
Application of Synchronous Dynamic Encryption System
in Mobile Wireless Domains

Hamdy S. Soliman and Mohammed Omari
Computer Science Department

New Mexico Institute of Mining and Technology
801 Leroy Place, Socorro, NM 87801

1(505)835-5170

{hss, omari}@nmt.edu

ABSTRACT
Motivated by the tradeoff between security and efficiency
performance parameters that has been imposed on all modern
wireless security protocols, we designed a novel security system
that gained in both parameters. Our system is based on stream
ciphers for their speed, but maintaining a much more solid and
proven security. Such security strength stems from the novel
deployment of permutation vectors and the data records in the
regeneration of the secret key. Moreover, the involvement of the
former results in an adaptive and efficient data integrity
mechanism that relies on error propagations in the data stream.
Simulation results show that our security protocol is much faster
than peer mechanisms such as WEP and CCMP. Hence, we
anticipate a great opportunity to deploy our system in
environments with scarce bandwidth, which are the most
vulnerable; specifically the wireless domain.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications (SMTP, FTP, etc.)

General Terms
Performance, Design, Experimentation, Security, Human Factors,
Standardization.

Keywords
Mobile network security, dynamic encryption, permutation
vectors, flexible integrity, integrity violations, seamless handover.

1. INTRODUCTION
The main advantage of wireless communications is seen in
ubiquitous and location-independent computing in restricted
spatial domains such as offices, factories, enterprise facilities,
hospitals, and campuses [2]. In such environments, wireless
networks complement and expand the coverage areas of existing
wired networks. Wireless networks are attractive because of their

cost-effectiveness in terms of installation and communication.
One particular advantage of wireless networks is the fact that they
can be quickly installed in an ad hoc configuration, without
preplanning and without a supporting backbone network. Even
though, many efficient wireless protocols have been developed,
however, we are still faced with the great challenge of securing
wireless communications efficiently. The rapid progress in
wireless communication prompts organizations to develop new
security mechanisms that are equivalent to the existing wired-
based security protocols. These wired-based protocols presume
that the existing wired network jacks are located inside buildings
that are already secured from unauthorized access through the use
of keys, badge access, etc [5]. In contrast, a wireless access point
(AP) may be accessed from off the premises if the signal is
detectable.

The 802.11 standard [3] for wireless LAN communications
introduced the Wired Equivalent Privacy (WEP) protocol in an
attempt to bring the security level of wireless systems closer to
that of wired ones. The primary goal of WEP is to protect the
confidentiality of user data from eavesdropping. The integration
of WEP in wireless network cards helped in its widespread use.
Unfortunately, WEP failed to accomplish its security goals,
despite deploying the believed- to-be-secure RC4 stream cipher
[3][14]. Hence, a temporal key integrity protocol (TKIP) was
introduced to strengthen the WEP, albeit with the cost of slowing
down the protocol. Finally, the proliferation of the stream cipher
approach led to the introduction if a new, faster and more secure
block cipher protocol. The Counter-Mode-CBC-MAC-Protocol
(CCMP), with the Advanced Encryption System (AES) as its
encryption engine and Cipher Block Chaining Message
Authentication Code (CBC-MAC) for integrity, definitively
replaces the TKIP. CCMP is a data-confidentiality protocol that
handles both packet authentication and encryption. The extra time
and packet size overhead required by the CCMP motivated us to
design a new protocol that returns to the stream cipher approach,
yet manifests all of the security strength of CCMP (if not more),
with much faster speed.

Motivated by the aforementioned problems in the wireless
security techniques, we designed a novel security mechanism that
alleviates the existing security and efficiency problems in the
wireless domain. Our mechanism is proof that the philosophy of
stream ciphers is still sound, if a system is implemented properly.
Moreover, gains of security and efficiency are not really out of
reach.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Q2SWinet’05, October 13, 2005, Montreal, Quebec, Canada.
Copyright 2005 ACM 1-59593-241-0/05/0010...$5.00.

24

The rest of this paper is organized as follows. Section 2 is devoted
to WEP protocol, enhancements and deficiencies. In Section 3, we
will describe briefly the new 802.11 proposed standard (Counter
Mode CBC-MAC Protocol). Our proposed security protocol is
illustrated in detail in Section 4, including confidentiality,
authentication, and integrity services. Section 5 presents wireless
simulation results corresponding to the deployment of the three
aforementioned security mechanisms. Section 6 is the conclusion.

2. WIRED EQUIVALENCY PROTOCOL
2.1 WEP Secur ity
The 802.11 standard describes the protocol of wireless local area
networks (WLANs). The Wired Equivalent Privacy (WEP)
algorithm [4] is used to protect wireless communication from
eavesdropping. WEP relies on a secret key that is shared between
a supplicant mobile station (e.g., a laptop with a wireless card)
and an access point (AP) base station. The secret key is used to
encrypt packets before they are transmitted, and an integrity check
is used to ensure that packets are not modified in transit by an
intruder. The standard does not discuss how the shared key is
established. In practice, most installations use a single key that is
shared among all mobile stations and access points.

WEP uses the RC4 stream cipher encryption algorithm [4] [9]. A
stream cipher operates by expanding a short key into an infinite
pseudo-random key stream. The sender applies XOR to the key
stream with the plaintext to produce ciphertext. The receiver holds
a copy of the same key, and uses it to generate an identical key
stream. XORing the key stream with the ciphertext yields the
original plaintext. To ensure packet integrity, WEP uses an
Integrity Check (IC) field in the packet. To avoid encrypting two
plaintexts with the same key stream, an Initialization Vector (IV)
is used to augment the shared secret key and produce a different
RC4 key for each packet. The IV is also included in the
transmitted packet. However, both of these measures are
implemented inaccurately, resulting in poor security.

2.2 WEP Vulnerabilities
The first attack on the WEP was due to the limited space of the IV
permutations in the RC4 (only 224). In a heavily trafficked
network, a passive eavesdropper can intercept all wireless packets
with repeated IVs. By XORing two packets that use the same IV,
the attacker obtains the XOR of the two plaintext messages
[4][15][16]. The resulting XOR can be used to infer the contents
of the two messages, given that the IP traffic is often very
predictable and includes much redundancy. Such redundancy can
be used to eliminate many possibilities for the contents of
messages. Further educated guesses about the contents of one or
both of the messages can be used to statistically reduce the search
space of possible messages, and in some cases it is possible to
determine the exact contents, hence cracking the WEP key.

The second attack is also a direct consequence of the problems
described previously. If an attacker knows the exact plaintext for
one encrypted message, such knowledge can be used to forge
valid encrypted packets [4]. The procedure involves constructing
a new message, calculating the CRC-32, and performing bit flips
on the original encrypted message to change the plaintext to the
new message. The basic property is that RC4(X) xor X xor
RC4(Y) =Y. This fake packet can be sent to the access point or
mobile station, and it will be accepted as a valid packet.

2.3 WEP Enhancements: Temporal Key
Integr ity Protocol
In order to alleviate the above attacks, the TGi company
responded to the need to improve the security of the already-
deployed 802.11 equipment [9]. TGi (IEEE 802.11i) has proposed
a temporal key integrity protocol (TKIP) as a mandatory security
enhancement for 802.11, and patches implementing it will likely
be available for most equipment. TKIP is a suite of algorithms
wrapping WEP that is used to achieve the best security that can be
obtained, given the problem design constraints. The TKIP
algorithms are designed explicitly for implementation on legacy
hardware, hopefully without unduly disrupting performance.
TKIP adds four new algorithms to the WEP: 1) A cryptographic
message integrity code, or MIC, called Michael, defeating any
forgery attempts; 2) A new IV sequencing discipline, eliminating
any replay attacks from the attacker’s arsenal; 3) A per-packet key
mixing function, de-correlating the public IVs from weak keys;
and 4) A rekeying mechanism, providing fresh encryption and
integrity keys, undoing the threat of attacks stemming from key
reuse. The TKIP key mixing function can construct at most 216
IVs, which implies that TKIP requires a key-update mechanism
operating at least every 216 packets. The instantiation of new
temporal keys requires careful coordination, using special rekey
messages. The rekey message distributes keying material from
which both the station and AP derive the next set of temporal
keys. This exchange must itself be secure, or an attacker can
compromise the temporal keys by compromising the rekey
message.

This general outline of rekeying is necessary but not sufficient to
provide TKIP security [9][17]. Other problems must be resolved.
One major issue is how to support roaming by stations from one
access point to another in large infrastructure deployments. A full
reauthentication by the 802.1X authentication server can be too
slow to support real-time applications like voiceover IP traffic, so
a faster mechanism may be required. This suggests some sort of
key passing architecture. Key passing is especially prone to attack
[18][19], so design of this type of architecture is quite delicate, an
issue that is being currently investigated.

3. THE CCMP PROTOCOL
The Counter-Mode-CBC-MAC-Protocol, like TKIP, addresses all
known WEP deficiencies, but without the shackles of already-
deployed hardware [13]. The Advanced Encryption System (AES)
was selected as its core encryption algorithm.

The use of single-key (block cipher) is mainly to provide
confidentiality and integrity, reducing key management overhead
and minimizing the time spent computing AES key schedules.
Another feature provided by CCMP is maintenance of integrity
protection for the plaintext packet header, as well as integrity and
confidentiality of the packet payload [17].

3.1 Counter Mode (CTR)
In the Counter Mode (CTR), a counter is encrypted first using a
block cipher algorithm, yielding an encryption key K-CTR. Then,
the MPDU plaintext (Message Protocol Data Unit) is simply
XORed with K-CTR to produce an MPDU cipher. Subsequently,
the counter is incremented in order to encrypt the next plaintext.

25

3.2 CCM mode
A new mode called CCM was designed to meet the expected
security criteria. CCM merges two well-known and widely
deployed techniques. CCM uses counter mode (CTR) for
encryption and the Cipher Block Chaining Message
Authentication Code (CBC-MAC) for integrity protection
[13][20]. Both algorithms employ only the encryption primitive at
both the sender and the receiver.

CCM uses the same key for both confidentiality and integrity.
This is normally a dangerous practice, but CCM avoids the pitfalls
of this usage by guaranteeing that the space for counter mode
never overlaps with that used by the CBC-MAC initialization
vector.

3.3 CCMP Protocol
The protocol using CCM has many properties in common with
TKIP. Freedom from constraints associated with current hardware
leads to a more elegant solution. As with TKIP, CCMP employs a
48-bit IV, ensuring that the lifetime of the AES key is longer than
any possible association. In this way, key management can be
confined to the beginning of an association and ignored for its
lifetime. CCMP uses a 48-bit IV as a sequence number to provide
replay detection, just like TKIP.

4. OUR SECURITY MECHANISM:
SYNCHRONOUS DYNAMIC ENCRYPTION
SYSTEM (SDES)
4.1 Secur ity Design Guidelines
4.1.1 Security Using Stream Ciphers
Stream ciphers are meant to enhance the speed of encryption
while maintaining a high level of security, compared to other
block cipher techniques [1]. Moreover, they use different keys to
protect against cryptanalysis and replay attacks. Hence, we based
our security system on the stream ciphering mechanism.
Specifically, we involve, among other parameters, the previous
key to generate the next key in the key stream, avoiding key
duplication.

4.1.2 Protection Against Key Compromise
In an effort to further strengthen our security model, we aim to
minimize the effect of any security violation. For example, the
compromise of one key results in breaking only one data record.
In order to achieve such goal, the key management function
involves a random data record (previously sent/received) as
another parameter. Thus, obtaining one key would not be enough
to generate any previous/next key in the keystream, since the
intruder also needs all previously communicated data. The idea of
involving the data in key management also protects against attacks
that involve detecting key-stream patterns. As in RC4
cryptosystem [6][7],the key stream is periodic; hence obtaining
one key instance from a cycle leads to the total compromise of
such cycle. The involvement of the data (with its randomness) in
our system results in acyclic key stream generation process.

4.1.3 Protection Against “ Biased Bytes” Analysis
In order to break the cryptosystem, a cryptanalyst always seeks
any flaw in the encryption mechanism (e.g., repeated ciphers,
weak encryption keys, low entropy, etc), avoiding brute-force

attacks. Since the raw data is involved in the key management, the
key's bytes values could inherit the bias from the data itself.
Consequently, if the intruder has some knowledge about the
nature of the transmitted data (text, satellite images, landscape
backgrounds, etc), a possible analysis of particular bytes at certain
positions might reveal a key of the keystream. Therefore, it is also
desirable to maintain an equidistribution of the key values by
involving another parameter in the key generation process.

4.1.4 Protection Against Integrity Violation

In traditional block and stream ciphering, maintaining cipher
integrity might involve rigid communication and computation
overhead per packet. The Cipher Block Chaining Message
Authentication Code (CBC-MAC) and the Cyclic Redundancy
Check (CRC) are used in block and stream cipher techniques,
respectively [1]. On the other hand, the cipher integrity of our
approach is inherent, since data are involved in the synchronized
key generation. Hence, any cipher alteration will automatically
result in key missynchronization that will propagate to the
consecutive keys, based on the aforementioned key generation
mechanism. Such a property will allow us the flexibility to check
cipher integrity on demand, instead of per packet, alleviating the
overhead encountered by other peer mechanisms.

4.2 Theory
One of the most important aspects of stream ciphers is the
manufacturing of encryption keys. Modern stream ciphers utilize
permutation techniques in the manufacturing of their encryption
keys, for better diversion. Our technique still follows the same
philosophy with some subtle differences in order to achieve much
more solid security that is amenable to mathematical proof.

A permutation describes an arrangement, or ordering, of numbers
[8]. Many algorithmic problems seek the best way to order a set of
objects, including traveling salesman (the least-cost order to visit
n cities), bandwidth (order the vertices of a graph on a line so as
to minimize the length of the longest edge), and graph
isomorphism (order the vertices of one graph so that it is identical
to another). Any algorithm for solving such problems exactly
must construct a series of permutations along the way.

There are n! permutations of n items, which grow exponentially to
generate all permutations. Numbers like these should calm the
urge of anyone interested in exhaustive search and help explain
the importance of generating random permutations.

Fundamental to any permutation-generation algorithm is a notion
of order, the sequence in which the permutations are constructed,
from first to last. The most natural generation order is
“ lexicographic;” the order in which they would appear if they
were sorted numerically. Lexicographic order for n = 3 is { 1, 2,
3} , { 1, 3, 2} , { 2, 1, 3} , { 2, 3, 1} , { 3, 1, 2} , and finally { 3, 2, 1} .
Although lexicographic order is aesthetically pleasing, there is
often no particular reason to use it. Indeed, non-lexicographic
orders lead to faster and simpler permutation generation
algorithms [8] [11].

The generation of random permutations is an important problem
to solve, in order to simplify security algorithms. One way [12] is
the following two-line, linear-time algorithm. We assume that
Random(i,n) generates a random integer between i and n.

26

for i = 1 to n do a[i] = i; // a =[1, 2, ..., n]

for i = 1 to n do swap[a[i] , a[Random(i, n)] ;

It is not obvious that this algorithm generates all permutations
uniformly. However, a security algorithm that is based on such
types of generating permutations might be as secure as harder peer
algorithms, yet the generation process is still linear.

The generation of permutation vectors can be performed
recursively. Given a permutation vector PV, the generation of the
next permutation vector PV` is based on PV and some other
parameter that provides the randomness. In this section, we will
focus on the additional parameter selection, and we will show that
the best-case brute force of such a parameter requires exponential
computation complexity.

Our goal is to generate a large sequence of permutations (or
permutation vectors) such that it is hard to guess their order. In
fact, both communication parties can utilize the shared secret key
(SK) as a “seed” of the random generation process that can be
used in the abovementioned algorithm. Next is our proposed
linear algorithm to generate permutation vectors:

for i = 1 to n do PV[i] = i;

for i = 1 to n do swap[PV[i] , PV[SK[i]] ; // 1 ≤ SK[i] ≤ n

In order to prove that breaking the permutation vectors’
generation is hard, we need to show that given any input
parameters (especially PV and PV`), a cryptanalyst is restricted to
the brute-force option only in order to break the random
permutation order.

TABLE 1: All possible key combinations, for key size n =3

PV PV` All Possible values for SK that permutes
PV to PV`

[1, 2, 3] [1, 2, 3] [3, 2, 1], [1, 3, 2], [2, 1, 3], [1, 2, 3]

[1, 2, 3] [1, 3, 2] [3, 1, 1], [2, 3, 1], [2, 1, 2], [1, 2, 2], [1, 3, 3]

[1, 2, 3] [2, 1, 3] [3, 3, 1], [3, 1, 2], [2, 3, 2], [1, 1, 3], [2, 2, 3]

[1, 2, 3] [2, 3, 1] [1, 3, 1], [1, 1, 2], [2, 2, 2], [3, 1, 3], [2, 3, 3]

[1, 2, 3] [3, 1, 2] [1, 1, 1], [2, 2, 1], [3, 2, 2], [3, 3, 3]

[1, 2, 3] [3, 2, 1] [2, 1, 1], [1, 2, 1], [3, 3, 2], [3, 2, 3]

Table 1 shows that SK (of size n=3) always has possible
combinations greater than or equal to 2n-1. Unfortunately, the time
complexity to verify this result for higher key size values is
exponential with respect to n. Yet, it can be proven
mathematically, by induction (out of the scope of this paper), that
for any permutation vector PV of size n+1 and one of its possible
permutations PV`, there are at least 2n different keys SK that
permutes PV to PV`, given that for any permutation vector pv of
size n and one of its possible permutations pv`, there are at least
2n-1 different secrete keys sk, of size n, that permutes pv to pv`.

4.3 SDES Implementation
Based on the above security design guidelines where we explored
the main advantages of our system over existing peers, we can
confidently state that our system is the most amenable for
deployment in the wireless domain. Our system is fast since it is

based on non-IV stream ciphers, yet it maintains a very solid
security, as shown above. Such a property lends itself easily to the
wireless domain where security is much needed (broadcast
system), yet resources are more limited than in the wired domain.

Our Synchronous Dynamic Encryption System (SDES) is a stream
cipher crypto system based on permutation vector generation. In
order to maintain the highest level of security and avoid as much
vulnerability as possible, our mechanism minimizes the key
exchange process between supplicants (SUP) and access points
(AP), as well as the authentication server (AS), in the wireless
domain. The main idea is to keep mobile users and the AS/AP in
synch at all times, with respect to the secret and encryption keys.
Unless a node (SUP/AP) is pre-registered with the AS, it is nearly
impossible for a non-member node (e.g., intruder) to have the
same corresponding synchronized dynamic secret key that is
maintained at the AS. The only explicit node identity verification
is carried out once, at the time of the node’s first registration with
the AS. Any subsequent authentication is implicitly processed,
without the overhead of securely exchanging plain keys.

In our system, there are two types of dynamic keys: secret
authentication keys (SAK) and secret session keys (SSK). The AS
is responsible for generating an initial SAK for every registered
station (SUP/AP). Upon securely receiving the initial SAK from
AS, the station and the AS use the shared SAK for any subsequent
mutual authentication. In case of SUP-AS authentication, once the
SUP is initially authenticated by the AS, the AS forwards the
SUP’s SAK to its associated AP.

On the other hand, the SSK is generated per any communication
session between APs, and SUPs as well, for the duration of the
session only. In case of an AP-to-AP session, the generation and
delivery of the initial SSK is securely generated and carried out by
the AS. However, when two supplicants request a secure
communication, the AP associated with the source SUP is
responsible for generating a SSK and sends it securely to both
supplicants. Recall that both SAK and SSK are shared keys; they
are involved in the process of shuffling permutation vectors that
are used for encryption.

4.4 Encryption/Decryption
The encryption function is simplified in order to minimize the
overhead cost at the authentication stage. Thus, a simple XOR is
performed between the data record dt and the corresponding
generated permutation vectors PVt, resulting in a cipher ct to be
transmitted. The decryption function is performed in the same
manner of the encryption function. The cipher record ct is XORed
with the same corresponding permutation vector PVt (generated at
the recipient side) producing the original data record dt. Both
communication parties generate a new permutation vector (PVt+1),
based on SAK/SSK, to be used in the next encryption/decryption
operations, synchronously.

4.5 Key Management
The SAK and SSK each serve as a seed of permutation to generate
a stream of encryption permutation vectors. There are three modes
to regenerate these keys that tune between different levels of
security and corresponding efficiency.

27

4.5.1 Static shared keys
This option provides a low security profile. The secret key is a
“sitting duck” at both communication parties, which makes it
vulnerable to key compromising attack. Furthermore, the
permutation vectors generation might lead to a constant stream of
keys (PV and PV` are identical), which results in breaking our
system using the “known plaintext-ciphertext” attack. However,
prolonged experimentation failed to realize the above case
(running an experiment for one month, the obtained PV`[i] was
always different than PV[i], 1� i �n). The clear advantage of such
a mode is the elimination of the secret key management.

4.5.2 Stream of shared keys
In order to alleviate the static security problem, a second option is
to modify the shared key after each data record encryption, for a
dynamic key generation. Hence, the implementation of the shared
key management process is as follows.

for i = 1 to n do SK[i] = (SK[i] + PV[i]) modulo n

Then, the shared key is not as easy a target for cryptanalysts, as in
the above mode. Moreover, experimentally, the shared key
generation is not vulnerable to “biased byte” analysis since the
involved permutation vector is a good source of byte diversity.
Hence, the increase of security costs only one addition operation.
Moreover, it is possible to generate a stream of keys in advance
(offline), speeding up the process of secure communication.
However, in case of opening more than one session between the
same two authenticated clients, all sessions generate the same
stream of shared keys, lacking security independence: breaking
one session breaks all.

4.5.3 Dynamic stream of shared keys
For ultimate security, the communicated data is involved in the
shared key generation, as a third mode. The new shared-key-
management process is as follows:

for i = 1 to n do SK[i] = (SK[i] + PV[i] + d[i]) % n;

The idea behind involving the data is to provide a different set of
generated shared keys for different sessions (assuming that they
are of different data to communicate), eliminating the second
option security violation above. In addition to the permutation
vector, the incorporation of the data in the key management
process adds another dimension of diversity, increasing secret key
entropy. Another big advantage is that the data integrity is
equivalent to the key integrity; i.e., if the communicated cipher is
altered, the generated shared keys at both sender and recipient
sites will missynchronize. The price of the additional security and
advantageous data integrity is the infeasibility of the efficient
offline generation of keys, and two extra addition operations.

4.6 Authentication
At the network initialization stage, all APs go through a
registration process authenticating themselves with the AS (once
in their life cycle). Then, every AP is authenticated with its
neighboring APs via the AS that generates and transmit a private
SSK to each pair of authenticated APs. When a supplicant joins
the network, with the pair (MAC1, SAK) installed in its wireless
card, it sends a first-authentication request to its local AP. The AP

1 Mac address

forwards the SUP’s request to the AS in order to authenticate the
supplicant, and transfer its newly generated SAK back to the AP.
Figure 1 explains in detail the protocol sequence of the supplicant
initial authentication.

Notice that the SUP authentication with the AS is done only once;
subsequent authentications are performed directly with the
associated AP. Only in case a supplicant remains out of range
with its AP for long time, would it need to reauthenticate with the
AS again.

4.7 Handover
When the communication signal between the supplicant and its
currently associated AP (say AP1) gets weak, the supplicant roams
for another AP (say AP2) of stronger signal. Then, the supplicant
sends a handover request to AP1 including AP2’ s info. Usually,
AP1 and AP2 are adjacent and wired; therefore, they are already
preauthenticated to each other via the AS. Following the rule of “a
trusted by a trusted is trusted,” AP1 sends a secure handover
request to AP2 including the supplicant’s authentication
information. This AP-AP communication is secured via their
private shared SSK. Then, AP1 sends a secure “ integrity check”
message to the supplicant in order to check the previously
received data integrity. Figure 2 explains in detail the protocol
sequence of the handover process.

1. SUP→AP : SUP requests a secure connection by generating a
nonce N and sending (MAC, E(N|N)) to the AP.

2. AP→AS : AP forwards (MAC, E(N|N)) to the AS.
3. At the AS : Search for the local SAK corresponding to the

received MAC and decrypt E(N|N). If the decrypted
two nonces are different, abort.

4. AS→AP : AP sends the supplicant’s SAK, encrypted with
AP’s SAK.

5. AP→SUP :AP encrypts N using the received supplicant’s DAK,
and send E(N) to the supplicant.

6. At the SUP : SUP decrypts E(N) using the local SAK. If N ≠
D(E(N)), abort. Otherwise, the supplicant is mutually
authenticated with AP.

E(N|M) represents the encryption of the concatenation of N and M

Figure 1: Initial authentication between the supplicant
and the access point.

1. Initialization: Triggered by a weak signal from the current AP
(AP1), the SUP starts roaming for another AP with a
stronger communication signal (say, AP2).

2. SUP→AP1 : SUP securely sends a handover request including
AP2’s info.

3. AP1→SUP : AP1 securely sends an “ integrity check” message,
and verifies the integrity of the previously sent data.

4. AP1→AP2 : AP1 securely sends the SUP’s SAK (integrity
verified one) to AP2.

5. AP2→SUP : AP2 initiates the authentication procedure (no need
to communicate with the AS).

Figure 2: The seamless secure handover of the supplicant.

28

4.8 Integr ity
In SDES, altering communicated data records would propagate to
the remaining decrypted data, interfering with the key-key
synchronization, since the key regeneration is a function of the
altered data. In a highly vulnerable environment, error detection
and/or correction could be accomplished using checksum,
incurring extra bytes (bandwidth) of permanent overhead. The
SDES introduces a much more flexible and powerful mechanism
to replace the checksum-like mechanisms where errors are
detected via key missynchronization.

Our system divides each session into sections of size R records,
with R-1 data records and a duplicate of the last record. The
receiver validates the integrity of the entire section by simply
verifying the equality of the last two received data records,
ignoring the duplicate record. If an integrity violation is detected,
the sender needs to encrypt and retransmit the previous R data
records, which may degrade the performance of our mechanism in
hostile environments. Still, an advantage of our mechanism is the
flexibility of adjusting R based on the environment hostility.

Hence, the communication throughput is (R-1)/R, approaching
99% for large R, in a peaceful environment, whereas the
efficiency of other mechanisms that utilize CRC is about 80%
(e.g., in 128-block ciphers, using 32-bit CRC field). Moreover,
our mechanism has the huge advantage of detecting many more
violations, such as cipher shuffling, injection, and deletion and
session hijacking. Other mechanisms will incur a huge overhead
(e.g., adding CBC mode) in order to protect against the same set
of cipher attacks.

In hostile environments, our mechanism tunes R based on the
violation probability. Let p be the probability of violating the
integrity of one transmitted cipher. In order to analyze the
successful transmission of R records (R-1 regular data records,
and one record for integrity checking process), we need to
calculate the expected value of the total transmitted and
retransmitted records in function of p and R.

5. SIMULATIONS
We designed a wireless network simulator that implements several
security models in a wireless infrastructured environment. The
simulator was developed using Java Development Kit JSDK
1.5.0. In addition, a very useful library of generating random
variable of different distributions was downloaded and added to
the kit (refer to [10] for more detail of the Renesys Raceway
educational version).

In order to truly demonstrate the performance of every technique,
we preferred to limit the number of access points, network bottle-
neck, to two. Also, the wireless area is limited to a dimension of
100 × 100 (unit2), with 256 wireless nodes that are confined to
move in that area, each with a maximum velocity of 5 (units/sec).

For more accurate results, we chose 12 different probability
distribution scenarios for packet generation rates, with a mean
m = 50 msec, to ensure reasonable utilization of resources. These
distributions include:

1. The fixed rate m.

2. The Uniform distribution, with packet rates ranging
between 0 and 2m.

3. The Exponential distribution, with λ = 1/m.

4. The Beta distribution, with two scenarios: (α = 0.5, β = 0.7)
and (α = 0.7, β = 0.5).

5. The Gamma distribution, with two scenarios: (α = 0.5,
λ = 1/m) and (α = 2, λ = 1/m).

6. The Normal distribution, with the mean m.

7. The Pareto distribution, with K = 1/m, and α = 1.0.

8. The Pareto2 distribution, with K =1.0, and α = 1/m, and
µ = 1.0.

9. The CHI-Square distribution, with freedom = m.

10. The Logarithmic distribution, with probability = 0.85.

In addition, the simulator challenges the security technique in
question with different integrity violation rates. In fact, the
simulator alters the outgoing packet randomly, following a
uniform distribution.

Our simulator implements the three security models WEP, CCMP,
and SDES including their confidentiality, authentication and
integrity checking mechanisms. Each experiment is run 20 times,
with a simulation confidence of 96.37% ± 1.78%.

�

� ����

� �����

� � ����

� �����

� � ����

� �
� �
	

� �

 �

 � �
�

� �

 �
� �
� �
�
 �
� �
�

� �

 �
� �
� �
�
 �
� �
�

� �
�
�
� �
��
� �

 �
� �
�

� �
�
�
� �
� �

 �
� �
�

� �
� �
� �
� �
�

� �
� �

 �
� �
�
 �
�

� �
� �

 �
� �
� �
�

�
 �
�
 �
�

� �
� �
 !
" �
� �
� �
�

�
$ �
� �

% �
� & �
��
' �
�

()
� * �
� �
� �
�
 �
�
�

+ �
, �
) �
)

� �
� � �
� �
�

��� � � � � ���	� �
����

� �
� �
�� �
�
����
� �
� �
��
�

� � - �

. + �

 / +
 � �
 0
 � �

 / +
 � �
 0
 � ��

 / +
 � �
 0
 � ��

The first set of experiments targets the efficiency of every security
model in a network that is considered to be very immune to
integrity violations. The experiment results (Figure 3) shows that
SDES outperformed both the fast WEP and the secure CCMP in
terms of throughput. Moreover, when a higher round size of
integrity checking process (R) is selected, a better performance
was achieved, as we have expected in the above section analysis.

In the second set of experiments, we challenged the simulated
systems with an integrity violation rate of 0.001%. The
experimental results (Figure 4) show that SDES still outperformed
both WEP and CCMP in terms of useful throughput. Also, when a
higher round size of integrity checking process was selected, a
better performance was achieved.

Figure 3: Different secur ity mechanisms’ throughputs
with no integr ity violations.

29

�
� ����

� �����
� � ����

� �����
� � ����

� �
� �
	

� �

 �

 � �
�

� �

 �
� �
� �
�
 �
� �
�

� �

 �
� �
� �
�
 �
� �
�

� �
�
�
� �
��
� �

 �
� �
�

� �
�
�
� �
� �

 �
� �
�

� �
� �
� �
� �
�

� �
� �

 �
� �
�
 �
�

� �
� �

 �
� �
� �
�

�
 �
�
 �
�

� �
� �
 !
" �
� �
� �
�

�
$ �
� �

% �
� &
� �
� '
� �

()
� * �
� �
� �
�
 �
�
�

+ �
, �
) �
)

� �
� � �
� �
�

��� � � � � ���	� �
����

� �
� �
�� �
�
����
� �
� �
��
�

� � - �

. + �

 / +
 � �
 0
 � �

 / +
 � �
 0
 � ��

 / +
 � �
 0
 � ��

6. CONCLUSION
A novel approach of stream cipher key management is introduced
in this paper. It possesses the high speed of stream ciphers, while
maintaining a high level of security that compels the intruder to
brute-force a large key space with a time complexity of Ω(2n).
Unique to our approach is its recursive generation of a secret key
per each record (different from the encryption key), involving the
data and the encryption key; this led to a flexible and much more
efficient data integrity mechanism compared to other, peer
techniques. Moreover, the encryption key is recursively generated
via a simple permutation based on the secret key, which led to the
above exponential complexity. Hence, our security system revives
the misimplementation of the stream ciphering concept, from the
insecure WEP to the inefficient TKIP.

Simulation results showed that our mechanism has dramatically
enhanced network throughput; up to fourfold compared to peer
wireless security mechanisms. In addition, the dynamics of our
data integrity checking process showed much higher protocol
efficiency even with a considerable degree of environment
hostility. Based on the obtained results, our protocol is the most
amenable to be deployed in the wireless domain, which aids in
providing quality of service in a secure network environment.

7. REFERENCES
[1]A. Menezes, P. Van Oorschot and S. Vanstone, Handbook of
Applied Cryptography. CRC Press, Inc. 1997.

[2] Se Hyun Park, Aura Ganz, Zvi Ganz. “Secure Protocol for
802.11 Wireless Local Area Network” . Mobile Networks and
Applications, September 1998, Volume 3 Issue 3

[3] L. M. S. C. of the IEEE Computer Society. Wireless LAN
medium access control (MAC) and physical layer (PHY)
specifications. IEEE Standard 802.11, 1999 Edition, 1999.

[4]http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html
(Insecurity of the WEP algorithm).

[5] Dell Inc. “Wireless Security in 802.11 (WI-FI) Networks” .
Dell White Papers, January 2003.

[6] Rick Wash, Lecture Note on Stream Ciphers and RC4.
http://www.crimelabs.net/docs/stream.pdf , unpublished.

[7] Knudsen, L., Meier, W., Preneel, B., Rijmen, V.,
Verdoolaege, S. “Analysis method for (alleged) RC4”. In Ohta,
K., Pei, D., eds.: Advances in Cryptology, Proc Asiacrypt '98.
Volume 1514 of LNCS., SpringerVerlag (1998)

[8] A. Nijenhuis and H. Wilf. “Combinatorial Algorithms for
Computers and Calculators.” Academic Press, Orlando FL,
second edition, 1978.

[9] Jesse Walker, “802.11 Security Series, Part II: The Temporal
Key Integrity Protocol (TKIP),” Network Security Architect,
Platform Networking Group Intel Corporation. (refer
http://cedar.intel.com/media/pdf/security/80211_part2.pdf)

[10] Renesys Raceway. “Java Package for Random Variable
Generations: Educational Version” .
https://gradus.renesys.com/exe/Raceway

[11] S. Skiena. “ Implementing Discrete Mathematics.” Addison-
Wesley, Redwood City, CA, 1990.

[12] R. Sedgewick. “Permutation Generation Methods.”
Computing Surveys, 9:137-164, 1977.

[13] Communication of the ACM: Wireless Network Security.
Vol. 46, No. 5, May 2003.

[14] Adam Stubblefield, John Ioannidis, Aviel D. Rubin. “A key
recovery attack on the 802.11b wired equivalent privacy protocol
(WEP).” ACM Transactions on Information and System Security
(TISSEC), May 2004.

[15] Nikita Borisov, Ian Goldberg, David Wagner. “ Intercepting
mobile communications: the insecurity of 802.11” . Proceedings of
the 7th annual international conference on Mobile computing and
networking. July 2004.

[16] Yasir Zahur, T. Andrew Yang. “Wireless LAN security and
laboratory designs.” Journal of Computing Sciences in Colleges,
January 2004.

[17] Nancy Cam-Winget, Russ Housley, David Wagner, Jesse
Walker. “Wireless networking security: Security flaws in 802.11
data link protocols.” Communications of the ACM, May 2003.

[18] Bob Briscoe, Ian Fairman. “Nark: receiver-based multicast
non-repudiation and key management” . Proceedings of the 1st
ACM conference on Electronic commerce. November 1999.

[19] Eli Biham, Michel Boyer, P. Oscar Boykin, Tal Mor, Vwani
Roychowdhury. “A proof of the security of quantum key
distribution (extended abstract).” Proceedings of the thirty-second
annual ACM symposium on Theory of computing, May 2000.

[20] Phillip Rogaway, Mihir Bellare, John Black, Ted Krovetz.
“Cryptosystems: OCB: a block-cipher mode of operation for
efficient authenticated encryption.” Proceedings of the 8th ACM
conference on Computer and Communications Security.
November 2001.

Figure 4: Different secur ity mechanisms’ throughputs in
a hostile environment (violation probability = 0.001%).

30

