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Abstract. The Poiseuille flow, the thermal creep and the heat flux between two parallel plates are calcu-
lated applying the S model of the Boltzmann equation and the Cercignani-Lampis scattering kernel. The
calculations have been carried out in wide ranges of the rarefaction parameter and of the accommodation
coefficients of momentum and energy. Comparing the present results with experimental data the value of
the accommodation coefficients can be calculated.

I INTRODUCTION

The gas - surface interaction law in general form is expressed via a scattering kernel R(v' ->• v) as [1]

Kl/(v)= I K|fl(v'-»v)/(v')dv', (1)
Jv'n<0

where /(v) is the distribution function, v; and v are molecular velocities of the incident and reflected particles,
respectively, vn is the normal component of the velocity. The scattering kernel must satisfy the normalization
condition

f fl(v'->v)dv = l, (2)
Jvn>Q

and the reciprocity relation

where m is the molecular mass of gaseous particle, k is the Boltzmann constant and Tw is the surface tempe-
rature.

In case of perfect accommodation the scattering kernel reads

This kernel can be successfully used in many practical calculations. However, for some noble gases, e.g. helium,
neon etc., experimental value of the mass flow rate through capillaries [2] are larger than those calculated
applying the diffuse scattering kernel. To eliminate this discrepancy the diffuse - specular Maxwell kernel

(5)
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is usually used. This model is simple for application and has the only parameter a called the accommodation
coefficient, which can be calculated from experimental data on the Poiseuille flow (or some other type of the
flow) as was made in the works [2,3]. It was very attractive to carry out experiments for various gases and
various surfaces with the object to tabulate the accommodation coefficient a for every pair gas-surface. Then
these tables could be used in engineering calculations like the tables of other properties (viscosity, thermal
conductivity, etc.) are used nowadays. However, calculations of the parameter a from different experimental
data, e.g. Poiseuille flow and the thermomolecular pressure difference (TPD), give quite different values. The
values of a can be also different for the free-molecular and hydrodynamic regimes. For instance, in the work
[2] (Table 5) the value a = 0.935 is given for the pair helium-glass calculated on the basis of the free-molecular
Poiseuille flow. In the same work [2] (Table 4) it is reported the value a = 0.895, obtained from the data on
the slip coefficient for the same pair gas-surface. In the paper [4] one finds the value a = 0.68 calculated from
the data on the TPD also for the helium gas and the glass surface.

One more contradiction is that, applying the Maxwell scattering kernel to a calculation of the TPD in the
free-molecular regime one obtains the exponent 7 = 0.5 for any value of the accommodation coefficient a, while
the experimental data [5] show that a lower value of 7 is possible.

So, the Maxwell model cannot correctly describe the gas-surface interaction. It became clear that one
parameter for a scattering kernel is not enough, but it should have at least two parameters.

Almost thirty years ago Cercignani and Lampis [6] offered the following scattering kernel

D, / N
 2

R(v -t v) =

m[v* + (1 - an)v12] m[vt - (1 -
2kTwat(2-at)

I /.27T

JQ(X) = — I exp(x cos 0) d0.

Here, v^ is the two-dimensional vector of the tangential velocity. This kernel contains the two parameters at
and an. The first of them at is the accommodation coefficient of the tangential momentum and the second
one an is the accommodation coefficient of the kinetic energy due to the normal velocity vn. Recently, the
model has been extended to polyatomic gases [7]. In the limit case at = I and an = I the kernel (6) coincides
with the diffuse kernel (3). In the other limit case at = 0 and an = 0 the kernel (6) becomes the specular one.
Moreover, it admits the back scattering at at = 2 and an = 1, i.e. after a collision we have v = —v'. Surely,
the kernel (6) satisfies the normalization condition (2) and the reciprocity relation (3).

Because of the complexity the Cercignani-Lampis kernel (6) was not applied widely yet. In the papers [8,9]
this model was used to calculate the Poiseuille flow and the thermal creep through a tube in the free-molecular
regime. The authors of these works assumed the coefficients at and an to be close to unity. Their theoretical
result based on the Cercignani-Lampis kernel gives the exponent of the TPD lower than 0.5. This fact shows
the kernel (6) provides a more physical description of the non-perfect gas-surface interaction than the Maxwell
boundary condition (5). To confirm this we have to apply the kernel (6) to numerical calculations of rarefied
gas flows in the wide range of the Knudsen number varying the coefficients at and an in a large interval. A
comparison of these results with experimental data will allow us to calculate the accommodation coefficients
at and an. Indeed, to perform a rigorous verification of the applicability of the kernel (6) or any other one
a set of different experiments, e.g. Poiseuille flow, Couette flow, thermal creep, transversal heat flux between
two plates etc., should be carried out with the same gas and the same surface.

The aim of the present paper is to calculate the Poiseuille flow, the thermal creep and the longitudinal heat
flux between two parallel plates as a function of the accommodation coefficients at and an in the wide range
of the Knudsen number.
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II INPUT EQUATION

Consider a monoatomic rarefied gas confined between two infinite plates fixed at y' = ±a/2. There are
longitudinal gradients of the pressure P and temperature T

a dP a dT

which cause the gas flow along the plates. We are going to calculate the mass flow rate and the heat flux
through a cross section of the channel.

For further derivations it is convenient to introduce the following dimensionless quantities

where u'x is the longitudinal component of the bulk velocity, q'x is the longitudinal component of the heat flux.
We assume the bulk velocity and the heat flux vector have the only component.

Since we assume the pressure and temperature gradients to be small, the distribution function /(r, c) is
linearized as

/(r, c) = /° [l + h(y, c)+vx+ (c2 - 0 rx] , (9)

m

where no and TO are equilibrium number density and temperature, respectively.
As was shown in the review [10] the S model of the Boltzmann equation provides reliable numerical results

for non-isothermal rarefied gas flows. So, in the present work the S model equations is applied, which in the
linearized form reads

where

exp(-c*)%, c) cx dc, (11)

= ̂ 2 / exp(-c2)M2/, c) cx (c2 - |) dc. (12)

Since Eq.(lO) is linear, its solution h and the moments u and q can be decomposed into two parts as

h = hpv + hTT, U = UPV + UTT, q = qpv + qTT. (13)

Then, we introduce the two mass flow rates

.1/2 -1/2
GP = -2 uP(y) dy, GT = 2 uT(y) dy, (14)

,7-1/2 J-l/2

and the two heat fluxes
/•1/2 rl/2

QP = 2 / qP(y) dy, QT = -2 / qT(y) dy. (15)
J-l/2 J-l/2

In the papers [11-13] it was proved that for any scattering kernel satisfying Eq.(3) the coefficients GT and
QP obey the Onsager relation
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GT = QP. (16)

This relation can be use as an additional accuracy criterion or to reduce the computational efforts.
To eliminate the variables cx and cz two functions are introduced as

Multiplying Eq.(lO) by

7r

and integrating it with respect to cx and cz one obtains

where
3

Then, multiplying Eq.(lO) by

7T-1 exp(-c| - c£)cx(<£ + ̂  - 2)

the following equations for iftp and ^T are obtained

f [
\ at(2 - at)
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f » ci/) = - / / exP (~cl ~ cl] hj(y> c) c* dcz dc*> 3 = p> T

, c) cx (c2
x + c* - 2) dCjc dc^, J = P, T (18)

where

5^ = 0, S* = 1.

The equations (19) and (20) are coupled via the moments

1 f°°Uj(y) = -/= exp(-c2
y)<pj(y,Cy)dcy, j = P,T (21)

V71" J-oo

Qj (») = 4= / exp(-cj) L (y, c,,) f cj - 5) + ̂  (y, cy)] dcy, j = P, T. (22)
V7" J-oo L \ z/ J

III LINEARIZED BOUNDARY CONDITIONS

In terms of the dimensionless velocity c the scattering kernel ^?(c' — > c) can be written as

R(c' -+ c) = Rn(c'n -»• cn) Ex« -»• cx) Ez« -»• c,), (23)

where

(24)



>.n^ J() ZVX-Wn 12cRn(c'n^cn) = —— exp
^n

Here, cn = cy at y = —1/2 and cn = — cy at y = 1/2. Substituting (9) into (1) with the help of (2) and (3) we
relate the perturbation of incident particles h+ to the perturbation of reflected ones h~~ as

h+ = AnAxAzh-, (26)

where the three scattering operators have been introduced

/

oo
exp (-c'l) Ri(4 -»• c00(cj) dcj, i = x,z, (27)

-CX>

!„<£=- exp(4) |C; I exp -<£ £„ (c'n -> cn) 0«) d<. (28)

Here, <f> is an arbitrary velocity function. It can be shown that the operators Ax and Az satisfy the relations

Axcx = (l-at)cx, (29)

at), (30)

- at)(l - at), (31)

AxAz(cl + c2
z - 2) = (1 - at)3(4 + <2 - 2). (32)

The perturbation functions hp and HT can be expressed via the corresponding functions y>j(cy) an(l ^j
as

fy(c) - 2Vj.(cy)cx + ̂ (cyK^ + c^ - 2), j - P,T. (33)

Substituting (33) into (26) and applying Eqs.(29)-(32) it is easily obtained the boundary condition for the
functions tpj(cy) an(i ^j(cy)

V+ = (l-at) An<f- , ^,+ = (l-at)3 An^ . (34)

From the boundary conditions in this form we conclude that at at = 1 the coefficients Gp? GT? Qp and QT
do not depend on the energy accommodation coefficient an. The same result was obtained in the works [8,9].
Note, that it is a peculiarity of the longitudinal rarefied gas flow. If one considers a transversal heat flux
between two parallel plates having different temperature one finds a dependence of the heat flux on an at

IV RESULTS AND DISCUSSIONS

The kinetic equations (19) and (20) with the boundary condition (34) were solved by the optimized discrete
velocity method [14] with the numerical error less than 0.1%. The numerical accuracy was estimated by
comparing the numerical values of the coefficients GP, GT, Qp and QT for different grid parameters. An
analysis of the numerical data showed that the Onsager relation (16) is fulfilled within the numerical accuracy.
The results of the calculations are presented in Table 1.

One can see that the Poiseuille flow GP significantly depends on the momentum accommodation coefficient
at in the whole range of the rarefaction parameter 6 considered here. It always decreases by increasing
the accommodation coefficient at. The dependence of the Poiseuille flow GP on the energy accommodation
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TABLE 1. Coefficients 6?p, GT, Qp and QT vs £, at and

S at
0.01

0.02

0.1

0.2

1.

2.

3.5

10.

20.

100.

0.5
0.75
1.
0.50
0.75
1.00
0.5
0.75
1.0
0.50
0.75
1.00
0.5
0.75
1.
0.50
0.75
1.00
0.50
0.75
1.00
0.5
0.75
1.
0.5
0.75
1.
0.5
0.75
1.

GP
an = 0.5
5.014
3.726
3.052
4.668
3.385
2.714
3.952
2.693
2.039
3.699
2.457
1.817
3.352
2.157
1.554
3.389
2.204
1.611
3.565
2.383
1.792
4.564
3.377
2.780
6.198
5.006
4.405
19.49
18.30
17.70

0.75
4.893
3.675
3.052
4.553
3.336
2.714
3.865
2.655
2.039
3.633
2.429
1.817
3.338
2.150
1.554
3.386
2.203
1.611
3.565
2.383
1.792
4.557
3.373
2.780
6.186
5.001
4.405
19.47
18.29
17.70

1.
4.824
3.642
3.052
4.487
3.305
2.714
3.812
2.630
2.039
3.590
2.408
1.817
3.326
2.144
1.554
3.384
2.202
1.611
3.565
2.383
1.792
4.551
3.370
2.780
6.176
4.996
4.405
19.46
18.29
17.70

GT = QP
0.5
1.423
1.324
1.247
1.250
1.153
1.078
0.8780
0.7954
0.7327
0.7306
0.6604
0.6075
0.4110
0.3851
0.3655
0.2895
0.2806
0.2741
0.2056
0.2047
0.2047
0.09290
0.09554
0.09813
0.05019
0.05206
0.05383
0.01064
0.01110
0.01154

0.75
1.315
1.279
1.247
1.145
1.109
1.078
0.7928
0.7596
0.7327
0.6608
0.6308
0.6075
0.3886
0.3750
0.3655
0.2828
0.2774
0.2741
0.2057
0.2048
0.2047
0.09556
0.09684
0.09813
0.05200
0.05294
0.05383
0.01108
0.01132
0.01154

1.
1.248
1.247
1.247
1.080
1.078
1.078
0.7362
0.7331
0.7327
0.6121
0.6080
0.6075
0.3698
0.3660
0.3655
0.2765
0.2744
0.2741
0.2058
0.2048
0.2047
0.09819
0.09814
0.09813
0.05380
0.05383
0.05383
0.01152
0.01154
0.01154

QT
0.5
7.460
6.869
6.734
6.602
6.032
5.900
4.628
4.167
4.054
3.785
3.409
3.312
1.934
1.797
1.754
1.272
1.212
1.189
0.8481
0.8224
0.8121
0.3458
0.3422
0.3406
0.1802
0.1793
0.1789
0.03721
0.03717
0.03715

0.75
7.315
6.823
6.734
6.462
5.987
5.900
4.516
4.128
4.054
3.693
3.375
3.312
1.897
1.782
1.754
1.254
1.203
1.189
0.8398
0.8184
0.8121
0.3445
0.3416
0.3406
0.1799
0.1791
0.1789
0.03719
0.03716
0.03715

1.
7.218
6.788
6.734
6.369
5.953
5.900
4.437
4.098
4.054
3.627
3.348
3.312
1.866
1.767
1.754
1.238
1.195
1.189
0.8318
0.8145
0.8121
0.3433
0.3409
0.3406
0.1796
0.1790
0.1789
0.03718
0.03716
0.03715

coefficient an is weak. It is interesting that in the interval 0.01 < 6 < 2.0 this dependence decreases by increasing
the rarefaction parameter and at S = 3.5 the Poiseuille flow does not depend on the energy accommodation
coefficient an. Then, by increasing the rarefaction parameter S this dependence appears again and begins to
vanish near the hydrodynamic regime (S -*• oo).

The thermal creep GT also depends on the momentum accommodation coefficient at. However, near the free
molecular regime the coefficient GT decreases, while near the hydrodynamic regime it increase, by increasing
the accommodation coefficient at. The dependence of the thermal creep GT on the energy accommodation
coefficient an is similar to that on the coefficient at, i.e. near the free molecular regime it decreases and near
the hydrodynamic regime it increases by increasing the accommodation coefficient an. For the rarefaction
parameter 8 = 3.5 the thermal creep GT is practicably constant.

Since the coefficient Qp is equal to GT it is not commented here.
It is rather surprising results that the heat flux QT weakly depends on the energy accommodation coefficient

an. The dependence practically vanishes near the hydrodynamic regime. A significant dependence of the heat
flux QT on the momentum accommodation coefficient at is observed only near free molecular regime.

V CONCLUSIONS

So, the Poiseuille flow, thermal creep and heat flux are calculated here as function of the rarefaction parameter
and of the accommodation coefficients. The calculations have been carried out on the basis of the S model
kinetic equation with the Cercignani-Lampis scattering kernel. Unfortunately, because of graphic presentation
of experimental data in open literature, e.g. in work [2], it is impossible to compare the present numerical
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results and to calculate the accommodation coefficients. To realize this task it is necessary to perform high
accuracy experiments on both isothermal and non-isothermal gas flows through a plane channel and to tabulate
the experimental data.
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