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Abstract

A goal of the multicenter European Cooperation in Science and Technology (COST)

action MYO-MRI is to optimize Magnetic Resonance Imaging Texture Analysis (MRI-TA)

methods for application in the study of muscle disease. This paper deals with

recommendations on the optimal methodology to collect the MRI data, to analyse

it via texture analysis and to make conclusions from the resultant texture parameter

data. A full and detailed description is provided with respect to MR image quality

control, sequence choice, image pre-processing, region of interest selection, texture

analysis methods and data analysis. A series of conclusions are presented.
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Review

Texture of an image region can be defined as describing the spatial relationship of

pixel (or voxel) grey shades within that region. It was established in the 1970s [1] that

textures could discriminate image regions and that high order properties not accessible

to visual appreciation could be detected via computer analysis. Originally, the applica-

tion was in aerial and geological image interpretation but, since then, there has been

an expansion of application into many diverse fields.

Texture analysis (TA) of MR images has been demonstrated to be of clinical value in

a wide range of situations [2]. This includes the brain, the liver, the kidney, the breast,

the prostate, bone but also muscle [3-6]. There are also some other pre-clinical results

in muscle MRI-TA [7-10]. All these results are presented in the First of these joint

papers.

This article presents a series of recommendations for performing such MRI TA mea-

surements in vivo for muscle and for analyzing and interpreting the results.

Fundamentally, texture analysis deals with regions of an image and often these are

user defined as regions of interest (ROIs) for 2D TA, and volumes of interest (VOIs) for

3D TA; example applications and results from initial 3D MRI-TA have already been

published [5]. The ROIs may be drawn to encompass single tissue types or placed on

the image as simple squares/cubes or circles/spheres. Studies that use texture proper-

ties can distinguish changes as a disease, for example, progresses but must be trained

to know what the significance of the change is against a gold standard eg. Pathology. A
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very wide range of TA procedures have been developed, providing many possibilities

for investigation in different studies.

Preliminary MRI quality assessment

Quality assessment of MR imaging equipment has been widely developed over the last

twenty years [11-15]. Techniques exist based on the use of test objects, which allow the

measurement of the parameters of importance in ensuring a constant quality of im-

aging performance. Without a systematic programme of quality assessment it is impos-

sible to ensure that diagnostic usefulness will be maintained. This is particularly the

case when quantitative measurements (such as texture analysis) are attempted on a re-

peated basis over a period of time.

For the purposes of texture analysis the following quantities are the most important

to assess: Firstly signal-to-noise, secondly spatial resolution, and thirdly image uniform-

ity. Additionally it is useful to assess image contrast (dependence on relaxation time

variation) and it is also possible to construct texture test objects. There are well estab-

lished test object methods for investigating these parameters. Before commencement of

a TA study a baseline of such measurements should be established. During the study

regular checks of these parameters should be made and significant changes addressed.

The signal-to-noise (SNR) of an MR system is most easily assessed through the use

of a flat field test object. The simplest technique is to place a square or circular ROI

within the image of the test object (see Figure 1) and calculate the mean and standard

deviation of the pixel values within it. The Ratio of Mean to Standard Deviation gives a

measure of SNR.

However, it is common practice now that it is better to acquire two images under

identical conditions (Figure 2) and subtract the two to determine the noise within the

same ROI. This procedure removes the influence of image uniformity on the result.

Figure 1 An MR image of a flat field test object (Eurospin TO1) showing a possible choice of circular

ROI to calculate a signal-to-noise measure.
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The SNR is then calculated as √2 times the ratio of the Mean in the signal image di-

vided by the standard deviation in the subtracted image. The problem with this can be

the ability to calculate subtracted images or the standard deviation on the MRI scanner

console.

The image uniformity (or homogeneity) can be assessed through use of the same flat

field test object. Homogeneity may vary dependent on the precise MR imaging strategy

used and this may affect texture results dependent on the normalisation strategy

implemented.

It is common in modern scanners for image processing filters to be applied to im-

prove the image uniformity so it is important to be consistent in the application of such

filters during any study. Users may need assistance from equipment manufacturers to

determine (or alter) the filters in use. Further, it is important to be sure that scanner

software upgrades do not alter these filters and again the assistance of manufacturers is

required. Quantitation of the uniformity may be done through the use of profiles drawn

across these images. It is necessary to use horizontal and vertical profiles since there

may be variation between the frequency encoding and phase encoding directions.

The spatial resolution can be investigated through the use of a test object that in-

cludes bar patterns (see Figure 3) with appropriate spacings. The Eurospin TO4 [12] is

illustrated in Figure 3.

The resolution of the MR system should be determined by the field of view divided

by number of pixels in the image matrix. For example a 250 mm field of view and pixel

matrix of 256 x 256 should produce a resolution of just less than 1 mm.

The contrast of MR imaging systems can be investigated through the use of a test ob-

ject such as the Eurospin TO5. This allows the use of 12 glass tubes with varied (but

known) T1 and T2 relaxation times. The tubes contain agarose gels of varying ‘thick-

ness’ (which alters T2) and varying paramagnetic doping (which changes T1). A typical

image is shown in Figure 4. Dependent on the sequence used the contrast obtained will

vary and can be measured and compared with expected values.

It is possible to construct texture test objects using foam materials with agarose gel

filling material. Such a phantom does not completely mimic the structure of muscle

(lack of directional properties) but is useful in testing MRI-TA methods.

In the examples shown in Figure 5, foam with specific porosities of 30, 45, 75 and 90

pores per inch (ppi) was sourced to use in a test phantom (Foam Engineers Ltd.;

Figure 2 Two MR images of a flat field test object (Eurospin TO1) which may be subtracted to calculate

a signal-to-noise measure.
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Buckinghamshire, UK). The foam samples were submerged in tubes filled with a 2%

agarose solution (Sigma Aldrich; St. Louis, MO) held at 70°C. The agarose was doped

with 0.2% Magnevist (Bayer Healthcare; Germany) to shorten T1 relaxation times to

values comparable with those measured in vivo.

It can be seen that there is no visual difference between the four foams in the MRI

image given in Figure 6. Texture analysis could, however, discriminate perfectly be-

tween these foams. That is, a classifier using texture results could discriminate between

the foams with no errors.

Figure 3 An MR image of the Eurospin TO4 test object which allows the assessment of image

spatial resolution.

Figure 4 An MR image of the Eurospin TO5 test object which allows the assessment of image

relaxation time contrast.
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Coils and reconstruction

Since the Signal to Noise Ratio (SNR) is a key feature when designing an MRI protocol,

the choice of the most suited coils is really crucial. Depending on the body part that is

explored several coils configurations can be used, including transmit/receive coils or

separate coils for transmission and reception. This latter configuration is often used

with surface coil to explore muscles around articulations (knee, elbow, wrist, etc.).

These surface coils are an efficient solution to optimize SNR in a small region. Away

from this specific area, the sensitivity of the coil decreases very fast. From the Biot-

Savart law one can consider that the decrease for simple loop coil can be roughly

approximated as 1/z3, z being the distance from the centre of the coil, which may influ-

ence the texture features in the direction of the gradient (Figure 7)

Figure 5 The use of reticulated foam samples to provide image texture variations in MR imaging.

The differing foam samples are inserted in plastic tubes and filled with doped agarose gels. Panels on the

left show close-ups of the actual foam samples and panels on the right show the foams inserted in the tubes.

Figure 6 An MR image of the 4 tube texture test object. There is no visual difference between the tube

images but image texture analysis can discriminate between them perfectly. This object is extremely useful

for studies of how texture results vary with image acquisition changes.
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The extension of this approach is a phased-array coil, which is a combination of mul-

tiple coil elements. These coils provide a better sensitivity than a classical RF coil by

exploiting the individual high sensitivity of each coil element, but the associated sensi-

tivity map is much more complex and involves many image corrections. These more

complex and efficient coils are widely available on clinical systems and are now associ-

ated with parallel imaging acquisition strategies that allows shorter acquisition time for

a given SNR. Once again, image reconstruction is then much more complex and associ-

ated with many (not always editable) options and filters when designing the acquisition

protocol on the MRI console. The knowledge and control of all these parameters is not

straightforward and can induce bias in the context of quantification and biomarker

identification, including texture features.

MRI pulse sequences

The selection of the pulse sequence for MRI acquisition is a key point in the strategy

for MRI-TA. Several tissue MR parameters determine the grey level in each voxel: the

spin–lattice relaxation time T1, the spin-spin relaxation time T2, the spin density N(H)

and the spin displacements (flow and diffusion). Generally for TA the spin echo pulse

sequence has been used but fat suppression may also be used (see below). However, the

interpretation of voxel grey level is highly complex and must be prudently related to

histological changes.

Then the challenge is to develop a pulse sequence potentially able to differentiate

histological changes. For instance, to discriminate other modifications from fat infiltra-

tion, several fat suppression pulse sequence can be used: short-tau inversion recovery

(STIR) [16] has been used to detect muscle edema in DMD though STIR suppresses

the signal of all tissues with a short T1 and not selectively the fat. Another pulse

sequence, chemical shift selected imaging (CHESS) [17] can provide a selective sup-

pression of fat signal and can be combined with a T2 weighted (T2w) imaging [18].

Chemical shift water–fat separation methods such as multipoint Dixon [19] and itera-

tive decomposition of water and fat with echo asymmetry and least-squares estimation

Figure 7 Illustration based on a Brodatz texture (P. Brodatz, “Textures: A Photographic Album for

Artists and Designers”, Dover Publications, New York, 1966) of the sensitivity coil profile. On the left,

the original Brodatz texture. On the right the same texture modified by applying a typical surface coil

gradient. Near the coil, the sensitivity is optimal and consequently SNR is increased, while away from the

coil centre, the signal decreases.
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(IDEAL) [20] separate the water signal from the fat signal using the known phase shift

that occurs due to the different precessional frequencies of fat and water. The IDEAL

method has also been combined with a Carr–Purcell–Meiboom–Gill (CPMG) imaging

sequence to create the IDEAL-CPMG method providing a pair of fat and water decom-

posed images at each echo time; the water-isolated and fat-isolated signals can then be

fitted directly with monoexponential decay curves to measure the T2 of water and the

T2 of fat [21]. If fat is totally suppressed, T2 is then a strict water T2; however, fat is

not often correctly suppressed minimizing the expected difference between T2 (fat +

water) and theoretical water T2. As well, the difference between calculated T2 (the true

T2) image, more difficult to obtain and often more noisy, and a T2 weighted (T2w)

image must not be underestimated [22].

Different pulse sequences, T1w, T2w, fat-suppressed T1w pre and post contrast agent

injection have demonstrated T2w/T1w, T2w and maximal signal enhancement post

contrast agent as the more discriminating parameters in dystrophic dog muscle [23].

The images below (Figures 8, 9, 10, 11, 12) illustrate the results obtained with differing

pulse sequences in the case of axial slices of the thighs of patients with Pompe disease.

Pompe disease is an metabolic disorder which damages muscle and nerve cells

throughout the body. It is caused by an accumulation of glycogen in the lysosome and

manifests itself through muscle weakness. Muscle texture is affected by this change to

tissue structure.

As muscle stiffness is modified in dystrophy, its in-vivo measurement could be rele-

vant. An MR in-vivo method initially proposed in a paper submitted in 1994 and pub-

lished in 1995 [24], later called Magnetic Resonance Elastography (MRE) [25], has been

tested [26]. However, the low resolution which is obtained in MRE make the images

without great interest for MRI-TA.

Another MRI method, diffusion tensor imaging (DTI), can provide some geometrical

information on fiber size and orientation in muscle dystrophy, as also can MRI-TA

[27]. However, DTI in muscle dystrophy is not relevant if the modification caused by

the disease is a larger distribution of fibre sizes but with approximately the same mean

value, and furthermore the images can be artefacted by fat infiltration.

Figure 8 MR image of the thighs of a patient with Pompe disease – T1 weighted.
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In summary, the MR pulse sequence selection for MRI-TA has first to take into ac-

count the relevance to histological variations, which are not the same during a disease

evolution. The total acquisition time is also important, especially with human patients

without anesthesia, but is determining for signal-to-noise ratio (SNR) and consequently

to spatial resolution: the voxel size (pixel surface x slice thickness) is important; it must

be increased to have a better SNR and decreased to have more texture information.

Fortunately, as muscle fibers are oriented in a same direction, the slice thickness can be

increased if the slice selection is transverse in reference to the main fibers orientation.

Preprocessing (normalization, dynamic range)

In order that TA measurements may be comparable between MR systems (or between

different systems) it is necessary to consider whether the image data should be normal-

ised in some manner. Raw image data coming from the scanner will be subject to varia-

tions in the electronic gain of the receiver and so the first order amplitude of the image

Figure 9 MR image of the thighs of a patient with Pompe disease – T2 weighted.

Figure 10MR image of the thighs of a patient with Pompe disease – T2 weighted with fat saturation used.
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(brightness) may vary. Further the range of grey shade values (contrast) may also vary.

Usually the user has no control over the receiver gain, as this setting is automatically

set by the scanner software, during set up.

There are many possible approaches to such a normalisation procedure [28]. One

common option is to constrain the histogram of the ROI under consideration to a con-

stant image mean and maximum variation of plus and minus 3 times the standard devi-

ation of the pixel values. This is done by adjustment of the software gain and baseline

value.

Another matter of great importance in setting up the TA procedure is the number of

bits within the image data (dynamic range). It is common in modern MR equipment

for the signal data to be digitized to at least 16 if not 24 bits. For several of the com-

mon TA procedures eg calculation of the co-occurrence matrix it is undesirable to

proceed with this number of bits in the image matrix. This is for two reasons viz. firstly

computational complexity is somewhat increased and secondly a resultant sparseness

Figure 11 MR image of the thighs of a patient with Pompe disease – water map via 3 point

Dixon technique.

Figure 12 MR image of the thighs of a patient with Pompe disease – fat map via 3 point Dixon

technique.
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of the resultant co-occurrence matrix, which leads to a sensitivity to noise. A common

choice is a reduction of the number of bits in the image to 6 or 8 bits simply by rescal-

ing [29].

Signal-to-noise variations between scanners (different field strengths or receiver char-

acteristics) will also potentially alter texture results. In order to equalize results it may

be necessary to consider variation of the NEX (averaging) during acquisition. Increasing

NEX obviously increases acquisition time, which in clinical situations, is undesirable.

Window sizing and shaping issues

In the case of TA studies of muscles a choice has to be made between utilising auto-

matic segmentation methods [30] or manual segmentation. As suggested by several au-

thors, the MRI-TA results are often hampered by lack of robust automated muscle

segmentation methods [31]. Manual segmentation by the same ‘expert’ allows better

comparisons between texture methods but automated methods are more desirable for

clinical use. This issue is still unresolved and requires further work.

There are a number of considerations that determine the choice of Region-of-Interest

(ROI) windows for estimating texture features such as the objectives pursued, the na-

ture of the texture and the methods applied for their characterization. The options we

have are either geometrical shapes (square or circle windows in 2D, cube or sphere in

3D) or free-form 2D/ 3D shapes (obtained by means of a prior segmentation). These

questions are briefly surveyed in this section.

Texture features may be used as a component contributing to automatic object seg-

mentation. In such case, they are combined with edge information in order to improve

the extraction results. They are aimed at differentiating the inside from the outside

properties of the regions/volumes of interest. Rough estimations of simple features (e.g.

first order statistics of image intensities) over geometric windows with small preset

sizes are often used. A similar situation is encountered when tracking objects or regions

over time like in image sequences. However, if the motion involves also object/region

deformations (affine transformation, for instance), invariance of texture features to

these deformations should be considered.

Although segmentation, tracking and deformation are of relevance in medical im-

aging, the main goal remains to precisely characterize the underlying tissue

organization and its functional behavior. Such characterization is supposed to be effect-

ive in discriminating normal and diseased tissues and needs a large enough number of

pixels. Unfortunately, the anatomical structures of interest correspond in general to

small-sized objects and have complicated shapes. Geometric windows (as mentioned

above) can be interactively placed by the expert. They can also be automatically defined

if a prior segmentation has been performed, the size and place of the window being de-

termined by avoiding contour/boundary pixels. However, a manual delineation is often

required to extract the target tissue structures in the images. This delineation is not

error-free and may involve several experts for cross-validation. This manual interaction

becomes highly time-consuming when performed on all the slices of concern. Despite

the fact that we have access to the 3D information, e.g. the right dimensional space to

work into for tissue texture, in most cases only 2D processing is carried out due to the

poor resolution in thickness and between slices. It is also the case that true 3D image
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acquisitions are extremely time consuming and are unlikely to be practical in a clinical

setting. Parallel encoding techniques with gradient echoes do allow 3D acquisitions but

this has not, so far, been tested in conjunction with MRI-TA.

In addition, the classical views applied to the nature of textures (structured versus

random) may fail to capture the complexity of tissue textures. To get reliable descrip-

tive parameters in the case of structured texture, the window size must be set according

to the periodicity of the pattern. Such pattern is not frequently observed in medical im-

aging. High order statistical parameters computed in the case of random texture

require enough pixels to reduce the potential biases. Texture mixtures may also com-

plicate the feature estimations and increase the number of pixels needed. The inherent

presence of noise is another critical issue. Noise refers to the intrinsic property of the

imaging device and to the interaction between physical waves and tissues. Here too,

Gaussian and Laplacian distributions of noise are widely assumed for the definition of

samples (e.g. pixels) but are far from being verified in practice.

Summarizing, window sizing and shaping are driven by the data acquired, the nature

of the texture, the noise level and type, the texture methods applied and the target we

have. Compromises must be carefully examined. Local windows with predefined sizes

and shapes, either sliding or not according to the extent of the regions of interest, are

most often used. They must have enough pixels in order to get accurate texture feature

estimates. 3D TA requires a greater number of voxels not always compatible with the

size of the clinical area under examination. For instance, there are nearly 30000 voxel

of 1 mm3 in a VOI of 31×31×31 mm. High-order statistics are more sensitive to noise

and must be carefully handled. Global windows or bounding boxes of the regions of

interest represent another solution but require consideration of proper methods to sep-

arate texture from shape.

Overview of the different TA methods

The following describes the various options for methods to investigate the texture

properties of digital images. The general categories of the methods are statistical, filter

based and model based. Many of the methods can be implemented both in 2D and 3D.

Statistical methods

Grey-level histogram (GLH) - based method

This method allows the calculation of first-order features, based only on the distribu-

tion of grey levels (or intensities) of pixels within an analyzed ROI. Such features

provide knowledge on the most and the least occurring grey levels, on the concentra-

tion of the grey levels around their average, or on the degree of asymmetry in their dis-

tribution. Contrariwise, they contain no information on the relationship between

neighboring pixels, on the possible direction of the texture, its structure, and other

properties resulting from these relationships.

Features

Four features are the most frequently obtained from a grey-level histogram:

� Average grey level, mean of grey levels: measure of darkness (or brightness) of the

image. It represents the location of the histogram on the grey-level scale.
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� Variance of grey levels: characterizes the distribution of grey levels around the

mean.

� Skewness: measures of the asymmetry of the grey-level histogram. It expresses a

deviation of the grey-level distribution, compared to a symmetric one. It is equal to

zero for the symmetric histograms, negative for right oriented ones (high grey levels

are more frequent) and positive for a left oriented histograms (more frequent low

grey levels).

� Kurtosis: indicates the relative flattening of the grey-level distribution. It is equal to

zero for a normal distribution. It takes a negative or a positive value for a distribution

whose graph is relatively flat or relatively sharp, respectively.

Autocorrelation (AC) - based method

The correlation between the grey levels of neighboring pixels can be expressed by the

normalized autocorrelation coefficients [32]. It is the function of the vertical (Δx) and

the horizontal (Δy) distance between the considered pixels in pairs, and can be defined

as follows: γ(Δx,Δy) =A(Δx,Δy)/A(0,0). A(Δx,Δy) is the average product of pairs of grey

levels corresponding to all the pairs of pixels belonging to a ROI, and spaced from one

another by a distance (Δx,Δy). To make the autocorrelation coefficient independent of

the image brightness, the grey level mean can be extracted from each grey level before

calculating the above formula.

Features

The normalized autocorrelation coefficients can be regarded as textural features. They

provide information about the spatial relationship between the texture patterns. For

small primitives (texture elements), autocorrelation changes rapidly with change in the

distance between the pixels. For the large primitives, it changes slowly. The presence of

regular patterns makes regular periodic changes in the autocorrelation.

Gradient (G) - based method

The grey-level gradient at a particular image point depends on the differences between

the grey levels of its neighboring pixels, arranged on vertical and horizontal lines inter-

secting at this point. In most cases, a neighborhood of 3 × 3 pixels or 5 × 5 pixels is

considered. The gradient matrix contains the values of the absolute gradient at each

point of the ROI, except for its boundaries.

Features

On the basis of the gradient matrix, the following features can be calculated [33]: mean,

variance, skewness, and kurtosis. Such features allow us to draw conclusions about the

uniformity (homogeneity) or the roughness of the texture. They may also indicate the

presence or absence of edges within the ROI.

Grey-level difference matrix (GLDM) - based method

The method consists in studying the absolute values of differences between the grey

levels of pixels in pairs belonging to a ROI [34]. Four pixel alignment directions, θ (0°,

45°, 90°, and 135°), and different distances, d, between the pixels in pairs can be consid-

ered. The most often, d takes small values. A combination (d,θ) determines the relative

position of pixels composing the pairs to analyze. For a specified combination (d,θ), all

possible absolute differences in grey levels that can be encoded in the image are taken

into account. For each absolute difference, the probability of occurrence of a pair of

pixels with just such a difference in the grey levels is calculated. The probabilities
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sorted in increasing order of corresponding absolute grey level differences form a

vector l(d,θ) = [l0, l1,…,lG-1]
T, where G is the number of grey levels possible to occur in

the image.

If the distances, d, between pixels in the considered pairs are small, compared to the

texture primitives, the grey levels in pairs are quite similar. In this case, the initial com-

ponents of l(d,θ) vector have high values, while the last ones are close to zero. Con-

versely, if d approaches the texture primitives size, the probabilities of small differences

in pixel grey levels are much smaller, and the components of l(d,θ) are more spread

out. Further, if a texture is directional, the distribution of probabilities in l(d,θ) will be

different for different θ values. Conversely, if the texture does not seem to have any

particular directional elements, the distribution of probabilities in l(d,θ) is not signifi-

cantly affected by the θ.

Features

Five textural features can be derived from the l(d,θ) vector. Comparing their values

obtained for different pixel distances and/or pixel alignment directions one can draw

conclusions about the size, the quantity, and the orientation of texture primitives.

� Mean is small for fine textures, when the probabilities of small grey level differences

are high, and it is large for diversified textures giving high probabilities of big

differences.

� Energy or angular second moment is small when all the probabilities in the l(d,θ)

vector are similar (fine textures), and large when some vector components are high,

and others low.

� Contrast or inertia is a measure of intensity contrast between a pixel and its

neighbors. It is equal to zero for a constant image, and reaches high values for

images with extremely differing grey levels.

� Inverse difference moment is the measure of the local homogeneity.

� Entropy is large for the images that are texturally not uniform, when all the

probabilities in the l(d,θ) vector are close to each other. The more the probabilities

in vector are diversified, the smaller is the entropy.

For non-directed textures, features obtained with the same formula, for the same d,

but corresponding to different alignment directions of pixel pairs, θ, can be averaged.

Alike, it is possible to average features calculated for different distances.

Co-occurrence matrix (COM) - based method

A co-occurrence matrix C(d,θ) is also constructed for a given distance, d, between

pixels, still considered in pairs, and a given pixel alignment direction, θ. Each element,

cij (i,j = 0,…,G-1) represents a probability of occurrence in a ROI of a pair of pixels in

which: the first pixel has a grey level i, and the second one – a grey level j [35]. G is the

number of grey levels that can be encoded in an image. A matrix dimension is there-

fore G ×G. Like in the GLDM-based method, four pixel alignment directions and sev-

eral distances between pixels could be considered. In contrast to the previous method,

a COM-based one focuses on all the possible combinations of grey levels in pairs.

Features

Several parameters were initially proposed in [35]:
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� Energy or angular second moment is a measure of homogeneity of grey levels

characterizing the pixels of a ROI. For relatively homogeneous textures, the grey

levels of adjacent pixels are similar. In this case, larger probabilities are associated

with elements located on the diagonal (or very close to the diagonal) of the

co-occurrence matrix, the other matrix elements are close to zero. The energy for

homogeneous textures is greater than for the heterogeneous textures. For the latter

ones – cij probabilities are more uniformly distributed throughout the matrix, and

their values are quite small.

� Contrast or inertia, with a quite large value for heterogeneous regions,

characterized by a strong contrast, and quite small value for homogeneous regions.

� Inverse difference moment or local homogeneity.

� Entropy, that quantifies the degree of randomness of the grey levels in a ROI. Its

value is the highest when all elements of C(d,θ) matrix are equal.

Another parameter, correlation, can be obtained with the mean and standard devi-

ation of the row and column sums of the C(d,θ) matrix.

Some other features can be derived from a vector whose components are the co-

occurrence probabilities for pixels with a determined sum of the grey levels. All pos-

sible sum values are taken into account. The probabilities forming a vector are sorted

in increasing order of corresponding sum values. These features are: sum average, sum

variance, and sum entropy [36]. Taking the absolute differences of grey levels, instead

of their sums, leads to the features already known from GLDM - based method.

Features calculated for different angles, θ, and/or for different distances, d, can be

averaged.

Run-length matrix (RLM) - based method

This method involves counting the number of pixel runs of each grey level, having a

given length [37]. All the lengths that can be encountered in the ROI are considered.

As in the two preceding methods, four pixels alignment directions, (θ), can be taken

into account. The run-length matrix, R(θ), built for a given θ, has G columns. Each col-

umn corresponds to a grey level. In turn, rows of this matrix correspond to all the con-

secutive run lengths. The number of rows, M, is thus determined by the size of the

ROI, and is equal to the maximum length of the pixel run which can exist in a ROI.

The element rmg (r = 1,…,M, and g = 0,…,G) of the matrix R(θ) is the number of pixel

runs of the level g, with the length of m, and oriented in the direction θ.

Homogeneous textures have fairly long pixel runs, while for rough textures, short

runs are the most numerous. The features obtained from the RLM method can give

the information on the orientation of some texture elements, for example – on the

presence of stripes.

Features

The most known features, proposed in the above paper, are: the short run emphasis,

the long run emphasis, the grey level non-uniformity (distribution), the run length non-

uniformity (distribution), and the fraction of image in runs. Two additional parameters

were proposed in [38]: low grey level runs emphasis, and high grey level runs emphasis.

Finally, in [39], a run length entropy was used as a texture feature.
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Filter methods

Laws’ texture energy measures

Laws proposed to transform the images using linear filters [40]. An image filtering con-

sists in assigning a new value (grey level) to each pixel of an original ROI, excluding the

pixels on its borders. For linear filters such a value depends on a linear combination of

the grey levels of the pixels in some neighbourhood of the transformed pixel. The most

often two types of neighbourhood are taken into account: 3 × 3 pixels and 5 × 5 pixels.

The importance of each neighbours contribution to the output pixel value is defined by a

mask, called also a convolution matrix. The masks were designed in order to detect differ-

ent texture elements: ripples, edges, spots.

On the basis of a transformed image, the entropy and several image energy measures

can be calculated.

Model-based methods

Fractal model

Several definitions of a fractal object, as well as several methods of calculating a fractal di-

mension were proposed [41-43]. Benoit Mandelbrot, the creator of fractal geometry, charac-

terized fractals as self-similar objects, whose parts are similar to the whole, and whose

topological dimension is not an integer [44]. The fractal dimension of an object reflects the

extent to which this object fills the space or the rate of its diversity, the degree of irregularity

of the object.

A grey-level image can be considered as a surface in three-dimensional space, where

two dimensions are those of the image plane and the third one is the grey level (inten-

sity) of pixels. In this case, we can use the fractal dimension of image surface as a tex-

ture descriptor. This feature gives a measure of the irregularity, and of the roughness of

the texture. The more a surface is rough, the higher is its fractal dimension.

The fractal dimension of an image (a texture) can be calculated by representing the

intensity surface of an image by a fractional Brownian motion model (see also [36]).

One of its applications for texture feature extraction can be found in [45].

Image landscapes’ fractal dimension (ILF) method

The ILF method is based on constructing from the analyzed 2-D grey level images two

1-D sequences that are called landscapes.

Stepping through a grey value image length of N pixels and height of M pixels row

by row one can calculate the sum of the grey values in each row, Gm (m = 1, …, M),

and dividing these numbers by the largest of them, GR, we obtain the horizontal land-

scape, hgs,

NGSm ¼ Gm=GR ∈ 0; 1½ � m ¼ 1;…;M ð1Þ

where Gm ¼
X

N

n¼1

gmn GR =max(Gm) m = 1,…,M

Similarly, stepping through the same image column by column one can calculate the

sum of the grey values in each column, Gn (n = 1, …, N), and dividing these numbers by

the largest of them, GC, we obtain the vertical landscape, vgs
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NGSn ¼ Gn=GC ∈ 0; 1½ � n ¼ 1;…;N ð2Þ

where Gn ¼
X

M

m¼1

gmn; GC =max(Gn) n = 1,…,N

The landscapes obtained in such a way are then analyzed using Higuchi fractal di-

mension in a sliding window of the length L moved in each step l points (pixels) to the

right. Normalization in (1) and (2) is convenient but not really necessary since Higuchi

fractal dimension is invariant with respect to scaling of the data.

Features

Using ILF method [46] one can obtain the following characteristics of the analyzed image:

� Two (or four) graphs of fractal dimension of the image, along horizontal and vertical

axes; if fractal dimension smoothly fluctuates it means that there are non-

stationarities/discontinuities in the image; in such a case mean fractal dimensions

Dh and Dv are enough to characterize the image.

� Two (or four) mean fractal dimension values – if their values are nearly identical

then it is enough to characterize the surface (its image) using one number, Df – the

average of Dh and Dv; if Dh and Dv differ considerably it means that the surface

(and so its image) shows texture, i.e. has different properties in different directions.

Moment-based methods

These methods belong to the so-called transform methods. They include several fam-

ilies among which complex moments, rotational moments, geometric moments and or-

thogonal moments are the quantities studied [47-49]. Orthogonal moments, such as

Legendre and Zernike moments, present the advantage of being optimal with regard to

information redundancy. To provide some cues on these moments, let us take the ex-

ample of Legendre moments. The two-dimensional (2D) (n +m)th order of Legendre

moment of an image intensity function f(x, y), Lnm, is defined as

Lnm ¼
2nþ 1ð Þ 2mþ 1ð Þ

4

Z 1

−1

Z 1

−1

Pn xð ÞPm yð Þf x; yð Þdxdy ð3Þ

where Pn(x) is the nth order of Legendre polynomial given by

Pn xð Þ ¼
1

2n

X

n=2

k¼0

−1ð Þk
2n−2kð Þ!

k! n−kð Þ! n−2kð Þ!
xn−2k ð4Þ

Since the Legendre polynomials are orthogonal over the interval [−1, 1], the image

f(x, y) (the ROI in most cases) can be reconstructed from its moments. When an

analog original image is digitized to its discrete form, the 2D Legendre moments Lnm

defined by Eq. (3) is usually approximated by

Lnm ¼
2nþ 1ð Þ 2mþ 1ð Þ

N−1ð Þ M−1ð Þ

XN

i¼1

XM

j¼1
Pn xið ÞPm yj

� �

f i; jð Þ ð5Þ

with xi ¼
2i−N−1
N−1

, yi ¼
2j−M−1
M−1

.

Features

The texture features are in such case the estimated coefficients Lnm. The number of fea-

tures depends on the order selected. The low order coefficients capture the low
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frequency components while the high order ones (more sensitive to noise) will provide

details of the image or the ROI under consideration.

Data analysis

Once a series of texture features are extracted it is necessary to determine the useful-

ness of each or combinations of several for a particular classification task. This is often

called pattern recognition or data mining and consists of applying well-developed

methods to determine how the features can be used to classify the data. The overall ob-

jective of the data mining process is to extract information from a data set and trans-

form it into an understandable structure for subsequent use.

There are a large number of methods which can be applied to these problems eg dis-

criminant analysis, principal component analysis, clustering, neural networks etc. etc. It is

not the purpose of this paper to review these in any detail. There are also a significant

number of commercial (or freeware) software packages that are available to help with

these tasks. Examples of these are Weka, SPSS, The Unscrambler, SAS and STATISTICA.

As an example, Weka is a collection of machine learning algorithms for data mining tasks.

The algorithms can either be applied directly to a dataset or called from a users own Java code.

Weka contains tools for data pre-processing, classification, regression, clustering, association

rules, and visualization. It is also well-suited for developing new machine learning schemes.

Using computers for texture segmentation and analysis, both supervised and unsupervised, is

obvious but it raises some questions. The most important question that biomedical researchers

have been asked since computer introduction to the labs is ‘Do you REALLY understand

what your computer calculates?’ Unfortunately, the answer to this question is quite often not

positive. It concerns in particular commercial software when the source code is not given to

the end users and even IT specialists often have problems with understanding the details of

source code written by others. In the case of Biologists and Medical Doctors there is a problem

with interpretation of texture parameters, which have little intuitive meaning.

The second question concerns repeatability of results. One would like that at least

classification of the images from a given series would lead to the same result when re-

peated. But already the problem of choosing the Region(s) of Interest may lead to differ-

ences between researchers. It seems that the whole image is as unbiased as one can get,

any remaining bias originated in how the images were acquired. It was exactly the case in

the application of a fractal method in the analysis of textures of anatomo-pathological

slides for staging in cases of Anal Intraepithelial Neoplasia [46] - some original slides

showed white irregular ‘holes’ but any attempts to analyze ROIs without these holes only

worsened the final results.

The third question concerns very, very important but not well-known so called ‘The

Curse of Dimensionality’. To create a classifier first one needs descriptors for each object

class that can be expressed by numbers. It might seem that to obtain a more accurate

classification, one could add more features, maybe even a few hundred of these features.

But in fact, after a certain point, increasing the dimensionality of the problem by adding

new features would actually degrade the performance of the classifier - as the dimension-

ality increases, the classifier’s performance increases until the optimal number of features

is reached; further increasing the dimensionality without increasing the number of train-

ing samples results in a decrease in classifier performance; this is called overfitting (see

[50]). So, with only a small number of images in the database, it is just intractable to check
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all possible combinations of features in any given method nor to compare different pro-

posed methods of texture analysis to decide which combination or which method is the

best one. Even so called feature extraction methods like Principal Component Analysis,

that reduce the dimensionality of the classification problem, are not always helpful.

In summary, complicated and very specialized methods are good for research studies

(with care over over-interpretation), but if one wants to propose a texture analysis procedure

that could become widely applicable in hospitals and clinics, this should be a rather quite

simple method, based on only a few texture parameters (preferably just one or two), quick

and easily understandable by Medical Doctors. More work is required on this latter point.

Conclusion

The review presented in the sections above leads to the following conclusions. The

important points that must be considered when applying texture analysis to in-vivo

muscles are the following:

1. Quality assessment of the MR imaging system is essential both at the beginning and

throughout any study

2. Careful choice of imaging sequence is required with regard to image resolution,

imaging time and signal-to-noise.

3. Many kinds of texture analysis methods exist. To ensure that the best results are

obtained, a full range of procedures should be investigated.

4. The Regions of Interest used for the texture analysis should not be too small

(>100 pixels in 2D TA)

5. The dynamic range (pixel depth) of the MR images will need to be reduced to allow

practical texture analysis to be carried out. Eight or six bits are recommended.

6. Normalisation of the MR images is essential to remove unwanted variations caused

by receiver gain changes.

7. Care must be taken to avoid over-interpretation of the texture data due to the large

number of texture parameters and the sometimes limited amount of independent

image data available.

8. With all these points taken into consideration, texture analysis carried out on MR

images is capable of providing useful clinical information. Progression of disease

processes can be followed and muscle status assessed.

If attention is paid to all these factors then the published evidence is that texture ana-

lysis of MR data may well be useful in a clinical setting. What is required now is an im-

proved understanding of how the texture results relate to the underlying pathological

changes in tissue and also a good way of presenting the output of the texture analysis

for interpretation by medical specialists.

Abbreviations

2D: Two dimensional imaging; 3D: Three dimensional imaging; B0: Static magnetic field of the mri device (in Tesla);

CFA: Correspondence factorial analysis; DMD: Duchenne muscular dystrophy; GRMD: Golden retriever muscular

dystrophy; I Signal: Intensity; MHz: Mega hertz; MRI: Magnetic resonance imaging; NEX: Number of excitations in MRI

acquisition; NMR: Nuclear magnetic resonance; N(H): Spin density; PCA: Principal component analysis; ROI: Region of

interest; SE: Spin echo pulse sequence; SNR: Signal to noise ratio; TA: Texture analysis; TO: Test object; TR: Repetition

time in MRI acquisition; T1: Spin lattice NMR relaxation time; T2: Spin spin NMR relaxation time; VOI: Volume of interest.

Lerski et al. EPJ Nonlinear Biomedical Physics  (2015) 3:2 Page 18 of 20



Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to the manuscript, which has been finally edited by RAL. All authors read and approved

the final manuscript.

Author details
1Medical Research Institute, Ninewells Hospital, Dundee, Scotland, UK. 2Institute of Myology, University Hospital

Pitié-Salpêtrière, Paris, France. 3Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland.
4Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland.
5Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University,

Nanjing 210096, China. 6Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Nanjing, China.
7INSERM, U1099, Rennes F-35000, France. 8Université de Rennes 1, LTSI, Rennes F-35042, France. 9Centre de Recherche

en Information Biomédicale Sino-français (CRIBs), Rennes F-35000, France. 10PRISM-Bio-SCANs, University of Rennes,

Rennes, France.

Received: 10 December 2014 Accepted: 26 February 2015

References

1. Haralick R. Statistical and structural approaches to texture. IEEE Proc. 1979;67:786–804.

2. Hajek M, Dezortova M, Materka A, Lerski R. Texture Analysis for Magnetic resonance Imaging. Prague: Med 4

publishing; 2006.

3. Biondetti PR, Ehman RL. Soft-tissue sarcomas: use of textural patterns in skeletal muscle as a diagnostic feature in

postoperative MR imaging. Radiology. 1992;183(3):845–8.

4. Skoch A, Jirak D, Vyhnanovska P, Dezortova M, Fendrych P, Rolencova E, et al. Classification of calf muscle MR

images by texture analysis. MAGMA. 2004;16:259–67.

5. Wang J, Fan Z, Vandenborne K, Walter G, Shiloh-Malawsky Y,et al. Statistical texture analysis based MRI quantification of

Duchenne muscular dystrophy in a canine model. Proc. SPIE 8672, Medical Imaging 2013: Biomedical Applications in

Molecular, Structural, and Functional Imaging, 86720 F (March 29, 2013);

6. Nketiah G, Sievanen H, Eskola H. Correlation between hip muscles MRI texture parameters and femoral neck

boneareal bone mineral density (aBMD) in different athletes groups. Phys Med. 2014;30(Supplement 1):e38–9.

7. Herlidou S, Rolland Y, Bansard JY, Le Rumeur E, de Certaines JD. Comparison of automated and visual texture

analysis in MRI: characterization of normal and diseased skeletal muscle. Magn Reson Imaging. 1999;17(9):1393–7.

8. Mahmoud-Ghoneim D, Cherel Y, Lesoeur J, Lemaire L, Rocher C, de Certaines JD, et al. Texture analysis of

magnetic resonance images of rat muscles during atrophy and regeneration. Magn Reson Imaging.

2006;24(2):167–71.

9. Mamhoud-Ghoneim D, Bonny JM, Renou J-P, de Certaines JD. Ex-vivo Magnetic Resonance Imaging Texture Analysis

can identify genotypic origin in bovine meat. J Sci Food Agric. 2005;85:629–32.

10. Nguyen F, Eliat PA, Pinot M, Franconi F, Lemaire L, de Certaines JD, et al. Correlations between Magnetic

Resonance Imaging histopathology in mdx (X-linked Muscular Dystrophy) murine model of Duchenne Muscular

Dystrophy. Edinburgh: 24th congress of the European Society of Veterinary Pathology; 2006.

11. Lerski RA, de Wilde J, Boyce D, Ridgway J. Quality control in magnetic resonance imaging. IPEM Report no 80.

1998. ISBN: 0904181901.

12. European Communities Research Project (COMAC BME II 2.3). Protocols and test objects for the assessment of MRI

equipment. Magn Reson Imaging. 1988;6:195–9.

13. Lerski RA, McRobbie DW, Straughan K, Walker PM, de Certaines JD, Bernard AM. Multi-center trial with protocols

and prototype test objects for the assessment of MRI equipment. Magn Reson Imaging. 1988;6:201–14.

14. Lerski RA, de Certaines JD. Performance assessment and quality control in MRI by Eurospin test objects and

protocols. Magn Reson Imaging. 1993;11:817–33.

15. Jackson EF, Bronskill MJ, Drost DJ, Och J, Pooley RA, Sobel WT, et al. AAPM Report 100: Acceptance Testing and

Quality Assurance Procedures for Magnetic Resonance Imaging Facilities. College Park, MD: American Association

of Physicists in Medicine; 2010. ISBN 978-1-936366-02-6.

16. Bydder GM, Pennock JM, Steiner RE, Khenia S, Payne JA, Young IR. The short TI inversion recovery sequence—An

approach to MR imaging of the abdomen. Magn Reson Med. 1985;3:251–4.

17. Keller PJ, Hunter WW, Schmalbrock P. Multisection fat–water imaging with chemical shift selective presaturation.

Radiology. 1987;164:539–41.

18. Kobayashi M, Nakamura A, Hasegawa D, Fujita M, Orima H, Takeda S. Evaluation of dystrophic dog pathology by

fat-suppressed T2-weighted imaging. Muscle Nerve. 2009;40:815–26.

19. Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity

correction. Magn Reson Med. 1991;18:371–83.

20. Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, et al. Iterative decomposition of water and fat with

echo asymmetry and least- squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med.

2005;54:636–44.

21. Janiczek RL, Gambarota G, Sinclair CDJ, Yousry TA, Thornton JS, Golay X, et al. Simultaneous T2 and Lipid

Quantitation Using IDEAL-CPMG. Magn Reson Med. 2011;66:1293–302.

22. Carlier PG. Global T2 versus water T2 in NMR imaging of fatty infiltrated muscles: different methodology, different

information and different implications. Neuromuscul Disord. 2014;24:390–2.

23. Thibaud JL, Monnet A, Bertoldi D, Barthelemy I, Blot S, Carlier PG. Characterization of dystrophic muscle in golden

retriever muscular dystrophy dogs by nuclear magnetic resonance imaging. Neuromuscul Disord. 2007;17:575–84.

Lerski et al. EPJ Nonlinear Biomedical Physics  (2015) 3:2 Page 19 of 20



24. Lewa CJ, de Certaines JD. Viscoelastic property detection by elastic displacement NMR measurements. J Magn

Reson Imaging. 1995;5:242–4.

25. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by

direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854.

26. Qin EC, Juge L, Lambert S, Sinkus R, Bilston L. MR-Elastography and diffusion tensor imaging to measure the in-vivo

anisotropic elasticity of skeletal muscles of Mdx and healthy mice. Proc Int Soc Mag Reson Med. 2012;20:3269.

27. McMillan A.B., Shi D., Pratt S.J.P., Lovering R.M., Diffusion Tensor MRI to Assess Damage in Healthy and Dystrophic

Skeletal Muscle after Lengthening Contractions, Journal of Biomedicine and Biotechnology, vol 2011, Article ID

970726, 10 pages,

28. Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normalization

methods on texture classification. Magn Reson Imaging. 2004;22(1):81–91.

29. Mahmoud-Ghoneim D, Alkaabi MK, de Certaines JD, Goettsche FM. The impact of image dynamic range on

texture classification of brain white matter. BMC Med Imaging. 2008;8:18.

30. Wang J, Fan Z, Vandenborne K, Walter G, Shiloh-Malawsky Y, An H, et al. A computerized MRI biomarker quantification

scheme for a canine model of Duchenne muscular dystrophy. Int J Comput Assist Radiol Surg. 2013;8(5):763–74.

31. Fan Z, Wang J, Ahn M, Shiloh-Malawsky Y, Chahin N, Elmore S, et al. Characteristics of magnetic resonance

imaging biomarkers in a natural history study of golden retriever muscular dystrophy. Neuromuscul Disord.

2014;24(2):178–91.

32. Gonzalez RC, Woods RE. Image Compression. In: Digital Image Processing. 2nd ed. Reading, MA: Addison-Wesley;

2002.

33. Lerski R, Straughan K, Shad L, Boyce D, Bluml S, Zuna I. MR Image Texture Analysis - An Approach to Tissue

Characterization. Magn Reson Imaging. 1993;11:873–87.

34. Weszka JS, Dyer CR, Rosenfeld A. A Comparative Study of Texture Measures for Terrain Classification. IEEE Trans

Syst Man Cybern. 1976;6:269–85.

35. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern.

1973;3:610–21.

36. Bankman I. N. (Ed.). Handbook of Medical Imaging, Processing and Analysis, Academic Press, 2000.

37. Galloway MM. Texture analysis using grey level run lengths. Comput Graphics Image Process. 1975;4:172–9.

38. Chu A, Sehgal CM, Greenleaf JF. Use of grey value distribution of run lengths for texture analysis. Pattern Recogn

Lett. 1990;11:415–20.

39. Albregtsen F, Nielsen B, Danielsen HE. Adaptive grey level run length features from class distance matrices. Proc

15th Int Conf Pattern Recognition. 2000;3:738–41.

40. Laws KI. Textured image segmentation. Los Angeles, California, USA: Unpublished doctoral dissertation. University

of Southern California; 1980.

41. Edgar G. A. Measure, Topology and Fractal Geometry, Springer-Verlag, 1990.

42. Falconer K. Fractal Geometry, Mathematical Foundations and Applications, John Wiley & Sons, 1990.

43. Peitgen H. O., Jürgens H., Saupe D. Fractals for the Classroom. Part 1: Introduction to Fractals and Chaos,

Springer-Verlag, 1992.

44. Mandelbrot B. The Fractal Geometry of Nature, W. H. Freeman and Co., 1982

45. Chen EL, Chung PC, Chen CL, Tsai HM, Chang CI. An automatic diagnostic system for CT liver image classification.

IEEE Trans Biomed Eng. 1998;45(6):783–94.

46. Klonowski W, Pierzchalski M, Stepien P, Stepien R, Sedivy R, Ahammer H. Application of Higuchi’s fractal

dimension in analysis of images of Anal Intraepithelial Neoplasia. Chaos, Solitons Fractals (Elsevier). 2013;48:54–60.

47. Shu H, Luo L, Coatrieux JL. Moment-Based Approaches in Image, Part 1. Basic Features. IEEE Eng Med Biol Mag.

2007;26(5):70–4.

48. Shu HZ, Luo LM, Coatrieux JL. Moment-based approaches in image, Part2: invariance. IEEE Eng Med Biol Mag.

2008;27(1):81–3.

49. Shu HZ, Luo LM, Coatrieux JL. Moment-based approaches in image, Part 3: computational considerations. IEEE

Eng Med Biol Mag. 2008;27(3):89–91.

50. Vincent Spruyt, About the Curse of Dimensionality, June 6, 2014, http://www.datasciencecentral.com/profiles/

blogs/about-the-curse-of-dimensionality.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Lerski et al. EPJ Nonlinear Biomedical Physics  (2015) 3:2 Page 20 of 20

http://www.datasciencecentral.com/profiles/blogs/about-the-curse-of-dimensionality
http://www.datasciencecentral.com/profiles/blogs/about-the-curse-of-dimensionality

	Abstract
	Review
	Preliminary MRI quality assessment
	Coils and reconstruction
	MRI pulse sequences
	Preprocessing (normalization, dynamic range)
	Window sizing and shaping issues
	Overview of the different TA methods
	Statistical methods
	Grey-level histogram (GLH) - based method
	Features
	Autocorrelation (AC) - based method
	Features
	Gradient (G) - based method
	Features
	Grey-level difference matrix (GLDM) - based method
	Features
	Co-occurrence matrix (COM) - based method
	Features
	Run-length matrix (RLM) - based method
	Features

	Filter methods
	Laws’ texture energy measures

	Model-based methods
	Fractal model
	Image landscapes’ fractal dimension (ILF) method
	Features

	Moment-based methods
	Features

	Data analysis

	Conclusion
	Abbreviations
	Competing interests
	Authors’ contributions
	Author details
	References

