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Application of the density dependent hadron field theory to
neutron star matter
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Germany
(August 23, 2000)

Abstract

The density dependent hadron field (DDRH) theory, previously applied to
isospin nuclei and hypernuclei is used to describe β-stable matter and neutron
stars under consideration of the complete baryon octet. The meson-hyperon
vertices are derived from Dirac-Brueckner calculations of nuclear matter and
extended to hyperons. We examine properties of density dependent inter-
actions derived from the Bonn A and from the Groningen NN potential as
well as phenomenological interactions. The consistent treatment of the den-
sity dependence introduces rearrangement terms in the expression for the
baryon chemical potential. This leads to a more complex condition for the β-
equilibrium compared to standard relativistic mean field (RMF) approaches.
We find a strong dependence of the equation of state and the particle distri-
bution on the choice of the vertex density dependence. Results for neutron
star masses and radii are presented. We find a good agreement with other
models for the maximum mass. Radii are smaller compared to RMF mod-
els and indicate a closer agreement with results of non-relativistic Brueckner
calculations.

PACS number(s): 26.60.+c, 21.65.+f, 21.30.Fe, 97.60.Jd
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I. INTRODUCTION

The nuclear equation of state (EoS) is the fundamental input for the calculation of
neutron star properties. The internal structure of a neutron star ranges from sub-nuclear
densities at the surface to a few times the normal nuclear matter density ρ0 in its core.
Therefore, a detailed knowlegde of the EoS over a wide range of densities is required. Of
particular importance is the behavior of the EoS for densities ρ � ρ0 since it primarily
determines the maximum mass of the star. Comparision with experimentally observed data
for neutron star masses and radii might allow us to examine the reliability of different models
for the EoS at high densities.

The theoretical determination of such an EoS is a very hard task since there is only
accurate knowledge around ρ = ρ0 where matter in the weak equilibrium consists mainly
of nucleons and leptons. At higher densities of 2 − 3 ρ0 one expects strange baryons to
appear as new hadronic degrees of freedom. The extrapolation of the EoS to high densities
and its implication on neutron star properties has been examined in a variety of models,
most notably in the framework of phenomenological non-relativistic potential models [1],
relativistic mean-field approaches (RMF) [2–5] and non-relativistic Brueckner-Hartree-Fock
(BHF) calculations [6,7]. In addition there have been calculations employing chiral effective
Lagrangians [8] or the quark meson coupling model [9]. From a microscopic point of view
Brueckner calculations using realistic nucleon-nucleon (NN) and hyperon-nucleon (YN) po-
tentials as input have to be preferred. Since the density inside neutrons stars is extremely
high - the Fermi momenta and the baryon effective mass are in the order of 500 MeV -
the use of non-relativistic models might be problematic and one should prefer a relativistic
description. Due to technical difficulties, relativistic (Dirac) BHF calculations are restricted
to asymmetric nuclear matter and the inclusion of hyperons at higher densities is at present
not feasible. Therefore, only DB calculations for neutron star matter with nucleons have
been performed [10,11].

RMF theory [12,13] allows to incorporate easily and consistently an enlarged set of
hadronic degrees of freedom and has been succesfully applied to hypernuclei [14–17] and
neutron stars [2,4,5]. Being a phenomenological model with its parameters usually adjusted
to the properties of finite nuclei and their limited density range around ρ0, an extrapolation
to higher densities has some uncertainties. Parameterizations with an excellent describtion
of finite nuclei turn out to be unstable at higher densities being mainly caused by divergent
scalar self-interaction terms [18]. Nucleons aquire negative effective masses and the equation
of state turns out to be much stiffer compared to Dirac-Brueckner calculations [5]. One
solution is the introduction of a quartic vector self-interaction term [19,20]. Also, calculations
in relativistic Hartree-Fock approximation with coupling constants fitted to the EoS of DB
calculations were succesfully applied to neutron star matter [21,22].

In this paper we employ results from DB calculations by parameterizing the DB self-
energies in terms of density dependent coupling functionals and apply them in Hartree
approximation to strange and neutron star matter. This approach, the density dependent
hadron field (DDRH) field theory, has been introduced in [23,24] and applied to stable
[25–27] and exotic nuclei [28]. Taking into account information from realistic NN potentials
and a much wider density range (0.5 − 3 ρ0) we expect our extrapolation to high densities
to be more stable than purely phenomenological RMF models.

2



An important point is the treatment of the hyperons. In the DDRH model they can be
treated in almost the same manner as in standard RMF theory, allowing an easy extension
of the model to the SU(3)f octet baryons as was shown in [29]. Since we assume in general
density dependent hyperon-meson vertices we should in principle derive their parameteriza-
tion from DB calculations that include hyperons. Since such calculations are not available
we extrapolate the density dependence and the strength of the vertices from DB calculations
of nuclear matter and from hypernuclear data. As discussed in [29] this provides at least
qualitative information about DB results of strange matter. This approach is discussed in
Sec. II where also a short review of the theoretical model is given. In Sec. III we apply the
derived density dependent hyperon-nucleon interaction to NΛ matter and to neutron star
matter in β-equilibrium. We discuss the influence of the density dependence on the chemical
potential and present results for the equation of state for various density dependent interac-
tions. Neutron star matter compositions for different models are presented. In Sec. IV the
influence of the calculated EoS on mass-radius relations of neutron stars is investigated and
compared with previous results of other groups. The paper closes in Sec. V with a summary
and conclusions.

II. DENSITY DEPENDENT HADRON FIELD THEORY WITH HYPERONS

A. The Model Lagrangian

The model Lagrangian closely follows in structure the one of relativistic mean- field
(RMF) theory [12,13]. The important difference in the density dependent relativistic hadron
field theory (DDRH) corresponds to replacing the constant meson-baryon vertices of the
RMF model by functionals Γ̂(ρ̂) of Lorenz-scalar bilinear forms ρ̂(ΨF ,ΨF ) of the baryon
field operators. This step is necessary to retain thermodynamical consistency and energy-
momentum conservation for this extended model and has been discussed in detail in [24,25].
In the meson-exchange particle sector we have also included the scalar isovector meson δ in
contrast to previous formulations since it is expected to be important in very asymmetric
systems.

In this work the extension to hypernuclei as introduced in [29] is used. The 1/2+ baryon
octet is taken into account including the S = −1 (Λ,Σ) and S = −2 (Ξ) hyperons. Besides
the standard set of non- strange mesons we also include the hidden-strangeness meson fields
σs (scalar, mσs = 975 MeV) and φ (vector, mφ = 1020 MeV) [30].

Defining the flavour spinor ΨF

ΨF = (ΨN ,ΨΛ,ΨΣ,ΨΞ)T (1)

which is composed of the isospin multiplets

ΨN =

(
ψp

ψn

)
, ΨΛ = ψΛ,

ΨΣ =



ψΣ+

ψΣ0

ψΣ−


 , ΨΞ =

(
ψΞ0

ψΞ−

)
, (2)
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the Lagrangian is written as

L = LB + LM + Lint

LB = ΨF

[
iγµ∂

µ − M̂F

]
ΨF (3)

LM =
1

2

∑
i=σ,δ,σs

(
∂µΦi∂

µΦi −m2
i Φ

2
i

)
−

1

2

∑
κ=ω,ρ,φ

(
1

2
F (κ)

µν F
(κ)µν −m2

κA
(κ)
µ A(κ)µ

)
(4)

Lint = ΨF Γ̃σΨFΦσ −ΨF Γ̃ωγµΨFA
(ω)µ +

ΨF Γ̃δτΨFΦδ −ΨF Γ̃ργµτΨF A(ρ)µ +

ΨF Γ̃σsΨF Φσs −ΨF Γ̃φγµΨFA
(φ)µ. (5)

LB and LM are the free baryonic and mesonic Lagrangians, respectively. Baryon-meson
interactions are described by Lint that includes the vertex functionals Γ̃(ΨF ,ΨF ). The diag-
onal matrix M̃ contains the free-space baryon masses. The Lagrangian and the interaction
have to be symmetric in flavor space, since SU(3)f -flavor exchanging mesons are not con-
sidered. This is obtained by defining the vertices as(

Γ̃α

)
BB′ = Γ̂αBδBB′ . (6)

The indices α = σ, ω, δ, ρ, σs, φ and B = N,Λ,Σ,Ξ denote all mesons and baryon multiplets.
The most general ansatz for the DDRH vertices, allowing to treat the density dependence
of each vertex independently, is

Γ̂αB

(
ρ̂αB(ΨF ,ΨF )

)
(7)

where ρ̂αB is a Lorentz-scalar combination of the baryon field operators. As discussed in
the introduction, the strength and the intrinsic density dependence of the vertices have
to be deduced from microscopic calculations. The mapping of the DBHF self-energies to
infinite nuclear matter DDRH vertices is done in the local density approximation (LDA),
e.g. [23,31,32], and has been thoroughly discussed in [28,29]. In [28] a momentum correction
of the self-energies was introduced to improve the applicability of DB calculations to the
relativistic Hartree approximation. DB self-energies derived in asymmetric nuclear matter
[32] were parameterized and special care was taken to reproduce the DB binding energy
over the complete asymmetry range from isospin symmetric nuclear matter to pure neutron
matter.

The standard choice is to let the density operator ρ̂ depend on the baryon vector current
ĵµ = ΨγµΨ. This so called vector density dependence (VDD) leads to quite satisfactory
results for finite nuclei [25] and hypernuclei [29] and is a natural choice for the parame-
terization of the DB self-energies as was discussed in [28]. A straightforward extension to
meson-hyperon vertices is the ansatz [29]

ρ̂αB[ΨF ,ΨF ] = ΨF B̃
µ
αBγµΨF . (8)

Different choices of the matrix B̃µ
αB and their physical significance will be discussed in the

next section. Taking the variational derivative of the Lagrangian
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δLint

δΨF

=
∂Lint

∂ΨF

+
∑
α,B

∂Lint

∂ρ̂αB

δρ̂αB

δΨF

. (9)

leads to the usual meson field equations known from RMF theory but replacing the constant
couplings gαB by density dependent vertices Γ̂αB(ρ̂). In the baryon field equations additional
rearrangement contributions appear that have their origin in the second term of Eq. (9),

[
γµ

(
i∂µ − Σ̃µ(0) − Σ̃µ(r)

)
−
(
M̃ − Σ̃s(0)

)]
ΨF = 0. (10)

The scalar self-energy Σ̃s(0) has the standard form, while the vector self-energy
Σ̃µ = Σ̃µ(0) + Σ̃µ(r) includes rearrangement contributions Σ̃µ(r) introduced by the medium-
dependence of the vertices.

Σ̃s(0) = Γ̃σΦσ + Γ̃δτΦδ + Γ̃σsΦσs (11)

Σ̃µ(0) = Γ̃ωA
(ω)µ + Γ̃ρτA(ρ)µ + Γ̃φA

(φ)µ (12)

Σ̃µ(r) =
∑
α,B

∂Lint

∂ρ̂αB
B̃µ

αB (13)

The importance of the rearrangement energies Σ̃µ(r) and their physical origin has been
discussed in detail in [25,33]. Their explicit form and their impact on neutron star matter
will be discussed in the next sections.

B. Choice of the density dependence

The density dependence of the hyperon-meson vertex functionals should in principle be
derived directly from DB self-energies of strange matter performed with the complete baryon
octet. However, such a full scale calculation is not available and hardly feasible under present
conditions. Non-relativistic Brueckner calculations with microscopic interactions have been
performed for strange matter by several groups [34–36] but, obviously, their results can not
be used in relativistic calculations because of the different structure of the non-relativistic
single particle potentials. Therefore, we choose a semiempirical approach by relating the
microscopic density dependence of the meson-nucleon vertices derived from DB calculations
of pure isospin matter (only p, n) to the density dependence of the hyperon- nucleon and
hyperon- hyperon interaction.

In [29] we have shown by inspecting the properties of the Dirac- Brueckner interaction
in strange matter that density dependent nucleon and hyperon dynamics can be related to
each other to a good approximation by scaling laws. The main outcome is that the hyperon
and nucleon self-energies and vertices are related to each other by the ratio of the free space
coupling constants ḡαB. In leading order Hartree approximation one finds the relation

RαY =
ΓαY

ΓαN
' ΣαY

ΣαN
' ḡαY

ḡαN
. (14)

Since this relation is strictly valid only for symmetric hypermatter with the same content
of nucleons and hyperons [29] it is not obvious how the density dependence of the hyperon

5



vertices has to be related to the full baryonic density for other matter compositions. An
obvious and rather simple approach is to let all vertices depend on the total baryon density,
denoted by ρ̂T . From now on we will denote this choice as model 1. For the hyperons this
corresponds to defining the coupling functionals as

Γ̂αΛ = RαΛΓ̂αN(ρ̂T ),

Γ̂αΣ = RαΣΓ̂αN(ρ̂T ),

Γ̂αΞ = RαΞΓ̂αN(ρ̂T ). (15)

The parameterization of the density dependence is taken from the nucleon- vertices Γ̂αN (ρ̂N)
derived from DB calculations of nuclear matter where ρ̂N ≡ ρ̂T . By relating the density ρ̂T

to the total baryon vector current

ρ̂T =
√
ĵF
µ ĵ

µF . (16)

a Lorentz-invariant expression is obtained which is equivalent to choosing the matrix B̃αB
µ

in Eq. (8) as

B̃αB
µ ≡ B̃µ = ûµdiag (1, 1, 1, 1) , (17)

where ûµ is a four velocity with ûµûµ = 1. This choice leads to rearrangement self-energies
of the form

Σ̂µ(r) =
∑
B′

(
∂Γ̂ωB′

∂ρ̂B′
A(ω)

ν ĵν
B′ − ∂Γ̂σB′

∂ρ̂B′
Φσρ̂

s
B′

+
∂Γ̂ρB′

∂ρ̂B′
A(ρ)

ν ΨB′γντΨB′ − ∂Γ̂δB′

∂ρ̂B′
ΦδΨB′τΨB′

+
∂Γ̂φB′

∂ρ̂B′
A(φ)

ν ĵν
B′ − ∂Γ̂σsB′

∂ρ̂B′
Φσs ρ̂

s
B′

)
ûµ (18)

where the scalar densities are defined as ρ̂s
B = ΨBΨB. Since the density dependence of all

vertices was chosen to depend on the same argument ρ̂T the summation has to be performed
over all B′ leading to identical rearrangement self-energies for all baryon multiplets. Also,
in a system consisting of different fractions of hyperons and nucleons, the scaling relation
for the vertices is fulfilled for all densities and independent of the strangeness fraction.

In Ref. [29] Λ-hypernuclei were considered and the medium modification of the vertices
was chosen to depend only on the density of the surrounding baryons of same particle type,
e.g. Γ̂αΛ(ρ̂Λ). The parameterization of the density dependence was taken from the nucleon-
vertices Γ̂αN (ρ̂N) derived from DB calculations of nuclear matter. We will denote this choice
as model 2. Extending this model to the complete baryon octet, we let the vertices only
depend on the density of baryons of the same multiplet

Γ̂αΛ = RαΛΓ̂αN(ρ̂Λ),

Γ̂αΣ = RαΣΓ̂αN(ρ̂Σ),

Γ̂αΞ = RαΞΓ̂αN(ρ̂Ξ), (19)
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where the densities are the baryon vector currents of the corresponding baryon species

ρ̂B =
√
ĵB
µ ĵ

µB. (20)

In this model the matrix B̃αB
µ in Eq. (8) is defined as

B̃αB
µ ≡ B̃B

µ = ûµdiag
(
δNB, δΛB, δΣB, δΞB

)
(21)

and the rearrangement self-energies now differ between the baryon multiplets

Σ̂
µ(r)
B =

(
∂Γ̂ωB

∂ρ̂B
A(ω)

ν ĵν
B −

∂Γ̂σB

∂ρ̂B
Φσ ρ̂

s
B

+
∂Γ̂ρB

∂ρ̂B

A(ρ)
ν ΨBγ

ντΨB − ∂Γ̂δB

∂ρ̂B

ΦδΨBτΨB

+
∂Γ̂φB

∂ρ̂B
A(φ)

ν ĵν
B −

∂Γ̂σsB

∂ρ̂B
Φσs ρ̂

s
B

)
ûµ. (22)

This separation of the density dependence also corresponds in first order to the outcome of
DB considerations and leads to satisfying results for Λ-hypernuclei. It takes into account
that in leading order the medium dependence of the vertices is only caused by Pauli-blocked
intermediate states of baryons of the same multiplet. On the other hand, this separation
leads to a variation of the relative strength of the vertices in strongly asymmetric systems,
e.g. neutron stars, since the vertices depend on different arguments ρ̂B. This behavior
is different compared to standard RMF calculations where the ratio of the vertices stays
constant over the whole density range and is independent of the strangeness content.

The two vertex models constitute limiting cases where model 1 (dependence on ρT ) is
probably most realistic for systems at high total baryon densities. Modell 2 (dependence
on ρB), on the other hand, can be expected to be most realistic for low hyperon densities
as found in single Λ-hypernuclei. We assume that a realistic density dependence should be
composed as a mixture of the total density and the baryon multiplet density

Γ̂αB ≡ Γ̂αB(ρ̂B, ρ̂T ) (23)

Unfortunately, DB calculations from which such a functional dependence could be ex-
tracted are not yet available. Our choice, taking into account both extremes, allows us
to examine thoroughly the properties of such a parameterization. Furthermore, for pure
systems, consisting only of e.g. Λ, both models are identical.

C. The vertex scaling factors

In RMF theory the phenomenological hyperon and nucleon vertices can be related to
each other by simple scaling factors RαY , e.g. gαΛ = RαΛgαN . As shown in Section IIB
this relation also holds in the DDRH model. A widely used approach is to determine these
vertex scaling factors from SU(6) symmetry relations of the quark model [37]. For the vector
mesons ideal mixing is assumed and one finds [30]
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ΓωΛ = ΓωΣ = 2ΓωΞ =
2

3
ΓωN ,

ΓρΣ = 2ΓρΞ = 2ΓρN , ΓρΛ = 0 (24)

2ΓφΛ = 2ΓφΣ = 2ΓφΞ = −2
√

2

3
ΓωN

ΓφN = 0. (25)

The scalar coupling constants are fitted to hypernuclear properties [14–16] and chosen to
give hyperon potentials in saturated nuclear matter that are compatible with experimental
results for the single particle spectra of hypernuclei.

U
(N)
Λ = U

(N)
Σ = −30 MeV, U

(N)
Ξ = −28MeV. (26)

The values of the Λ, Σ and Ξ potentials were chosen in accordance with Ref. [5,30]. Based
on the analysis of Σ− atomic data the real part of the optical potential was found to be
negative [38]. A recent analysis, however, indicates that the isoscalar potential changes sign
in the nuclear interior and becomes repulsive [39]. Therefore, we also performed calculations

with a potential depth of U
(N)
Σ = +30 MeV and found that the Σ does not appear in the

composition of neutron star matter. For this reason we restrict our discussion to the negative
potential value. The Ξ nuclear interaction also exhibits large uncertainties with potential
depths ranging from −14 MeV to −28 MeV in some investigations [40].

In DDRH theory the non-relativistic single particle potentials of hyperons in nuclear
matter are obtained as

U
(N)
Y = Σ

0(0)
Y + Σ

0(r)
Y − Σ

s(0)
Y . (27)

Choosing U
(N)
Y as fixed by phenomenology this relation introduces a constraint on the cou-

plings ΓσY and ΓωY . Due to the different density dependence of model 1 and 2 one finds
different values for the scaling factors RσY even though they were adjusted to the same
potential depth. In model 1 the hyperon vertices have to be evaluated at saturation density
ρT = ρ0 even though the density of the hyperons is ρY � ρT . In addition, the rearrange-
ment contributions of the nucleons add to the hyperon potential. In contrast, in model 2
the vertices have to be calculated at vanishing hyperon density and rearrangement does not
contribute to the hyperon potential.

We examined the behavior of three different density dependent interactions. The Bonn
A parameter set [31] parameterizes the density dependence of DB Brueckner calculations in
symmetric nuclear matter with the Bonn A NN potential [41,42]. It only includes density
dependent vertices for the σ and the ω meson while the ρmeson coupling strength was chosen
as a constant. Calculations for single Λ-hypernuclei have been performed successfully with
this parameterization [29]. The Groningen parameter set [28] was fitted to DB Brueckner
calculations in asymmetric nuclear matter with the Groningen NN potential [32,43,44]. In
addition to the isoscalar channel it includes a density dependence in the isovector part of the
interaction, parameterized by the ρ and the δ nucleon-meson vertices. The third parameter
set is a phenomenological interaction whose density dependence (σ, ω and ρ meson) has
been adjusted by a fit to nuclear matter properties and finite nuclei [45]. It will be denoted
from now on as DD. The quality of its description of finite nuclei is comparable to RMF
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parameter sets including nonlinear meson interaction terms and its nuclear matter properties
at higher densities are in accordance with DB calculations. Results for the sccaling factors
are presented in the right column of Tab. I. From now on, the set of scaling factors RαY

that was determined from the SU(6) symmetry relations of the quark model will be denoted
as Rq.

It is our aim to start from DB theory and use microscopic interactions as input for our
calculations. Since these results include highly nonlinear and nonperturbative correlation
effects, the strict use of the quark model reduction of RωΛ = 2/3 might be questionable.
Therefore, we examine in addition the properties of microscopically derived scaling factors.
For the Bonn A potential an extension to the free NΛ systems exist [46,47], but DB calcu-
lations are pending. A free space scalar vertex scaling factor RσΛ = 0.49 was extracted from
NΛ T-matrix results for a sharp σ meson mass mσ = 550 MeV [47]. Following Eq. (14) we
can apply this value also to the in- medium vertices.

Since microscopic values for RωΛ are not available from Ref. [47] we use it as a phe-

nomenological parameter and adjust it to the potential depth U
(N)
Λ . In this analysis we are

restricted to the Λ because calculations for NΣ and NΞ systems were not yet performed.
For the Bonn A potential we find a value of RωΛ = 0.569 in model 2 in close agreement
with [29] where a value of RωΛ = 0.553 was found by a fit a Λ single-particle energies. In a
constant coupling RMF model [48] a relative ω coupling of RωΛ = 0.512 was found for the
same value of RσΛ. This is again in close agreement with our corresponding values of model
1, e.g. RωΛ = 0.510 for the phenomenological density dependence. Results for the vector
meson scaling factors RωΛ for model 1 and 2 for the different interactions are shown in the
left column of Tab. I. We will denote this set of semi-microscopic scaling factors by Rm.

In [46,47] the scalar meson channels were described by the correlated exchange of pion
and kaon pairs. Therefore,the scalar coupling also includes a relevant admixtures of the σs

field in the Λ coupling. Adjusting the vector coupling we also implicitly include contributions
from the φ field. Naive quark counting suggests that even for a pure Λ-Λ interaction the
strange mesons contribute only about 10% of the interaction strength. For this reason we
neglect the explicit contributions from the σs and φ meson in our calculations. In addition,
it should be noted that the contribution from these hidden- strangeness mesons can not be
fixed by experimental data, introducing additional ambiguities in the model as seen in [40].

In the next section we will show that there are already notable differences between the
different models without these additional fields. The notable deviations of RσΛ and RωΛ

to the quark model value of 2/3 originate in higher order nonlinear contributions from the
dynamically generated σ and σs exchange channels [46,47], the explicit SU(3)f symmetry
breaking and the ω- φ octet-singlet mixing on the fundamental strong interaction level.

III. MEAN-FIELD DESCRIPTION OF STRANGE AND β-STABLE MATTER

A. Properties of strange matter

We now apply the extended DDRH model of Sec. II to Λ matter and β-stable matter. A
solvable scheme is obtained in mean-field theory which amounts to taking the expectation
values with respect to the Hartree ground state of the baryon-meson vertices and the meson
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fields. The vertices then reduce to density dependent functions ΓαB(ρ) of the baryon density
ρ. In static infinite matter all derivative terms vanish and the solution of the fields can be
expressed analytically [13].

In weak β-equilibrium electrons e− and myons µ− have to be included in the Lagrangian
due to the weak decay channel,

ΨL = (ψe, ψµ)T (28)

LL = ΨL

[
iγµ∂

µ − M̃L

]
ΨL. (29)

In mean-field theory the energy density ε and the pressure P are given by the ground state
expectation values of the energy-momentum tensor T µν . One finds

ε = 〈T 00〉 =
∑
i=b,l

1

4
[3EFi

ρi +m∗
iρ

s
i ] (30)

+
∑

b

1

2

[
ρbΣ

0(0)
b + ρs

bΣ
s(0)
b

]

P =
1

3

3∑
i=1

〈T ii〉 =
∑
i=b,l

1

4
[EFi

ρi −m∗
i ρ

s
i ] (31)

+
∑

b

1

2

[
ρbΣ

0(0)
b − ρs

bΣ
s(0)
b + 2ρbΣ

0(r)
b

]

where the indices b = p, n,Λ,Σ−,Σ0,Σ+,Ξ−,Ξ0 and l = e−, µ− run over all baryons and
leptons, respectively. The self-energies are the mean-field expectation values of the quantities

defined in Eqs. (11)-(13), EFb
=
√
k2

Fb
+m∗

b
2 is the energy of the particle, kF is the Fermi

momentum and m∗
b = Mb − Σs

b the effective mass.
The chemical potential in a system with fixed baryon number is defined as

µb =
∂ε

∂ρb
=
√
k2

Fb
+m∗

b
2 + Σ

0(0)
b + Σ

0(r)
b (32)

In contrast to constant coupling RMF models the rearrangement energy appears in the
above relation which is mandatory for thermodynamical consistency. This can be easily
verified by applying the Hugenholtz-van Hove theorem [49] that relates energy and pressure
of a particle to its chemical potential and noting that the rearrangement contribution also
appears in the expression for the pressure.

In weak β-equilibrium the chemical potentials of all particles are related to each other
by

µi = biµn − qiµe (33)

which imposes charge and baryon number conservation. Here, the index i denotes all par-
ticle species (baryons and leptons) and bi and qi are the corresponding baryon number and
electrical charge. The equilibrium problem is solved by determining the meson fields from
the field equations of the form
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m2
αΦα =

∑
b

Γαb(ρ̃)ρ̃b (34)

where ρ̃ depends on the choice of model 1 or 2. The densities ρ̃b are the (iso)scalar or
(iso)vector densities and are determined by the Lorentz and isospin structure of the corre-
sponding meson vertex. As an additional constraint the total baryon density ρ is fixed and
charge neutrality is imposed for neutron star matter

ρ =
∑

i

biρi, ρc =
∑

i

qiρi = 0. (35)

This allows the determination of the electron µe and baryon µn chemical potentials in β-
equilibrium. In contrast to standard RMF calculations one can not simply extract the
Fermi momentum kFi

and thus the density ρi = k3
Fi
/3π2 of each particle for a fixed chemical

potential from Eqs. (32) and (33). Since the self- energies depend by virtue of the vertices
on the densities of the baryons a coupled set of equations has to be solved self-consistently
for the density of every baryon. In model 1 the coupling strength is known a priori from the
given total baryon density but the rearrangement term in Eq. (32) can only be calculated
from Eq. (18) if the composition of the neutron star matter is known. For model 2 the
calculation gets even more complex since in addition the strength of the vertices changes
with the particle ratios. Furthermore, the rearrangement self-energies of Eq. (22) differ for
each baryon multiplet and are strongly affected by the density dependence of the vertices
and the density of each particle species. Therefore, one has to include all particles in the
calculation and to check for their appearance such that the condition of chemical equilibrium
is retained. This leads to a highly nonlinear set of equations where Eqs. (32)-(35) have to
be solved self-consistently and the calculation is far more involved than in standard RMF
theory.

B. Λ matter

We first study the properties of strange matter for our different choices of the density
dependence of the hyperon-meson vertices. This is done by calculating the equation of state
for symmetric nuclear matter (ρp = ρn = 1

2
ρN ) with a fixed admixture fS of Λ-hyperons.

The strangeness fraction for ΛN matter is defined as

fS =
ρS

ρT
=

ρΛ

ρN + ρΛ
. (36)

It was pointed out in [40] that ΛN matter will not be the lowest energetic state of strange
matter at higher densities and for higher strangeness fractions. A full calculation ensuring
chemical equilibrium has to include also the Σ and the Ξ since the Λ can be converted via
non-mesonic decay-channels into these hyperons. But for a systematic study of the effects
of the different choices of the scaling factors RσΛ and RωΛ for models 1 and 2 we have to
restrict ourselves to the admixture of Λ-hyperons since, as discussed in Sec. IIC, these are
the only hyperons with microscopic derivations for the scaling factors.

In Fig. 1 we show results for the equation of state calculated with the Bonn A parameter-
ization for different strangeness fractions. Comparing within model 1 and 2 the differences

11



between the set of scaling factors Rm from microscopic considerations and the set of quark
model scaling factors Rq, one realizes that the equation of state is slightly stiffer in the latter
case and that the difference increases with higher densities and higher strangeness fractions.
The reason for this is that the reduced strength of the Λ vertices in the microscopic case
decreases the potential energy of the hyperons. The softer EoS is also in agreement with
the fact that the additional hyperon-hyperon interaction, caused by the σs and φ mesons
and assumed to be strongly attractive at the considered densities [30], is at least in part

implicitly included. At first sight this result might be surprising since in both cases U
(N)
Λ

was adjusted to the same value. But this agreement only exists at saturation density and
for very small strangeness fractions. Since the ratio of scalar and vector couplings changes
with the density due to their medium-dependence the equations of state differ when leav-
ing the equilibrium density. Strictly, identical EoS were only recovered if scalar and vector
potentials scaled proportionally to each other. This is also not the case in a RMF model
with constant couplings since the scalar and vector potentials scale differently (partly due
to nonlinear interaction terms) but the effect is less pronounced.

For model 1 the minimum of the EoS is shifted to higher densities and bound stronger
than in model 2 where the shift of the minima is practically negligible. Overall, the EoS
is much softer in model 1 at lower densities and both models approach each other again at
higher densities. Here, the behavior of model 2 is in closer agreement with non-relativistic
Brueckner calculations where the position of the minimum seems to be shifted to lower
densities [35] or is relatively independent of the strangeness fraction [34,36]. However, a
comparison with non-relativistic results is difficult since these do not reproduce the correct
saturation density of symmetric nuclear matter [50]. This behavior is closer examined in
Fig. 2 where we display the saturation density and the binding energy at saturation density
as a function of the strangeness fraction. The Groningen parameter set exhibits a less pro-
nounced difference between the different models mainly due to its weaker density dependence
at low densities [28]. The differences between model 1 and 2 are always larger than between
the different choices Rq and Rm of the scaling factors. At high strangeness fractions model
1 and 2 seem to approach each other again. This is obvious since their density dependence
is identical in the limit of pure systems. However, the binding energy of pure Λ matter is
not identical for model 1 and 2 as can be seen from Fig. 3. The reason is that the scaling
factors have been adjusted at fS = 0 and differ slightly due to the behavior of the vertices at
low densities and the different choices of the density dependence. This is seen by comparing
the scaling factors of model 1 and 2 in Tab. I. Again, the difference is most pronounced for
the Bonn A potential. Results for the DD parameter set are not shown but closely resemble
the Groningen results.

This distinct difference is mainly caused by the strong density dependence of the vertices
of the Bonn A parameterization at low and very high densities. The reason for this behavior
is not the Bonn A potential itself but the polynomial function in kF that was used for
the parametrization of the self-energies. Even though this function is very accurate around
saturation density and well suited for the calculation of finite nuclei [31] it leads to some
uncertainties when extrapolated to very low densities. Since in model 2 the hyperon vertizes
are adjusted at low densities, where due to numerical difficulties Brueckner calculations
are problematic, the extrapolation to higher densities might involve uncertainties. The
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extrapolation of model 1 is safe since the hyperon vertices are evaluated around saturation
density where they are well defined. The Groningen and the DD parameter sets avoid this
problem by choosing a rational function in ρ to fit the self-energies [45] leading to a stable
extrapolation to low and very high densities.

C. β-stable matter

In the following we study the composition of the equation of state for neutron star matter
as discussed in Sec. IIIA. We first examine the case where the vertices depend on the total
density (model 1) and consider only Λ-hyperons. This allows us to compare the results with
Sec. III B. In Fig. 4 the pressure versus the energy density is shown for the three different
interactions. The DD parameter set has the softest EoS, i.e. the lowest pressure at a given
ε, closely followed by the Groningen parameter set while Bonn A is much stiffer at high
energy densities. The curves calculated with the scaling factor set Rq (upper lines) are
much stiffer than the curves using the semi-microscopic set Rm (lower lines). This difference
is larger than expected from Figs. 1 and 2. This is mainly due to the reduced repulsive
Λ-vector potential for set Rm. The appearance of the Λ sets in at slightly lower densities
which introduces an additional softening of the EoS by a reduction of the kinetic pressure.
Remarkably, the differences between the two choices of the scaling factors can be larger than
the differences between two parameter sets indicating that a closer examination of the scaling
factors RαΛ is necessary. The properties at high energy densities are mainly determined by
the density dependence of the vertices. Here, the Groningen and DD parameter set follow
closely Brueckner calculations. The high density extrapolation of the Bonn A parameter set
leads to an increase of the coupling strength and the contribution from the repulsive ω field
exceeds the attraction from the σ field causing the stiffer EoS.

For comparison with constant coupling RMF calculations we also performed calcula-
tions including the complete baryon octet. The scaling factors RαY were determined in
the standard approach from SU(6) symmetry (set Rq, see Table I). Results are shown in
Fig. 5. Again, at high densities the Groningen and DD parameter set are much softer
than the Bonn A parameter set. But their properties at low and intermediate densities
are considerably different. The Groningen EoS exhibits an extreme softening at low den-
sities. This is explained by the early appearance of the Σ−. The strong coupling to the δ
field, being only present in the Groningen parameterization, reduces the Σ− effective mass
m∗

Σ− = MΣ− − ΓσΣ−Φσ − 2ΓδΣ−Φδ. In contrast the isoscalar Λ hyperon does not couple
to the isovector δ meson. Moreover, because of isospin, the effective masses of the Σ+ and
Ξ0 are increased and their treshholds are shifted to higher density regions. This behavior
is different from [5] where the inclusion of a constant coupling δ meson did not noticeably
change the EoS.

Results for the composition of neutron star matter for the different parameter sets are
presented in Fig. 6. One recognizes that the early and strong appearance of the Σ− temporar-
ily reduces the electron fraction and strongly suppresses the myons. Clearly, this behavior
opposes other results of RMF and Brueckner calculations, e.g. [5,7]. The extraction of the
isovector couplings from the Groningen potential leads to relatively large values indicating
a slight increase of the δ coupling above saturation density. This might cause the observed
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behavior and could be fixed by adjusting the scaling factor RδΣ− to the strength of the Σ
isovector potential. Since experimental data is not available we used RΣδ = RρΣ = 2 from
SU(6) symmetry instead. Further investigations are necessary.

The composition of neutron star matter for the DD parameter set resembles the outcome
of non-relativistic Brueckner calculations [6,7] with the Σ− appearing before the Λ. For the
Bonn A parameter set the Λ and Σ− appear at relatively high densities of about 2.5− 3ρ0

which also explains the stiffer equation of state. At higher densities when the other hyperons
are present the number of hyperons exceeds the number of neutrons. This behavior is
observed for all parameter sets with the strongest effect for the Groningen parameter set.
The same result was also found in other models, e.g. [2,5].

As mentioned in Sec. I one problem of RMF calculations with coupling constants fitted
to properties of finite nuclei is the appearance of negative effective masses in neutron star
matter at densities of ρ ≈ 0.5 − 1 fm−3 [5]. This is mainly caused by the small effective
mass at saturation density that is needed in order to reproduce the observed spin-orbit
splitting in finite nuclei [18]. This causes a rather stiff equation of state and confirms that
the extrapolation of phenomenological parameter sets to high densities can be problematic.
In the DDRH approach negative effective masses appear only at much higher densities where
the validity of the model is already questionable because baryons and mesons will cease to
be the relevant degrees of freedom. We therefore stop the calculation when negative effective
masses appear and do not attempt to extrapolate to higher densities as in [5,22]. For the
Bonn A parameter set m∗ gets negative around ρ ≈ 1 − 1.2 fm−3 ≈ 6 − 8ρ0 being mainly
caused by the mentioned increase of the σ coupling strength at high densities. For the
Groningen parameter set the neutron effective mass gets negative at around ρ ≈ 1.2 fm−3.
The reason is here the additional reduction of m∗

n by the coupling to the δ meson. For the
DD parameter set m∗ is still positive for the highest considered densities of ρ = 1.5 fm−3.
The different behavior of the DDRH model compared to constant coupling models originates
in the density dependence of the vertices and is mainly caused by the fact that the vertex
density dependence takes into account information from wider density range as found in
finite nuclei and allows a safer extrapolation to higher densities. The medium dependence
of the vertices implicitly includes higher order correction terms that can be partly identified
with the nonlinear meson self-interactions of RMF models. Also, this explains why models
with nonlinear vector self- interactions [19,20] follow more closely DB calculations avoiding
negative effective masses.

Finally, we turn to the discussion of the results obtained with model 2. In Fig. 7 the
equation of state for the different density dependent interactions is shown and Fig. 8 displays
the corresponding particle distributions. Compared to model 1 the hyperons appear at very
high densities of about 3ρ0. In addition their ratio increases very fast and around 3 − 4ρ0

the number of Λs already exceeds the number of neutrons. This leads to a stiffer EoS at low
densities and a strong softening above ε = 500 MeV fm−3. The suppression of the hyperons
in model 2 is a direct consequence of the different choice of the density dependence. The
different rearrangement self-energies for each baryon multiplet induce a relative shift in the
chemical potentials that impedes the appearance of the hyperons. The differences between
the choices of scaling factors RαΛ are the least pronounced for the Bonn A parameter set
having the strongest density dependence and the most pronounced for the DD parameter
set having the weakest density dependence. Here, the Λ does not appear for the densities
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considered if the scaling factor set Rq is chosen. This leads to the stiffest equation of
state. For the semi-microscopic set Rm all interactions have very similar equations of state
approaching asymptotically the results of model 1 at high densities. Using set Rq from
SU(6) symmetry and including all octet hyperons we found that the appearance of the Σ
and the Ξ is shifted to even higher densities (ρ > 0.7 fm−3) or is completely suppressed for
all interactions and does not noticeably modify the EoS.

We conclude that the composition of neutron star matter strongly depends on the density
dependence of the interaction. In practice this is problematic in model 2 since the low
density behavior of the vertices has to be extrapolated from DB calculations and introduces
additional uncertainties. On the other hand, there are indications that model 2 resembles
the outcome of Brueckner calculations. Improvements of DB calculations in the low density
region might resolve these problems. Again, we remark that we expect that a realistic density
dependence is a mixture of model 1 and 2 and has to be determined from DB calculations
of strange matter.

IV. NEUTRON STARS

The condition of hydrodynamical equilibrium inside a neutron star determines the con-
nection between experimentally observable properties like the mass and possibly the radius
of a neutron star and the theoretical equation of state of neutron star matter. In this work
we only consider static spherically symmetric neutron stars. The condition of hydrodynami-
cal equilibrium in general relativity is expressed by the Tolman-Oppenheimer-Volkoff (TOV)
differential equations [51]

dm(r)

dr
= 4πr2ε(r) (37)

dP (r)

dr
= − [ε(r) + P (r)] [m(r) + 4πP (r)r3]

r2
[
1− 2m(r)

r

] , (38)

where r is the radial distance from the origin of the neutron star and m(r) is the mass
contained in a sphere of radius r inside the star. The gravitational constant G has been set to
1 for simplicity. Pressure P (r), energy ε(r) and mass m(r) distributions can be calculated for
a given pressure-energy relation P (ε) as discussed in section III . The differential equations
are solved by integrating from the center, starting with a central pressure Pc, until the
surface (radius r = R, P (R) = 0) of the neutron star is reached. The radius R of the star
and its gravitational mass are related by M = m(R) = 4π

∫ R
0 drr2ε(r). Varying the central

pressure one finds a mass-radius relation M(R) describing a family of neutron stars that
will depend on the choice of the equation of state.

Since it is a well known fact that Brueckner theory breaks down at very low densities
one cannot rely solely on an EoS derived from the NN interaction for the description of
neutron stars. Furthermore, in the surface region of neutron stars a so called crust of sub-
nuclear density (where ρ is much lower than the normal nuclear matter saturation density
ρ0) exists consisting of atoms and nuclei and having its own specific degrees of freedom.
Even though the crust contributes only about 1% to the total mass and does not strongly
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affect the maximum mass of the star, its thickness is about 10% of the radius and influences
the size of very light stars.

For the above reasons, we use the Baym-Pethick-Sutherland (BPS) EoS [52] for sub-
nuclear densities ρ < 0.001 fm−3 and results of Negele and Vautherin for densities of ρ >
0.001 fm−3 [53]. The transition density to the DDRH EoS is defined by the intersection of
both EoS. One finds values between 0.3 ρ0 and 0.7 ρ0 depending on the different interactions.

In Fig. 9 mass-radius relations calculated with the equation of state of the Groningen
parameter set are shown. For model 1 we find maximum masses of Mmax = 1.69M� for the
semi-microscopic scaling factor set Rm and Mmax = 1.89M� for the SU(6) set Rq. Including
the full set of octet hyperons into the EoS the mass is further reduced to Mmax = 1.65M�.
The maximum density in the center of the star is similar in all three models and reaches
ρc ' 0.91 − 0.99 fm−3 which corresponds to 5 − 6ρ0. Including all hyperons the minimum
radius of the neutron star decreases from Rmin ' 11.7 km to Rmin ' 10.8 km and the radius
of neutron stars with the typical experimentally observed mass of M = 1.4M� is reduced
from R = 12.7 km to R = 11.7 km. The smaller radii are caused by the early occurrence of
the Σ− and the softening of the EoS at low densities that was discussed in Sec. IIIC. Also,
the star mainly consists of hyperons as can be seen from the particle composition of Fig. 6.
Model 2 leads to significantly higher maximum masses of Mmax = 1.95M� (Rm) respectively
Mmax = 2.12M� (Rq) because of the appearance of the hyperons only at higher densities.
Since, in addition, the maximum central density is only about ρc ' 0.73 fm−3 the star is
mainly composed of nucleons.

From these results the density dependence of model 1 seems to be favored because of the
closer agreement with other calculations of neutron star masses. The big difference between
the maximum masses for the two sets Rq resp. Rm emphasizes the sensitivity of the model
to the choice of the scaling factors RαY . The effect is as large as the inclusion of addi-
tional hyperons and should also be examined in RMF calculations with density independent
coupling constants.

For the Bonn A parameter set we find comparable results as is seen from Fig. 10. The
maximum masses for model 1 of Mmax = 1.76M� (Rm) resp. Mmax = 2.07M� (Rq) (only Λ)
and the central density ρc ' 1.15 fm−3 are higher than for the Groningen parameter set due
to the stiffer equation of state. Including the full set of octet hyperons the maximum mass
is not reached before the effective mass gets negative at about ρ ' 1.02 fm−3 where a mass
of M = 1.81M� is found. The same is observed for model 2 where the effective mass gets
negative at about the same density indicating maximum masses higher than 1.7M� (Rm)
resp. 1.8M� (Rq). Despite these differences the radii of neutron stars with 1.4M� are all in
the range of R = 12.5− 12.8 km and in close agreement with the results for the Groningen
parameter set.

Results for the DD parameter set are displayed in Fig. 11. Having the softest equation
of state at high densities, this interaction also exhibits the smallest maximum masses of
Mmax = 1.43M� (Rm) resp. Mmax = 1.66M� (Rq) (Model 1, only Λ) and Mmax = 1.44M�
(Model 1, all hyperons). For model 2 the masses are again higher (Mmax = 1.77M� resp.
Mmax = 2.08M�) since the stars are mainly composed of nucleons. The DD parameter set
reaches central densities up to ρc ' 1.3 fm−3 in model 1 and ρc ' 1.0 fm−3 in model 2. The
soft equation of state reduces also the radius of the neutron stars. One finds a minimum
radius of Rmin ' 10.3 km and a radius of R ' 10.8 km for a mass of 1.4M� if all hyperons
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are included.
Even though the three different parameter sets and the different choices of the density

dependence give different predictions for the maximum mass of a neutron star the radius
of a typical neutron star with a mass of M = 1.4M� is in all models expected to be about
12.5 km while the minimum radius can get as small as 10.3 km. This is explained by the
fact that the radii are mainly influenced by the low to intermediate density behavior of the
EoS which is similar in all considered models. On the other hand, the maximum masses are
strongly influenced by the high density behavior being quite different for the investigated
interactions and models 1 and 2. Our results are compatible with non-relativistic Brueckner
calculations [6,7,54] and relativistic Hartree-Fock calculations (fitted to the Bonn A NN
potential) [22] that predict radii of 10−12 km and also possess a rather soft equation of state.
In contrast, most relativistic mean-field models with density independent coupling constants
find radii of 13−15 km, e.g. [2,55]. Our maximum neutron star masses of 1.44−1.8M� agree
with the outcome of different RMF calculations while non-relativistic Brueckner calculations
favor values of ∼ 1.3M�. This indicates that the non- relativistic EoS might be too soft
at higher densities where relativistic effects become more important. The high value of
∼ 1.8M� found for the Bonn A potential is probably caused by the inaccuracies from
the polynomial extrapolation of the density dependent vertices to the high density region.
Therefore, we favor the results of the Groningen and DD parameter set. We also performed
calculations with a purely hadronic EoS to examine the total effect of the hyperons on the
EoS. For the DD interaction a maximum mass of 2.05M� was found while the Groningen
and Bonn A parameter sets have masses of 2.35M� resp. 2.45M�. The observed reduction
∆M ∼ 0.5 − 0.7M� of the maximum mass caused by the inclusion of the hyperons is
comparable to other models [1,6,7].

V. SUMMARY AND CONCLUSION

We have extended the DDRH model to the strangeness sector including the full set
of SU(3)f octet baryons. Using realistic density dependent interactions derived from DB
calculations we examined the properties of neutron star matter. Starting with a medium-
dependent NN interaction that is parameterized by density dependent meson-nucleon ver-
tices we found that the extension of DB results from nuclear matter to hypermatter is
not unique. The structure of the DB interaction strongly indicates that the ratio RαY of
the nucleon and hyperon in- medium vertices and self-energies is mainly determined by
the ratio of the corresponding free-space coupling constants and is only weakly affected by
the background medium. We developed two different models to describe the connection
of the density dependence of the baryon vertices to the surrounding medium. In model 1
the vertices depend on the total baryon density and are not influenced by the strangeness
asymmetry of the medium. This ensures that the relative strength of the vertices remains
constant and follows closely the behavior of RMF calculations with constant couplings. An
extreme assumption in this model is that the vertices are influenced equally from all baryons.
However, in first order hyperons and nucleons should be independent of each other. This
was investigated in model 2 that assumes a dependence of the vertices only on the baryons
within the corresponding SU(3)f multiplet. While this leads to a more realistic description
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of slightly asymmetric systems, the model becomes problematic at very high asymmetries
since it completely neglects the higher order effects from of the other baryon multiplets. In
addition, in such systems the low density behavior turns out to be important which is not
well determined from Brueckner calculations. We examined the properties of NΛ matter and
found differences between the two models mainly at low densities and strangeness fractions
fS that are nearly vanishing at high densities and values of fS close to one. The conclusion
is that a realistic medium dependence of the in- medium vertices should be a mixture of
both models including the asymmetry and the total density. Such a description is pending
until DB calculations for the full strangeness octet will be available.

Application of the DDRH theory to weak β-stable matter leads to more complex con-
dition for chemical equilibrium than in mean-field calculations with constant coupling con-
stants. The occurrence of rearrangement contributions to the chemical potential connects
all particle densities strongly to each other which complicates the practical calculation con-
siderably.

An important aspect in our calculations is the value of the scaling factors RαY . Micro-
scopic calculations of the σΛ vertex show a strong deviation from the quark model value.
Choosing either RσΛ = 0.49 from NΛ T-matrix results (scaling factor set Rm) or RωΛ = 2/3
from SU(6) symmetry considerations (set Rq) and fixing the remaining scaling factors to the
same experimental potential depth of the Λ we found strong differences in the equation of
state. The smaller microscopic values lead to a much softer EoS and reduce the calculated
maximum neutron star masses by 10-15%. This behavior even though enhanced by the
density dependence of the interaction will also be visible for parameter sets with density
independent coupling constants and should be closely examined. Microscopic calculations
for the Σ and Ξ vertices are not available restricting full scale neutron star calculations to
the SU(6) symmetry values. But one has to review if these values are realistic and study
effects of their modification on neutron star properties [56,57].

We remark that our calculations did not examine the influence of the hidden- strangeness
mesons σs and φ explicitly that are assumed to cause a highly attractive hyperon-hyperon
interaction at intermediate densities and might lead to a small reduction of the neutron
star radii. On the other hand, the couplings of these mesons posses some uncertainties that
cannot be reliably fixed since experimental data are missing. In addition they are in part
implicitly included in the microscopic scaling factors.

An examination of neutron star properties favors model 1 as choice for highly asymmetric
dense systems. While model 2 predicts too high maximum masses and a suppression of the
hyperons, the results for model 1 are in close agreement with other calculations. For all
examined density dependent interactions we find radii of 10 − 13 km for neutron stars
with masses above 1.4M�. This is also observed in non-relativistic Brueckner calculations
while RMF calculations with phenomenological interactions usually favor larger radii. Our
maximum masses of Mmax = 1.65M� for the Groningen parameter set and Mmax = 1.44M�
for the DD parameter set are confirmed by other RMF calculations and are slightly higher
than in Brueckner calculations.

We conclude that the DDRH model allows a consistent calculation of strange matter
and neutron stars and yields results that are comparable with other models. It incorporates
the properties of the DB model using microscopic interactions at various densities as input.
The extrapolation to higher densities is more constrained than for phenomenological RMF
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calculations that use only information from the limited density range of finite nuclei for the
determination of their parameters. Improvements of the results, a more realistic density
dependence of the hyperon-meson vertices and more restricted predictions will be possible
if results from upcoming DB calculations for the SU(3)f baryon octet are available.
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FIG. 1. Equation of state of symmetric nuclear matter for Λ admixtures from 0% to 40%.
Shown are results for the Bonn A NN potential for different choices of the density dependence
(model 1 and 2) and the scaling factors (set Rq and Rm) .
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FIG. 2. Binding energy (top) and saturation density (bottom) as a function of the strangeness
fraction fS for the different choices of the Λ vertex. Results are shown for the Bonn A (left) and
the Groningen (right) parameter set.
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of the Λ vertex. Results are shown for the Bonn A (left) and the Groningen (right) parameter set.
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FIG. 4. Equation of state for neutron star matter in the DDRH model for different density
dependent interactions. Results are shown for model 1 including only the Λ and the different
scaling factors. The upper line of each interaction corresponds to calculations with set Rq and the
lower one to calculations with set Rm. For details see text.
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FIG. 5. Equation of state for neutron star matter for model 1 including all hyperons. Results are
shown for the phenomenological density dependence of Ref. [45] (solid line), Groningen parameter
set (dotted line) and Bonn A parameter set (dashed line). The SU(6) scaling factors from set Rq

are used.
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FIG. 6. Composition of β-stable matter in the DDRH model for the phenomenological den-
sity dependence of Ref. [45] (top), Groningen parameter set (middle) and Bonn A parameter set
(bottom). Results are shown for model 1 including all hyperons and scaling factor set Rq.
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FIG. 7. Same as Fig. 4, but results are shown for model 2.
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FIG. 8. Same as Fig. 6, but the density dependence is implemented with model 2. The scaling
factor set Rm was used.
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FIG. 9. Neutron star mass as a function of radius in the DDRH model for the Groningen
parameter set. Results for model 1 including only Λ (solid lines), model 1 including all hyperons
(dotted lines) and model 2 (dashed lines) are compared. The upper line of each model corresponds
to calculations with set Rq the lower one to calculations with set Rm. For details see text.
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FIG. 10. Same as Fig. 9 but for the Bonn A parameter set.
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FIG. 11. Same as Fig. 9 but for the phenomenological density dependence of Ref. [45].
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TABLES

Rm Rq

model 1 RσΛ RωΛ RσΛ,Σ RωΛ,Σ RσΞ RωΞ

Bonn A 0.49 0.4935 0.6225 2/3 0.3618 1/3
Groningen 0.49 0.5217 0.6061 2/3 0.3343 1/3
DD phenom. 0.49 0.5100 0.6170 2/3 0.3421 1/3

Rm Rq

model 2 RσΛ RωΛ RσΛ,Σ RωΛ,Σ RσΞ RωΞ

Bonn A 0.49 0.5690 0.5690 2/3 0.3040 1/3
Groningen 0.49 0.5387 0.5921 2/3 0.3222 1/3
DD phenom. 0.49 0.5251 0.6061 2/3 0.3287 1/3

TABLE I. Scaling factor sets Rq and Rm for the σ and ω hyperon-meson vertices of model 1
and 2. For details see text.
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