic, so 
a faster mechanism may be required. This suggests some sort of 
key passing architecture. Key passing is especially prone to attack 
[18][19], so design of this type of architecture is quite delicate, an 
issue that is being currently investigated. 

3. THE CCMP PROTOCOL 
The Counter-Mode-CBC-MAC-Protocol, like TKIP, addresses all 
known WEP deficiencies, but without the shackles of already-
deployed hardware [13]. The Advanced Encryption System (AES) 
was selected as its core encryption algorithm. 

The use of single-key (block cipher) is mainly to provide 
confidentiality and integrity, reducing key management overhead 
and minimizing the time spent computing AES key schedules. 
Another feature provided by CCMP is maintenance of integrity 
protection for the plaintext packet header, as well as integrity and 
confidentiality of the packet payload [17]. 

3.1 Counter  Mode (CTR) 
In the Counter Mode (CTR), a counter is encrypted first using a 
block cipher algorithm, yielding an encryption key K-CTR. Then, 
the MPDU plaintext (Message Protocol Data Unit) is simply 
XORed with K-CTR to produce an MPDU cipher. Subsequently, 
the counter is incremented in order to encrypt the next plaintext. 
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3.2 CCM mode 
A new mode called CCM was designed to meet the expected 
security criteria. CCM merges two well-known and widely 
deployed techniques. CCM uses counter mode (CTR) for 
encryption and the Cipher Block Chaining Message 
Authentication Code (CBC-MAC) for integrity protection 
[13][20]. Both algorithms employ only the encryption primitive at 
both the sender and the receiver.  

CCM uses the same key for both confidentiality and integrity. 
This is normally a dangerous practice, but CCM avoids the pitfalls 
of this usage by guaranteeing that the space for counter mode 
never overlaps with that used by the CBC-MAC initialization 
vector. 

3.3 CCMP Protocol 
The protocol using CCM has many properties in common with 
TKIP. Freedom from constraints associated with current hardware 
leads to a more elegant solution. As with TKIP, CCMP employs a 
48-bit IV, ensuring that the lifetime of the AES key is longer than 
any possible association. In this way, key management can be 
confined to the beginning of an association and ignored for its 
lifetime. CCMP uses a 48-bit IV as a sequence number to provide 
replay detection, just like TKIP. 

4. OUR SECURITY MECHANISM: 
SYNCHRONOUS DYNAMIC ENCRYPTION 
SYSTEM (SDES) 
4.1 Secur ity Design Guidelines 
4.1.1  Security Using Stream Ciphers 
Stream ciphers are meant to enhance the speed of encryption 
while maintaining a high level of security, compared to other 
block cipher techniques [1]. Moreover, they use different keys to 
protect against cryptanalysis and replay attacks. Hence, we based 
our security system on the stream ciphering mechanism. 
Specifically, we involve, among other parameters, the previous 
key to generate the next key in the key stream, avoiding key 
duplication. 

4.1.2 Protection Against Key Compromise 
In an effort to further strengthen our security model, we aim to 
minimize the effect of any security violation. For example, the 
compromise of one key results in breaking only one data record. 
In order to achieve such goal, the key management function 
involves a random data record (previously sent/received) as 
another parameter. Thus, obtaining one key would not be enough 
to generate any previous/next key in the keystream, since the 
intruder also needs all previously communicated data.  The idea of 
involving the data in key management also protects against attacks 
that involve detecting key-stream patterns. As in RC4 
cryptosystem [6][7],the key stream is periodic; hence obtaining 
one key instance from a cycle leads to the total compromise of 
such cycle. The involvement of the data (with its randomness) in 
our system results in acyclic key stream generation process.  

4.1.3 Protection Against “ Biased Bytes”  Analysis 
In order to break the cryptosystem, a cryptanalyst always seeks 
any flaw in the encryption mechanism (e.g., repeated ciphers, 
weak encryption keys, low entropy, etc), avoiding brute-force 

attacks. Since the raw data is involved in the key management, the 
key's bytes values could inherit the bias from the data itself. 
Consequently, if the intruder has some knowledge about the 
nature of the transmitted data (text, satellite images, landscape 
backgrounds, etc), a possible analysis of particular bytes at certain 
positions might reveal a key of the keystream. Therefore, it is also 
desirable to maintain an equidistribution of the key values by 
involving another parameter in the key generation process. 

4.1.4 Protection Against Integrity Violation 

In traditional block and stream ciphering, maintaining cipher 
integrity might involve rigid communication and computation 
overhead per packet. The Cipher Block Chaining Message 
Authentication Code (CBC-MAC) and the Cyclic Redundancy 
Check (CRC) are used in block and stream cipher techniques, 
respectively [1]. On the other hand, the cipher integrity of our 
approach is inherent, since data are involved in the synchronized 
key generation. Hence, any cipher alteration will automatically 
result in key missynchronization that will propagate to the 
consecutive keys, based on the aforementioned key generation 
mechanism. Such a property will allow us the flexibility to check 
cipher integrity on demand, instead of per packet, alleviating the 
overhead encountered by other peer mechanisms. 

4.2 Theory  
One of the most important aspects of stream ciphers is the 
manufacturing of encryption keys. Modern stream ciphers utilize 
permutation techniques in the manufacturing of their encryption 
keys, for better diversion. Our technique still follows the same 
philosophy with some subtle differences in order to achieve much 
more solid security that is amenable to mathematical proof. 

A permutation describes an arrangement, or ordering, of numbers 
[8]. Many algorithmic problems seek the best way to order a set of 
objects, including traveling salesman (the least-cost order to visit 
n cities), bandwidth (order the vertices of a graph on a line so as 
to minimize the length of the longest edge), and graph 
isomorphism  (order the vertices of one graph so that it is identical 
to another). Any algorithm for solving such problems exactly 
must construct a series of permutations along the way.  

There are n! permutations of n items, which grow exponentially to 
generate all permutations.   Numbers like these should calm the 
urge of anyone interested in exhaustive search and help explain 
the importance of generating random permutations. 

Fundamental to any permutation-generation algorithm is a notion 
of order, the sequence in which the permutations are constructed, 
from first to last.   The most natural generation order is 
“ lexicographic;”  the order in which they would appear if they 
were sorted numerically. Lexicographic order for n = 3 is  { 1, 2, 
3} , { 1, 3, 2} , { 2, 1, 3} , { 2, 3, 1} , { 3, 1, 2} , and finally { 3, 2, 1} . 
Although lexicographic order is aesthetically pleasing, there is 
often no particular reason to use it. Indeed, non-lexicographic 
orders lead to faster and simpler permutation generation 
algorithms [8] [11]. 

The generation of random permutations is an important problem 
to solve, in order to simplify security algorithms. One way [12] is 
the following two-line, linear-time algorithm. We assume that 
Random(i,n) generates a random integer between i and n.  
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for i = 1 to n do a[ i]  = i; // a =[1, 2, ..., n]  

for i = 1 to n do swap[ a[ i] , a[  Random(i, n) ] ; 

It is not obvious that this algorithm generates all permutations 
uniformly. However, a security algorithm that is based on such 
types of generating permutations might be as secure as harder peer 
algorithms, yet the generation process is still linear. 

The generation of permutation vectors can be performed 
recursively. Given a permutation vector PV, the generation of the 
next permutation vector PV` is based on PV and some other 
parameter that provides the randomness. In this section, we will 
focus on the additional parameter selection, and we will show that 
the best-case brute force of such a parameter requires exponential 
computation complexity. 

Our goal is to generate a large sequence of permutations (or 
permutation vectors) such that it is hard to guess their order. In 
fact, both communication parties can utilize the shared secret key 
(SK) as a “seed” of the random generation process that can be 
used in the abovementioned algorithm. Next is our proposed 
linear algorithm to generate permutation vectors: 

for i = 1 to n do PV[i]  = i; 

for i = 1 to n do swap[ PV[i] , PV[ SK[i]  ] ; // 1 ≤ SK[i]  ≤ n  

In order to prove that breaking the permutation vectors’  
generation is hard, we need to show that given any input 
parameters (especially PV and PV`), a cryptanalyst is restricted to 
the brute-force option only in order to break the random 
permutation order. 

TABLE 1: All possible key combinations, for  key size n =3 

PV PV` All Possible values for SK that permutes  
PV to PV` 

[1, 2, 3] [1, 2, 3] [3, 2, 1], [1, 3, 2], [2, 1, 3], [1, 2, 3] 

[1, 2, 3] [1, 3, 2] [3, 1, 1], [2, 3, 1], [2, 1, 2], [1, 2, 2], [1, 3, 3] 

[1, 2, 3] [2, 1, 3] [3, 3, 1], [3, 1, 2], [2, 3, 2], [1, 1, 3], [2, 2, 3] 

[1, 2, 3] [2, 3, 1] [1, 3, 1], [1, 1, 2], [2, 2, 2], [3, 1, 3], [2, 3, 3] 

[1, 2, 3] [3, 1, 2] [1, 1, 1], [2, 2, 1], [3, 2, 2], [3, 3, 3] 

[1, 2, 3] [3, 2, 1] [2, 1, 1], [1, 2, 1], [3, 3, 2], [3, 2, 3] 

 

Table 1 shows that SK (of size n=3) always has possible 
combinations greater than or equal to 2n-1. Unfortunately, the time 
complexity to verify this result for higher key size values is 
exponential with respect to n. Yet, it can be proven 
mathematically, by induction (out of the scope of this paper), that 
for any permutation vector PV of size n+1 and one of its possible 
permutations PV`, there are at least 2n different keys SK that 
permutes PV to PV`, given that for any permutation vector pv of 
size n and one of its possible permutations pv`, there are at least 
2n-1 different secrete keys sk, of size n, that permutes pv to pv`. 

4.3 SDES Implementation  
Based on the above security design guidelines where we explored 
the main advantages of our system over existing peers, we can 
confidently state that our system is the most amenable for 
deployment in the wireless domain. Our system is fast since it is 

based on non-IV stream ciphers, yet it maintains a very solid 
security, as shown above. Such a property lends itself easily to the 
wireless domain where security is much needed (broadcast 
system), yet resources are more limited than in the wired domain. 

Our Synchronous Dynamic Encryption System (SDES) is a stream 
cipher crypto system based on permutation vector generation. In 
order to maintain the highest level of security and avoid as much 
vulnerability as possible, our mechanism minimizes the key 
exchange process between supplicants (SUP) and access points 
(AP), as well as the authentication server (AS), in the wireless 
domain. The main idea is to keep mobile users and the AS/AP in 
synch at all times, with respect to the secret and encryption keys. 
Unless a node (SUP/AP) is pre-registered with the AS, it is nearly 
impossible for a non-member node (e.g., intruder) to have the 
same corresponding synchronized dynamic secret key that is 
maintained at the AS. The only explicit node identity verification 
is carried out once, at the time of the node’s first registration with 
the AS.  Any subsequent authentication is implicitly processed, 
without the overhead of securely exchanging plain keys. 

In our system, there are two types of dynamic keys: secret 
authentication keys (SAK) and secret session keys (SSK). The AS 
is responsible for generating an initial SAK for every registered 
station (SUP/AP). Upon securely receiving the initial SAK from 
AS, the station and the AS use the shared SAK for any subsequent 
mutual authentication. In case of SUP-AS authentication, once the 
SUP is initially authenticated by the AS, the AS forwards the 
SUP’s SAK to its associated AP.  

On the other hand, the SSK is generated per any communication 
session between APs, and SUPs as well, for the duration of the 
session only. In case of an AP-to-AP session, the generation and 
delivery of the initial SSK is securely generated and carried out by 
the AS. However, when two supplicants request a secure 
communication, the AP associated with the source SUP is 
responsible for generating a SSK and sends it securely to both 
supplicants. Recall that both SAK and SSK are shared keys; they 
are involved in the process of shuffling permutation vectors that 
are used for encryption. 

4.4 Encryption/Decryption 
The encryption function is simplified in order to minimize the 
overhead cost at the authentication stage. Thus, a simple XOR is 
performed between the data record dt and the corresponding 
generated permutation vectors PVt, resulting in a cipher ct to be 
transmitted. The decryption function is performed in the same 
manner of the encryption function. The cipher record ct is XORed 
with the same corresponding permutation vector PVt (generated at 
the recipient side) producing the original data record dt. Both 
communication parties generate a new permutation vector (PVt+1), 
based on SAK/SSK, to be used in the next encryption/decryption 
operations, synchronously. 

4.5 Key Management 
The SAK and SSK each serve as a seed of permutation to generate 
a stream of encryption permutation vectors. There are three modes 
to regenerate these keys that tune between different levels of 
security and corresponding efficiency. 
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4.5.1 Static shared keys 
This option provides a low security profile. The secret key is a 
“sitting duck”  at both communication parties, which makes it 
vulnerable to key compromising attack. Furthermore, the 
permutation vectors generation might lead to a constant stream of 
keys (PV and PV` are identical), which results in breaking our 
system using the “known plaintext-ciphertext”  attack. However, 
prolonged experimentation failed to realize the above case 
(running an experiment for one month, the obtained PV`[ i] was 
always different than PV[ i], 1� i �n). The clear advantage of such 
a mode is the elimination of the secret key management. 

4.5.2 Stream of shared keys 
In order to alleviate the static security problem, a second option is 
to modify the shared key after each data record encryption, for a 
dynamic key generation. Hence, the implementation of the shared 
key management process is as follows. 

for i = 1 to n do SK[i]  =  (SK[i]  + PV[i] ) modulo n 

Then, the shared key is not as easy a target for cryptanalysts, as in 
the above mode. Moreover, experimentally, the shared key 
generation is not vulnerable to “biased byte”  analysis since the 
involved permutation vector is a good source of byte diversity. 
Hence, the increase of security costs only one addition operation. 
Moreover, it is possible to generate a stream of keys in advance 
(offline), speeding up the process of secure communication. 
However, in case of opening more than one session between the 
same two authenticated clients, all sessions generate the same 
stream of shared keys, lacking security independence:  breaking 
one session breaks all. 

4.5.3 Dynamic stream of shared keys 
For ultimate security, the communicated data is involved in the 
shared key generation, as a third mode. The new shared-key-
management process is as follows: 

for i = 1 to n do SK[i]  =  (SK[i]  + PV[i]  + d[ i] ) % n; 

The idea behind involving the data is to provide a different set of 
generated shared keys for different sessions (assuming that they 
are of different data to communicate), eliminating the second 
option security violation above. In addition to the permutation 
vector, the incorporation of the data in the key management 
process adds another dimension of diversity, increasing secret key 
entropy. Another big advantage is that the data integrity is 
equivalent to the key integrity; i.e., if the communicated cipher is 
altered, the generated shared keys at both sender and recipient 
sites will missynchronize. The price of the additional security and 
advantageous data integrity is the infeasibility of the efficient 
offline generation of keys, and two extra addition operations. 

4.6 Authentication 
At the network initialization stage, all APs go through a 
registration process authenticating themselves with the AS (once 
in their life cycle).  Then, every AP is authenticated with its 
neighboring APs via the AS that generates and transmit a private 
SSK to each pair of authenticated APs. When a supplicant joins 
the network, with the pair (MAC1, SAK) installed in its wireless 
card, it sends a first-authentication request to its local AP. The AP 

                                                                 
1 Mac address 

forwards the SUP’s request to the AS in order to authenticate the 
supplicant, and transfer its newly generated SAK back to the AP. 
Figure 1 explains in detail the protocol sequence of the supplicant 
initial authentication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that the SUP authentication with the AS is done only once; 
subsequent authentications are performed directly with the 
associated AP. Only in case a supplicant remains out of range 
with its AP for long time, would it need to reauthenticate with the 
AS again. 

4.7 Handover 
When the communication signal between the supplicant and its 
currently associated AP (say AP1) gets weak, the supplicant roams 
for another AP (say AP2) of stronger signal. Then, the supplicant 
sends a handover request to AP1 including AP2’ s info. Usually, 
AP1 and AP2 are adjacent and wired; therefore, they are already 
preauthenticated to each other via the AS. Following the rule of “a 
trusted by a trusted is trusted,”  AP1 sends a secure handover 
request to AP2 including the supplicant’s authentication 
information. This AP-AP communication is secured via their 
private shared SSK. Then, AP1 sends a secure “ integrity check”  
message to the supplicant in order to check the previously 
received data integrity. Figure 2 explains in detail the protocol 
sequence of the handover process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. SUP→AP : SUP requests a secure connection by generating a 
nonce N and sending (MAC, E(N|N)) to the AP. 

2. AP→AS : AP forwards (MAC, E(N|N)) to the AS. 
3. At the AS : Search for the local SAK corresponding to the 

received MAC and decrypt E(N|N). If the decrypted 
two nonces are different, abort. 

4. AS→AP : AP sends the supplicant’s SAK, encrypted with 
AP’s SAK. 

5. AP→SUP :AP encrypts N using the received supplicant’s DAK, 
and send E(N) to the supplicant. 

6. At the SUP : SUP decrypts E(N) using the local SAK. If N ≠ 
D(E(N)),  abort. Otherwise, the supplicant is mutually 
authenticated with AP. 

E(N|M) represents the encryption of the concatenation of N and M 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Initial authentication between the supplicant 
and the access point. 

1. Initialization: Triggered by a weak signal from the current AP 
(AP1), the SUP starts roaming for another AP with a 
stronger communication signal (say, AP2).  

2. SUP→AP1 : SUP securely sends a handover request including 
AP2’s info. 

3. AP1→SUP : AP1 securely sends an “ integrity check”  message, 
and verifies the integrity of the previously sent data. 

4. AP1→AP2 : AP1 securely sends the SUP’s SAK (integrity 
verified one) to AP2. 

5. AP2→SUP : AP2 initiates the authentication procedure (no need 
to communicate with the AS). 

 

 

 

 

 

 

 

 

Figure 2: The seamless secure handover of the supplicant. 
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4.8 Integr ity 
In SDES, altering communicated data records would propagate to 
the remaining decrypted data, interfering with the key-key 
synchronization, since the key regeneration is a function of the 
altered data. In a highly vulnerable environment, error detection 
and/or correction could be accomplished using checksum, 
incurring extra bytes (bandwidth) of permanent overhead. The 
SDES introduces a much more flexible and powerful mechanism 
to replace the checksum-like mechanisms where errors are 
detected via key missynchronization. 

Our system divides each session into sections of size R records, 
with R-1 data records and a duplicate of the last record. The 
receiver validates the integrity of the entire section by simply 
verifying the equality of the last two received data records, 
ignoring the duplicate record. If an integrity violation is detected, 
the sender needs to encrypt and retransmit the previous R data 
records, which may degrade the performance of our mechanism in 
hostile environments. Still, an advantage of our mechanism is the 
flexibility of adjusting R based on the environment hostility. 

Hence, the communication throughput is (R-1)/R, approaching 
99% for large R, in a peaceful environment, whereas the 
efficiency of other mechanisms that utilize CRC is about 80% 
(e.g., in 128-block ciphers, using 32-bit CRC field). Moreover, 
our mechanism has the huge advantage of detecting many more 
violations, such as cipher shuffling, injection, and deletion and 
session hijacking. Other mechanisms will incur a huge overhead 
(e.g., adding CBC mode) in order to protect against the same set 
of cipher attacks. 

In hostile environments, our mechanism tunes R based on the 
violation probability. Let p be the probability of violating the 
integrity of one transmitted cipher. In order to analyze the 
successful transmission of R records (R-1 regular data records, 
and one record for integrity checking process), we need to 
calculate the expected value of the total transmitted and 
retransmitted records in function of p and R. 

5. SIMULATIONS  
We designed a wireless network simulator that implements several 
security models in a wireless infrastructured environment. The 
simulator was developed using Java Development Kit JSDK 
1.5.0. In addition, a very useful library of generating random 
variable of different distributions was downloaded and added to 
the kit (refer to [10] for more detail of the Renesys Raceway 
educational version). 

In order to truly demonstrate the performance of every technique, 
we preferred to limit the number of access points, network bottle-
neck, to two. Also, the wireless area is limited to a dimension of 
100 × 100 (unit2), with 256 wireless nodes that are confined to 
move in that area, each with a maximum velocity of 5 (units/sec). 

For more accurate results, we chose 12 different probability 
distribution scenarios for packet generation rates, with a mean  
m = 50 msec, to ensure reasonable utilization of resources. These 
distributions include: 

1. The fixed rate m. 

2. The Uniform distribution, with packet rates ranging 
between 0 and 2m. 

3. The Exponential distribution, with λ = 1/m. 

4. The Beta distribution, with two scenarios: (α = 0.5, β = 0.7) 
and (α = 0.7, β = 0.5). 

5. The Gamma distribution, with two scenarios: (α = 0.5,  
λ = 1/m) and (α = 2, λ = 1/m). 

6. The Normal distribution, with the mean m. 

7. The Pareto distribution, with K = 1/m, and α = 1.0. 

8. The Pareto2 distribution, with K =1.0, and α = 1/m, and  
µ = 1.0. 

9. The CHI-Square distribution, with freedom = m. 

10. The Logarithmic distribution, with probability = 0.85. 

In addition, the simulator challenges the security technique in 
question with different integrity violation rates. In fact, the 
simulator alters the outgoing packet randomly, following a 
uniform distribution. 

Our simulator implements the three security models WEP, CCMP, 
and SDES including their confidentiality, authentication and 
integrity checking mechanisms. Each experiment is run 20 times, 
with a simulation confidence of 96.37% ± 1.78%. 

�

� ����

� �����

� � ����

� �����

� � ����

� �
� �
	 

� �

 �

 � �
�

� �

 �
� �
� �
� 
 �
� �
�

� �

 �
� �
� �
� 
 �
� �
�

� �
�
�
� �
��
� �

 �
� �
�

� �
�
�
� �
� �

 �
� �
�

� �
� �
� �
� �
�

� �
� �

 �
� �
� 
 �
�

� �
� �

 �
� �
� �
� 

� 
 �
� 
 �
�

� �
� �
 !
" �
� �
� �
�

# �
$ �
� � 

% �
� & �
��
' �
�

( )
� * �
� �
� �
� 
 �
�
�

+ �
, �
) �
) 

� �
� � �
� �
�

��� � � � � ���	� � 
����


� �
� �
�� �
�
����
� �
� �
��
�

� � - �

. + �

 / +  
 � � 
 0 
 � �

 / +  
 � � 
 0 
 � ��

 / +  
 � � 
 0 
 � ��

 

 
The first set of experiments targets the efficiency of every security 
model in a network that is considered to be very immune to 
integrity violations. The experiment results (Figure 3) shows that 
SDES outperformed both the fast WEP and the secure CCMP in 
terms of throughput. Moreover, when a higher round size of 
integrity checking process (R) is selected, a better performance 
was achieved, as we have expected in the above section analysis. 

In the second set of experiments, we challenged the simulated 
systems with an integrity violation rate of 0.001%. The 
experimental results (Figure 4) show that SDES still outperformed 
both WEP and CCMP in terms of useful throughput. Also, when a 
higher round size of integrity checking process was selected, a 
better performance was achieved. 

 

 

 

 

 

 

 

Figure 3: Different secur ity mechanisms’  throughputs 
with no integr ity violations. 
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6. CONCLUSION 
A novel approach of stream cipher key management is introduced 
in this paper. It possesses the high speed of stream ciphers, while 
maintaining a high level of security that compels the intruder to 
brute-force a large key space with a time complexity of Ω(2n). 
Unique to our approach is its recursive generation of a secret key 
per each record (different from the encryption key), involving the 
data and the encryption key; this led to a flexible and much more 
efficient data integrity mechanism compared to other, peer 
techniques. Moreover, the encryption key is recursively generated 
via a simple permutation based on the secret key, which led to the 
above exponential complexity. Hence, our security system revives 
the misimplementation of the stream ciphering concept, from the 
insecure WEP to the inefficient TKIP.  

Simulation results showed that our mechanism has dramatically 
enhanced network throughput; up to fourfold compared to peer 
wireless security mechanisms. In addition, the dynamics of our 
data integrity checking process showed much higher protocol 
efficiency even with a considerable degree of environment 
hostility. Based on the obtained results, our protocol is the most 
amenable to be deployed in the wireless domain, which aids in 
providing quality of service in a secure network environment. 
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Figure 4: Different secur ity mechanisms’  throughputs in 
a hostile environment (violation probability = 0.001%). 
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