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Abstract—This paper concerns the ultrasonic character-

ization of human cancellous bone samples by solving the in-

verse problem using experimentally measured signals. The

inverse problem is solved numerically by the least squares

method. Five parameters are inverted: porosity, tortuosity,

viscous characteristic length, Young modulus, and Poisson

ratio of the skeletal frame. The minimization of the discrep-

ancy between experiment and theory is made in the time

domain. The ultrasonic propagation in cancellous bone is

modelled using the Biot theory modified by the Johnson–

Koplik–Dashen model for viscous exchange between fluid

and structure. The sensitivity of the Young modulus and

the Poisson ratio of the skeletal frame is studied showing

their effect on the fast and slow waveforms. The inverse

problem is shown to be well posed, and its solution to be

unique. Experimental results for slow and fast waves trans-

mitted through human cancellous bone samples are given

and compared with theoretical predictions.

I. Introduction

Osteoporosis is a disease caused by biochemical and
hormonal changes affecting the equilibrium between

the resorption and deposition of new bony tissue [1]. It
leads to modification of the structure (porosity and thick-
ness of trabeculae) and composition (mineral density) of
this material. There has been much discussion of changes
in trabecular pattern due to osteoporosis, but general in-
dications are that the trabeculae grow thinner, possibly
disappearing, and are therefore more widely spaced. Early
clinical detection of this pathology via sound characteriza-
tion would be of fundamental interest.

The primary method currently used for clinical bone as-
sessment is based on X-ray absorptiometry, and measures
total bone mass at a particular anatomic site [2]. Because
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other factors, such as architecture, also appear to have a
role in determining an individual’s risk of fracture, ultra-
sound, as an alternative to X-rays, has generated much
attention [3], [4]. In addition to their potential for convey-
ing the architectural aspects of bone, ultrasonic techniques
also may have advantages in view of their use of nonion-
izing radiation and inherently lower costs, compared with
X-ray densitometric methods. Although ultrasonic meth-
ods [5]–[15] appear promising for noninvasive bone assess-
ment, they have not yet fulfilled their potential. Unfortu-
nately, a poor understanding of the ultrasound interaction
with bone has become one of the obstacles preventing it
from being a fully developed diagnostic technique. Despite
extensive research on the empirical relationship between
ultrasound and the bulk properties of bone, the mecha-
nism of how ultrasound physically interacts with bone is
still unclear.

Since trabecular bone is an inhomogeneous porous
medium, the interaction between ultrasound and bone is a
highly complex phenomenon. Modelling ultrasonic propa-
gation through trabecular tissue has been considered us-
ing porous media theories, such as Biot’s theory [16], [17].
The Biot theory is an established way of predicting ultra-
sonic propagation in an inhomogeneous material and was
originally applied to fluid saturated porous rocks for geo-
physical testing. The Biot model treats both individual
and coupled behavior of the frame and pore fluid. Energy
loss is considered to be caused by the viscosity of the pore
fluid as it moves relative to the frame. The model predicts
that the sound velocity and attenuation in a two-phase
medium will depend on frequency, the elastic properties
of the constituting materials, porosity, permeability, tor-
tuosity, and effective stress. This method should allow us
to relate the physical parameters of our porous medium to
ultrasonic velocity and attenuation. The Biot theory has
been applied to trabecular bone with varying degrees of
success [18]–[24]. This theory predicts two compressional
waves: a fast wave, whereby the fluid (blood and marrow)
and solid (calcified tissue) move in phase, and a slow wave
whereby the fluid and solid move out of phase. McKelvie
[18], [21] predicted qualitatively the dependence of atten-
uation upon ultrasound frequency in cancellous bone; the
attenuation values were of the right order of magnitude,
but did not reproduce the full range of experimental val-
ues observed in natural tissues. However, McKelvie [18],
[21] was unable to predict correctly the trends in ultra-
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sound velocity. Hosokawa and Otani [23] obtained better
results by comparing the theoretical predictions using Biot
theory and experiments for the wave velocities (fast and
slow) than for acoustic attenuation. Williams [19] used a
limited formulation of the Biot theory to calculate veloc-
ities alone and found good agreement for the fast wave
velocity to predict experimental values obtained from tib-
ial and femoral bovine cancellous bone samples. An excel-
lent review of the application of Biot theory to ultrasound
propagation through cancellous bone is given by Haire and
Langton [22].

In this paper, the ultrasonic characterization of human
cancellous bone is investigated using the modified [25]
Biot theory. The inverse problem is solved in the time
domain using experimentally measured signals. Five pa-
rameters are inverted: porosity, tortuosity, viscous char-
acteristic length, Young’s modulus, and Poisson’s ratio of
the skeletal frame. Experimental results are compared with
theoretical predictions, giving a good correlation.

II. Biot Theory

The equations of motion of the frame and fluid are given
by the Euler equations applied to the Lagrangian density.

Here, −→u and
−→
U are the displacements of the solid and fluid

phases, respectively. The equations of motion are [17], [26]

ρ̃11

∂2−→u

∂t2
+ ρ̃12

∂2−→U

∂t2
= P

−→
∇ .(

−→
∇ .−→u ) + Q

−→
∇ (

−→
∇ .

−→
U )

− N
−→
∇ ∧ (

−→
∇ ∧ −→u ), (1)

ρ̃12

∂2−→u

∂t2
+ ρ̃22

∂2−→U

∂t2
= Q

−→
∇ (

−→
∇ .−→u ) + R

−→
∇ (

−→
∇ .

−→
U ),

(2)

where P , Q, and R are generalized elastic constants which
are related, via gedanken experiments, to other measurable
quantities, namely, φ (porosity), Kf (bulk modulus of the
pore fluid), Ks (bulk modulus of the elastic solid), and Kb

(bulk modulus of the porous skeletal frame). N is the shear
modulus of the composite as well as that of the skeletal
frame. The equations that explicitly relate P , Q, and R to
φ, Kf , Ks, Kb, and N are given by

P =
(1 − φ)

(
1 − φ − Kb

Ks

)
Ks + φ Ks

Kf
Kb

1 − φ − Kb

Ks
+ φ Ks

Kf

+
4

3
N,

Q =

(
1 − φ − Kb

Ks

)
φKs

1 − φ − Kb

Ks
+ φ Ks

Kf

,

R =
φ2Ks

1 − φ − Kb

Ks
+ φ Ks

Kf

.

The Young modulus and the Poisson ratio of the solid
Es, νs and of the skeletal frame Eb, νb depend on the
generalized elastic constants P , Q, and R via the relations:

Fig. 1. Experimental setup for ultrasonic measurements.

Ks =
Es

3(1 − 2νs)
,

Kb =
Eb

3(1 − 2νb)
,

N =
Eb

2(1 + νb)
.

(3)

The ρmn are the “mass coefficients,” which are related
to the densities of solid (ρs) and fluid (ρf ) phases by
ρ11 + ρ12 = (1 − φ)ρs and ρ12 + ρ22 = φρf , respectively.
The coefficient ρ12 represents the mass coupling parameter
between the fluid and solid phases and is always negative
ρ12 = −φρf (α− 1), α being the tortuosity of the medium.
To express the viscous exchanges between the fluid and
the structure, which play an important role in damping the
acoustic wave in porous material, the tortuosity α becomes
a function of frequency, called the dynamic tortuosity α(ω)
[25]–[28]. The parts of the fluid affected by this exchange
can be estimated by the ratio of a microscopic character-
istic length of the medium, for example, pore size, to the
viscous skin depth thickness δ = (2η/ωρf )1/2 (η: fluid vis-
cosity, ω: angular frequency). This domain corresponds to
the region of the fluid in which the velocity distribution is
disturbed by the frictional forces at the interface between
the fluid and the frame. At high frequencies, the viscous
skin thickness is very thin near the radius of the pore r.
The viscous effects are concentrated in a small volume near
the surface of the frame δ/r ≪ 1. In this case, the expres-
sion of the dynamic tortuosity α(ω) is given by [25]

α(ω) = α∞

(
1 +

2

Λ

(
η

jωρf

)1/2
)

, (4)

where α∞ is the tortuosity, and Λ the viscous characteristic
length.

For a slab of cancellous bone occupying the region 0 ≤

x ≤ L (Fig. 1), the incident pi(t) and transmitted pt(t)
fields are related in the time domain by the transmission
scattering operator T̃ :
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pt(x, t) =

∫ t

0

T̃ (τ)pi

(
t − τ −

(x − L)

c0

)
dτ, (5)

where c0 is the velocity outside the porous material. For
the linear ultrasound propagation, the transmission op-
erator is independent of the incident signal and depends
only on the properties of the cancellous bone. In the fre-
quency domain, the expression of the transmission coeffi-
cient T (ω), which is the Fourier transform of T̃ , is given
by [26]

T (ω) =
jω2ρfc0F4(ω)

(jωρfc0F4(ω))2 − (jωF3(ω) − 1)2
, (6)

where F4(ω) and F3(ω) are given in Appendix A.
In the next section, we solve the inverse problem and re-

cover the physical parameters describing the propagation,
using the theoretical expression of the transmission coeffi-
cient and the experimentally measured waves propagating
through human cancellous bone samples.

III. Inverse Problem

The propagation of ultrasonic waves in a slab of cancel-
lous bone is conditioned by many parameters: porosity φ,
tortuosity α∞, viscous characteristic length Λ, fluid viscos-
ity η, the Young modulus of the elastic solid Es, the Young
modulus of porous skeletal frame Eb, the Poisson ratio of
the elastic solid νs, the Poisson ratio of the porous skele-
tal frame νb, the solid density ρs, the bulk modulus of the
saturating fluid Kf , and the fluid density ρf . It is there-
fore important to develop new experimental methods and
efficient tools [29] for their estimation. The basic inverse
problem associated with the slab of cancellous bone may be
stated as follows: from measurements of the signal trans-
mitted outside the slab, find the values of the medium’s
parameters. Solving the inverse problem for all of the Biot
parameters using only the transmitted experimental data
is difficult, if not impossible. To achieve this task requires
more experimental data for obtaining a unique solution.
For this reason, in this contribution we limit the inversion
to the five parameters: Eb, νb, φ, α∞, and Λ. In a previous
paper [26] we reported the sensitivity of transmitted wave
forms to variations of Eb, νb, φ, α∞, and Λ. The solution
of the direct problem involves the transmission coefficient
expressed as a function of the physical parameters. The
inversion algorithm for identifying the values of the slab
parameters in the transmitted mode is based on the proce-
dure: find the values of the parameters Eb, νb, φ, α∞, and
Λ such that the transmitted signal describes the scattering
problem in the best possible way (e.g., in the least-square
sense). The inverse problem is to find the parameters Eb,
νb, φ, α∞, and Λ which minimize the discrepancy function

U(Eb, νb, φ, α∞, Λ) =
∑

ti

[stheo(ti) − sexp(ti)]
2,

(7)

where sexp is the signal acquired using an oscilloscope, and
stheo is the simulated signal. The best set of parameters is

Fig. 2. Incident signal (hydroxyapatite).

that which minimizes the function F . The program of min-
imization is carried out under Matlab (The MathWorks,
Inc., Natick, MA), using the “fminsearch” function which
employs the method of the simplex to calculate the solu-
tion.

IV. Ultrasonic Measurements

As an application of this model, some numerical sim-
ulations are compared with experimental results. Experi-
ments are performed in water using two broadband Pana-
metrics A 303S plane piezoelectric transducers (Panamet-
rics, Waltham, MA) with a central frequency of 1 MHz
in water, and a diameter of 1 cm; 400 V pulses are pro-
vided by a 5058 PR Panametrics pulser/receiver. The spec-
tral composition (e.g., −6 dB bandwidth) of the ultrasonic
pulse is 800–1200 kHz. Electronic interference is removed
by averaging 1000 acquisitions. The experimental setup
is shown in Fig. 1. The parallel-faced samples were ma-
chined from hydroxyapatite (a substitute for bone) and
the femoral heads and femoral necks of human cancellous
bone. The size of the ultrasound beam is very small com-
pared to the size of the specimens. The emitting transducer
insonifies the sample at normal incidence with a short (in
time domain) pulse. When the pulse hits the front surface
of the sample, a part is reflected, a part is transmitted as a
fast wave, and a part is transmitted as a slow wave. When
any of these components, travelling at different speeds, hit
the second surface, a similar effect takes place: a part is
transmitted into the fluid, and a part is reflected as a fast
or slow wave. The fluid characteristics [26] are bulk modu-
lus Kf = 2.2 GPa, density ρf = 1000 kg m−3, and viscos-
ity η = 10−3 kg m s−1. Consider a sample of hydroxyap-
atite: the pore size is approximately 100 µm), the thickness
12.5 mm, and solid density ρs = 1700 kg m−3. The Young
modulus Es = 13 GPa and the Poisson ratio νs = 0.3
of the solid are taken from the literature. Figs. 2 and 3
show the experimental, incident and transmitted signals,
respectively. The inverse problem is solved by minimizing
the function U(Eb, νb, φ, α∞, Λ). A large variation range is
applied to each estimating parameter value in solving the
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Fig. 3. Transmitted signal (hydroxyapatite).

Fig. 4. Variation of the minimization F with the Poisson ratio of the
skeleton frame (hydroxyapatite).

inverse problem. The variation range of the parameters is
α∞ ∈ [1, 3], φ ∈ [0.5, 0.99], Λ ∈ [1, 300]µm, νb ∈ [0.1, 0.5],
and Eb ∈ [0.5, 5] GPa. The variations of the cost function
with the physical parameters present a single clear min-
imum corresponding to the mathematical solution of the
inverse problem. This shows that the inverse problem is
well posed mathematically, and that the solution is unique.
The minimum, corresponding to the solution of the inverse
problem, is clearly observed for each parameter. After solv-
ing the inverse problem, we find the following optimized
values: φ = 0.79, α∞ = 1.06, Λ = 6.65 µm, νb = 0.36, and
Eb = 2.4 GPa. Using these values, we present in Figs. 4–
8 the variations in the discrepancy function U with re-
spect to the values of the inverted parameters. For showing
clearly the solution of the inverse problem, the variation of
U in Figs. 4–8 is given only around the minima values of
the inverted parameters. In Fig. 9, a comparison is made
between the experimentally measured signal (dashed line)
and the transmitted signal (solid line) simulated using the
reconstructed values of Eb, νb, φ, α∞, and Λ. The differ-
ence between the two curves is small, which leads us to
conclude that the optimized values of the physical param-
eters are correct. The fast and slow waves predicted by the
Biot theory are clearly visible in the transmitted signal.

Fig. 5. Variation of the minimization F with the Young modulus of
the skeleton frame (hydroxyapatite).

Fig. 6. Variation of the minimization F with the porosity (hydrox-
yapatite).

Fig. 7. Variation of the minimization F with the tortuosity (hydrox-
yapatite).
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Fig. 8. Variation of the minimization F with the viscous character-
istic length (hydroxyapatite).

Fig. 9. Comparison between the experimentally measured (dashed
line) and the simulated (solid line) transmitted signals (hydroxyap-
atite).

Let us now solve the inverse problem for samples of
cancellous bone. The liquid in the pore space (blood and
marrow) is removed from the bone sample and substi-
tuted by water. The experimentally measured wave forms
travel through the cancellous bone in the same direction
as the trabecular alignment (x direction). Consider a sam-
ple of human cancellous bone (femoral neck) of thickness
10.2 mm and solid density ρs = 1990 Kg.m−3; the Young
modulus Es = 13 GPa and the Poisson ratio νs = 0.3 of
solid bone. By solving the inverse problem, the optimized
values obtained are: φ = 0.72, α∞ = 1.14, Λ = 14.25 µm,
νs = 0.3, and Eb = 2.89 GPa. Fig. 10 shows a compar-
ison of experimentally measured signal and a simulated
signal obtained by optimization after solving the inverse
problem. Here, again, the correlation between theoretical
predictions and experimental data is satisfactory. The dif-
ferent parameters have been calculated after minimization
with different sample of cancellous bone and they are given
in Table I.

Fig. 10. Comparison between the experimentally measured (solid
line) and the simulated (dashed line) transmitted signals (cancellous
bone).

TABLE I

Inverted Parameters.

L Λ Eb

(mm) φ α∞ (µm) νb (GPa)

M1 9.7 0.78 1.1 18.66 0.28 2.27
M2 11.1 0.8 1.1 24.54 0.3 1.97
M3 12 0.79 1.05 10.12 0.26 2.47

V. Conclusion

In this paper, the characterization of cancellous bone is
treated by solving the inverse problem numerically using
experimentally measured signals. The Biot theory modi-
fied by Johnson et al. model [25] is used to describe the
viscous interaction between fluid and structure. Five phys-
ical parameters (porosity, tortuosity, viscous characteristic
length, the Poisson ratio, and the Young modulus of the
skeletal frame) are inverted. The modified Biot model is a
well-adapted form for the analysis of the direct and inverse
scattering problems.

Appendix A

Expression of the Transmission Coefficient

The expression of the transmission coefficient is given
by [26]

T (ω) =
jω2ρfc0F4(ω)

(jωρfc0F4(ω))2 − (jωF3(ω) − 1)2
,

where F3 and F4 are given by (8) (see next page).

The functions λ1(ω) and λ2(ω) are given by (9) (see next
page), with
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Fi(ω) = (1 + φ (ℑi(ω) − 1))
√

λi(ω)
Ψi(ω)

sinh
(
l
√

λi(ω)
) 2

Ψ(ω)
, i = 1, 2.

F3(ω) = ρfc0

(
F1(ω) cosh

(
l
√

λ1(ω)
)

+ F2(ω) cosh
(
l
√

λ2(ω)
))

,

F4(ω) = F1(ω) + F2(ω).

(8)

λ1(ω) =
1

2

(
−τ1ω

2 + τ2(jω)3/2 −

√
(τ2

1 − 4τ3) ω4 + 2 (τ1τ2 − 2τ4) (jω)7/2 + τ2
2 (jω)3

)
,

λ2(ω) =
1

2

(
−τ1ω

2 + τ2(jω)3/2 +
√

(τ2
1 − 4τ3) ω4 + 2 (τ1τ2 − 2τ4) (jω)7/2 + τ2

2 (jω)3
)

,

(9)

ℑ1(ω) =
(2τ5 − τ1) ω2 + (τ2 − 2τ6) (jω)3/2 −

√
(τ2

1 − 4τ3)ω4 + 2 (τ1τ2 − 2τ4) (jω)7/2 + τ2
2 (jω)3

2
(
−τ7ω2 − τ6(jω)3/2

) ,

ℑ2(ω) =
(2τ5 − τ1) ω2 + (τ2 − 2τ6) (jω)3/2 +

√
(τ2

1 − 4τ3)ω4 + 2 (τ1τ2 − 2τ4) (jω)7/2 + τ2
2 (jω)3

2
(
−τ7ω2 − τ6(jω)3/2

) ,

(10)

τ1 = R′ρ11 + P ′ρ22 − 2Q′ρ12,

τ2 = A (P ′ + R′ + 2Q′) ,

τ3 =
(
P ′R′ − Q′2

) (
ρ11ρ22 − ρ2

12

)
, and

τ4 = A
(
P ′R′ − Q′2

)
(ρ11 + ρ22 − 2ρ12) .

Coefficients R′, P ′, and Q′ are given by

R′ =
R

PR − Q2
,

Q′ =
Q

PR − Q2
, and

P ′ =
P

PR − Q2
.

The functions ℑ1(ω) and ℑ2(ω) are given by (10) (see
above), where

τ5 = (R′ρ11 − Q′ρ12) ,

τ6 = A (R′ + Q′) ,

τ7 = (R′ρ12 − Q′ρ22) .

The coefficients Ψ1(ω), Ψ2(ω), and Ψ(ω) are given by

Ψ1(ω) = φZ2(ω) − (1 − φ)Z4(ω),

Ψ2(ω) = (1 − φ)Z3(ω) − φZ1(ω),

Ψ(ω) = 2(Z1(ω)Z4(ω) − Z2(ω)Z3(ω)),

and the coefficients Z1(ω), Z2(ω), Z3(ω), and Z4(ω) by

Z1(ω) = (P + Qℑ1(ω))λ1(ω),

Z2(ω) = (P + Qℑ2(ω))λ2(ω),

Z3(ω) = (Q + Rℑ1(ω))λ1(ω),

Z4(ω) = (Q + Rℑ2(ω))λ2(ω).
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des Sciences et de la Technologie Houari
Boumedène (USTHB), Algiers, Algeria. He
was previously Vice-Rector of USTHB and
head of the Theoretical Physics Laboratory,
USTHB.

Erick Ogam was born in 1961 in Kisumu
Kenya. He first specialized in electronics,
Radar, ILS and VOR from Ecole National de
l’Aviation civile in Toulouse France (1986).
He later received a masters’ degrees in Au-
tomatic, Industrial informatics and optoelec-
tronics (1991) from Institut National Poly-
technique de Lorraine in Nancy, France, in
1991, and in Acoustics from the Université de
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d’Acoustique, in Marseille, France.

His main interests are in solving direct problems (model-
ing and experimental) in acoustic, and vibration and solving in-
verse problems using real data for the reconstruction of mechani-
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