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Abstract 

We introduce Legendre sequences and generalised Legendre pairs (G L­
pairs). We show how to construct an Hadamard matrix of order 2£ + 2 
from a GL-pair of length f. We review the known constructions for GL­
pairs and use the discrete Fourier transform (DFT) and power spectral 
density (PSD) to enable an exhaustive search for GL-pairs for lengths 
f ::::; 47 and partial searches for other f, 

1 Definitions and Notation 

Let U be a sequence of e real numbers Uo, Ul, .'" U£-l' The periodic autocorrelation 
junction Pu(j) of such a sequence is defined by: 

£-1 

Pu(j) = L: UiUi+j mod £, j = 0,1, "" f - 1. 
i=O 
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Two sequences U and V of identical length £ are said to be compatible if the sum of 
their periodic auto correlations is a constant, say a, except for the O-th term. That 
is, 

Pu(j) + Pv(j) = a, j =I O. (1) 

(Such pairs are said to have constant periodic autocorrelation even though it is the 
sum of the auto correlations that is a constant.) If U and V are both ±1 sequences, 
compatible and a = -2, then they are called a generalised Legendre pair (or GL­
pair) of length £. We will denote a GL-pair of length £ by GL(£). In Sections 3-5, 
we restrict our attention to G L-pairs. 

An Hadamard matrix of order n is an n x n matrix H which has ±l-entries and all 
its rows and columns are orthogonal. In other words 

HHT = nIn 

where In is the identity matrix of order n. 

For the definition of supplementary difference sets the reader is referred to [WSW72]. 

We note that two compatible sequences may contain elements from any alphabet. 
If the elements of two compatible sequences are 0,1 then they are described as 
2 - {f; kl' k2 ; ),} supplementary difference sets (SDS). In this paper we are interested 
in the particular case of 2 - {f; £~1, £~1; £~1} SDS since these give, when the zeros are 
replaced by -1, compatible ±1 sequences which are a GL(£)-pair, and may be used 
as below to construct Hadamard matrices of order 2£ + 2. The Legendre or Jacobi 
symbol is written (aln) if n is prime or composite, respectively. When referring to 
the elements of a-I, 0,1 sequence we often write '-' instead of -1 and '+' instead 
of 1. 

The discrete Fourier transform (DFT) of a sequence U is given by 

£-1 

DFTu(k) = fJk = L UiWik , k = 0,1, ... , £ - 1 
i=O 

where w is the primitive £-th root of unity e 2ii. If we take the squared magnitude 
of each term in the DFT of U, the resulting sequence is called the power spectral 
density (PSD) of U. The k-th terms in the PSDs of U and V are denoted by IfJkl2 

and IVkI2. 
Example 1 The PSD of the sequence 1 2 2 -2 0 0 0 is 

9.000 19.988 13.220 7.792 7.792 13.220 19.988. 

If a sequence U is transformed by the operation of cyclically taking every d-th ele­
ment, where gcd(d, £) = 1, the sequence U is said to be decimated by d. That is, if 
V = U decimated by d, then Vi = Udi mod £. 
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Example 2 

1111000 decimated by 2 = 1100110 
1111000 decimated by '3 = 1101010. 

The set of all possible decimations of a sequence is called a decimation class. Since 
d is required to be relatively prime to f, a sequence of length £ has ¢( £) decimations, 
where ¢ is the Euler totient function, though sometimes these are not all distinct. We 
note that decimation by -1 is the same as reversing a sequence. Hence, by assuming 
that each sequence also represents its reverse, the maximum size of any decimation 
class is ¢(£)j2. Finally, we define compatibility between decimation classes. Two 
decimation classes are said to be compatible if and only if some sequence belonging 
to one class is compatible with some sequence in the other class. 

2 Some Preliminary Results 

We make use of the following well-known theorem [PFTV89, Chapter 12], [Tretter76, 
Chapter 10]. 

Theorem 1 Wiener-Khinchin Theorem The PSD of a sequence is equal to the 
DFT of its periodic autocorrelation function 

£-1 

lJ-Lkl 2 = L Pu(j)w jk . (2) 
j=O 

The periodic autocorrelation function is equal to the inverse DFT of the sequence's 
PSD 

(3) 

We note that 

Theorem 2 Two sequences are compatible if and only if their PSDs sum to a con­
stant. 

Proof. By straightforward application of (1), (2) and (3), we have 

£-1 
lJ-tkl 2 + IVkl2 = L(Pu(j) + Pv(j))w jk 

j=O 

£-1 
= (Pu(O) + Pv(O) - a)wO + 2: awjk 

j=O 

= c (k # 0) 
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1 £-1 . 

Pu(j) + Pv(j) = g I:(IJLkI2 + IVkI 2)w-Jk 
k=O 

1 1 £-1 . 

= g(IJLo1
2 + Ivol2 - c)wO + g I: cw-Jk 

k=O 

= a (j:f: 0). 

The inequalities k :f: 0 and j :f: 0 are required only in the final steps of the above 
equations in order to force the rightmost sums to vanish. 

Example 3 Two compatible sequences and their PSDs are shown below. 

Sequences 

1 2 2 -2 000 
2 1 -1 2 -1 0 0 

PSD (terms 1 to 3) 

19.988 13.220 7.792 
5.012 11.780 17.208 

25.000 25.000 25.000 (hence c = 25) 

In fact, the constant c depends only on the set of numbers comprising the sequences 
U and V. It is easily shown that 

(4) 

Hence, all permutations of the sequences yield the same constant. Theorem 2 is a 
generalisation of results that have appeared in the literature in other forms. 

The following useful relationships are easily proved by direct application of the defi­
nitions of decimation, autocorrelation and DFT . 

• If a sequence is decimated by d, then its autocorrelation is likewise decimated 
by d, and its DFT and PSD are decimated by d-1 mod f. 

• It follows immediately that compatible sequences remain compatible if they 
are decimated by the same amount. 

Remark: If U, V are (±1, O)-sequences then the above constant c is c = w - a, where 
w is the total number of non-zero entries and a is the constant from the periodic 
autocorrelation function of U and V. 

3 Legendre Sequences and Modified Legendre Se­
quences 

For the remainder of this paper we consider only G L-pairs. The following is well 
known (see for example [WSW72]) and is included for completeness only. Let p be 
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an odd prime. The -1,0,1 sequence U of length p is called a Legendre sequence L if 
its elements Ui li satisfy 

li = (ilp). 

In other words, lo ° and for i i= 0, li = 1 if i is a square modulo p and li = -1, 
otherwise. We call (-1, L), (0, L), or (1, L) a modified Legendre sequence. The values 
of the modified Legendre sequence are exactly the same as those of the unmodified 
one except for lo which is set to -1, 0, or +1, respectively. «0, L) is of course the 
original Legendre sequence but sometimes it is convenient to refer to it as a modified 
Legendre sequence.) Two sequences (el' L), (e2' L) with et, e2 E {-I, 0, I} are called 
modified Legendre sequences and they are defined in the obvious manner. 

Example 4 Let p = 7. The modified Legendre sequences (0, L) and (1, L) are given 
by 

(O,L) =0++-+-­
(1, L) = + + + - + - -. 

Lemma 1 Let p be an odd prime, then (1, -L), (1, L) is a GL(p)-pair. 

This lemma shows the existence of a GL(p)-pair for every odd prime p. We also 
note that 

Lemma 2 Let p = 2f + 1 be a prime power, then there is a G L( f) --pair. 

Proof. We use the Szekeres difference sets [GerSeb79] A and B with parameters 
2- {f; itl,~; ¥}. We note that if x E A then -x rt. A and if y E B then -y E B. 

Theorem 3 Suppose there is a GL(f)-pair. Then there exists an Hadamard matrix 
of order 2f + 2. 

Proof. The sequences are used to make two circulant matrices A and B of order .e. 
Then the following matrix is the required Hadamard matrix. 

+ + + + 
+ + + -

+ + 
A B 

+ + 
+ 

BT _AT 

+ 

Corollary 1 Suppose that there are 2 - {f' HI HI. HI} SDS Then there exists an 
, 2 ' 2 ' 2 . 

Hadamard matrix of order 2f + 2. 

Proof. The sequences are used to make two circulant matrices A and B of order f. 
Now let J be the f x f matrix of all ones. Set A = 2A J and B = 2B - J. These 
are now used in the matrix of Theorem 3. 
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4 Existence of GL(R)-Pairs 

C L( f)-pairs exist for the following lengths f (the following sets indicated for fare 
not necessarily disjoint), where: 

• f is a prime (see Section 3 this paper); 

• 2£+1 is a prime power (these arise from Szekeres difference sets, see for example, 
[GerSeb79]); 

• f = 2k - 1, k ~ 2 (two Galois sequences are a CL(f)-pair, see for example, 
[Schroeder84]) ; 

• f = p(p + 2) where p and p + 2 are both primes (two such sequences are a 
CL(f)-pair, see for example, [StanSprott58, Whiteman62]); 

• f = 49,57 (these have been found by a non-exhaustive computer-search that 
uses generalised cyclotomy and master-switch techniques, [GerSeb79]' 
[GysSeb97]); 

• f = 3,5, ... ,47 (these have been found by exhaustive computer searches de­
scribed herein); 

• f = 49, 51, 53 and 55 (these have been found by partial computer searches 
described herein). 

CL(f)-pairs do not exist for even lengths. The following lengths f ::; 200 are unre­
solved: 77, 85, 87, 91, 93, 115, 117, 121, 123, 129, 133, 145, 147, 159, 161, 169, 171, 
175, 177, 185, 187 and 195. 

5 Numerical Tools and Results 

5.1 The PSD Test 

We suppose that the set of numbers comprising sequences U and V are fixed and 
that only permutations of these sequences will be considered. Now every term in a 
PSD is non-negative. Hence if the sequences U and V are compatible, then no term 
in their PSDs can exceed the constant c in Theorem 2. That is, 

IILkl2 + IVkl2 = C ==} IP'kI2 ::; c. 

Equivalently, if any term of a sequence's PSD exceeds c, then the sequence can­
not be a member of a compatible pair and so may be discarded from our search. 
This test can be generalised in a straightforward manner to any family of sequences 
over any alphabet that have constant periodic autocorrelation function. (Since, the 
nonperiodic autocorrelation function being constant implies that the periodic auto­
correlation function is constant, the above test is also applicable for such candidate 
sequences. ) 
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Number % 
Number of passing passing 

SDS parameters £ w c sequences PSD PSD 
Test Test 

2-(21;6,10;6) 21 6 10 54,264 9,093 16.75% 
21 10 10 352,716 9,618 2.72% 

2- ( 21 ; 11 ,11 ; 11 ) 21 10 11 352,716 25,494 7.22% 
2-(25;9,9;6) 25 9 12 2,042,975 104,125 5.09% 
2-(25;13,13;13) 25 13 13 5,200,300 189,000 3.63% 
2- (31; 15, 10; 10) 31 10 15 44,352,165 1,620,835 3.65% 

31 15 15 300,540,195 1,595,384 0.53% 
2-(31;16,16;16) 31 16 16 300,540,195 4,358,104 1.45% 

Table 1: Empirical Performance of PSD Test for Binary Sequences. 

5.2 Empirical Performance of the PSD Test for Binary Se-
quences 

Exhaustive searches over the space of all binary 0, I-sequences were performed for 
various lengths £ and weights w (number of ones) to see what fraction of sequences 
actually pass the PSD test. The constant c, the threshold for the PSD test, was 
determined by (4). The results are shown Table 1. It is evident that very substantial 
reductions in the number of candidate sequences can be realised through the use of 
the PSD test. 

5.3 Application of the PSD Test to the Search for GL(f)­
Pairs 

Exhaustive searches for all G£(£)-pairs of length £ ~ 47 were conducted, and in­
complete searches for 49 :::; £ ~ 55. For reasons of efficiency, the computer programs 
dealt with sequences composed of 0 and 1 instead of ±l. We also found it convenient 
to identify each decimation class with an offset PSD component such that the off­
sets of compatible classes would sum to zero. (E.g., offset PSDs can be obtained by 
subtracting the two terms on the right hand side of (4) from the PSDs of U and V, 
respectively. Then, among all the decimations of a given sequence U, we can select 
that decimation with the offset IJ.L11 2 of greatest magnitude to be the representative 
of its decimation class, and we let the first component of its offset PSD be the offset 
of the decimation class.) 

The exhaustive search algorithm was divided into three steps. In the first step, all 
decimation classes of length £ and weight w = £11 are exhaustively generated, and 
each one that passes the PSD test is saved in a list. In the second step, the list is 
sorted by offset. In this manner, pairs of classes with equal and opposite offsets can 
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7742 3.747 4 7AC8 0.000 1 7AC8 0.000 1 
7D48 2.956 4 7A98 -1.618 2 76C2 1.618 2 
72B2 -3.783 4 76C2 1.618 2 7A98 -1.618 2 
7DOC 3.783 4 79A8 -2.236 2 6EC2 2.236 2 
7368 -2.956 4 6EC2 2.236 2 79A8 -2.236 2 
6CB8 -3.913 4 734A -2.827 4 check 7D48 2.956 4 
6D38 -3.747 4 sort 7D48 2.956 4 compat. 7368 -2.956 4 
7534 -3.445 4 --+ 7368 -2.956 4 -t 7658 -2.956 4 
7658 -2.956 4 7658 -2.956 4 7742 3.747 4 
734A -2.827 4 7534 -3.445 4 6D38 -3.747 4 
7BOA 3.913 4 7742 3.747 4 7DOC 3.783 4 
7AC8 0.000 1 6D38 -3.747 4 72B2 -3.783 4 
7A98 -1.618 2 72B2 -3.783 4 7BOA 3.913 4 
76C2 1.618 2 7DOC 3.783 4 6CB8 -3.913 4 
6EC2 2.236 2 7BOA 3.913 4 
79A8 -2.236 2 6CB8 -3.913 4 

Table 2: Exhaustive Search Results for f = 15. 

be quickly found, and the third step is to compute the autocorrelation functions of 
such pairs to confirm whether they are compatible or not. 

The results from these three steps for f = 15 are illustrated in Table 2. Decimation 
classes are represented in hexadecimal (0 = 0000,1 = 0001,2 = 0010, ... , F = 1111) 
with leading zeros ignored. Each decimation class is followed by its offset and the 
number of distinct decimations comprising the class. Decimation classes 6EC2 and 
79A8 are actually members of the same class, so the total number of decimation 
classes generated was 15. In the three rightmost columns, each line with a positive 
offset followed by one or more lines with a negative offset represent compatible classes. 
Note that class 7D48 is compatible with two different classes, namely 7368 and 7658. 

5.4 Exhaustive Search Results 

The results from the exhaustive searches for f ~ 47 are shown in Table 3. Nv de­
notes the total number of decimation classes that were generated, Np the number 
that passed the PSD test, and Nc the number that form a compatible pair with 
some other decimation class. In counting the total number of G L( f)-pairs that are 
formed, we follow the convention that any pair of sequences that can be transformed 
into another pair by exchanging the sequences, cyclically shifting or reversing either 
of the sequences, or decimating both by the same amount are considered equivalent. 
Thus, NCL denotes the total number of inequivalent GL(f)-pairs, which is approx­
imately equal to one half of N c. N r and Ns are analogous to N c except that they 
count sequences instead of decimation classes. For Nr , two sequences are considered 
equivalent if one can be obtained from the other by a cyclic shift or reversal. For 
N s , they are equivalent if and only if one can be obtained from the other by a cyclic 
shift. Since gcd(f, w) = 1, all f cyclic shifts of these sequences are distinct. 
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£ w Nn Np Nc NGL Nr Ns 
3 2 1 1 1 1 1 1 
5 3 1 1 1 1 2 2 
7 4 2 1 1 1 1 2 
9 5 4 2 2 1 6 9 

11 6 6 3 3 2 11 17 
13 7 14 3 3 4 10 18 
15 8 66 15 13 8 43 82 
17 9 95 11 10 8 74 146 
19 10 280 28 15 9 109 209 
21 11 1,464 107 36 22 207 408 
23 12 2,694 135 52 28 562 1,113 
25 13 10,452 378 77 46 770 1,540 
27 14 41,410 1,201 183 102 1,647 3,294 
29 15 95,640 1,895 255 139 3,546 7,076 
31 16 323,396 4,696 382 201 5,654 11,308 
33 17 1,770,963 20,284 548 287 5,475 10,940 
35 18 5,405,026 46,250 1,632 829 19,513 39,014 
37 19 13,269,146 77,403 1,298 679 23,236 46,470 
39 20 73,663,402 351,918 4,581 2,318 54,896 109,780 
41 21 164,107,650 516,993 2,888 1,463 57,678 115,330 
43 22 582,538,732 1,348,420 4,010 2,014 84,004 168,008 
45 23 3,811,895,344 6,095,209 6,071 3,058 72,810 145,620 
47 24 7,457,847,082 9,364,413 7,619 3,817 175,215 350,430 

Table 3: Summary of Exhaustive Search Results. 

The ratio between ND and Np in Table 3 shows that the effectiveness of the PSD test 
continues to increase with increasing f!. The table also illustrates just how quickly 
the number of inequivalent GL(C)-pairs grows with C. It is clearly impractical to 
list all the G£(C)-pairs here. In lieu of that, we list just one pair for each C ::; 55 in 
Tables 4 and 5. We have attempted to list only pairs that are not produced by known 
methods of construction. The sequences for C = 49,51,53 and 55 were produced by 
partial searches that employed the same technique as the exhaustive searches. The 
complete list of inequivalent G L-pairs is available upon request from the authors. 
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Length Sequences 
3 ++-

++-
5 +++ -

++-+ 

7 +++-+--

+++-+--

9 ++++-+ 

++-+-++--

11 ++++-++----
++-+-+-++--

13 + + + - + + + - + - - - -

+++-+--+-++--
15 +++++ +----++­

+++ -+-+-++--+-

17 ++++-+++--++-----

+++-+--++-+-+--+-

19 ++-+++-+++-----+-+-

++++--+--++-+-++---

21 + + + + + + - + - - - - + - - + + - + -

+++--+-+-+++--++-+-
23 + + + + + - + + + - + - - - - + + - - + -

+++-+--+-++-+++---+-+ 

25 + + + - + + + + - + - + + - - + - + + - - - -

+++++---+-+--++--++-+-+--
27 +++++-+-+-++++--++---+--

29 

31 

++-++--++--+-++++---+ +--+-

++ +-++++++--+--++- + +---+-

+++++-++----+-+++--+-+ 

++++++++--+-+-+----+ ++ 

++--­

+ + 
+++++---+++--++--++-+-+--+--+--

33 + + + + + + - + - + - - + + + + - + + - + - - + - - + - - -

+++-++--+++-+-+--+--++ +--+++----

35 +++--+-++--+-+++++-+++-- ++ -+-

++-++++-+-+--+---++++---+ ++-+-+--

37 ++++++++-+-++--+-+-- + -++--+-+-+---­

+++-++-+--+++-+----++++--++----+-++--

Table 4: Sample GL{f)-Pairs from Computer Searches - I. 
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Length Sequences 
39 +++--++++++-+--+++-+ +-+ ++-+--+ 

++-+-++--+++-+++-----++++-+ ++ --+-­

+--

41 ++-+++-+++++-+--+++-- -++ -++-+-+---

---+-
++++++---++-+--++-+-+-+--++ + + - + +-

---+-
43 +++-+++++ -+--++++-++--+-+ +++---+ 

----+_.-
++-++++---++-+--+++-+-+--+++-+---+-+ 

+ ---+-

45 ++++-++-+++--+-+++-+-++ --+++ ++----

47 

49 

-+-----+ 

++-+-++-++++---+---+++++---++--+- ++ 

-+---+-+ 

+++-+++++-+-++-+++---++-+ - + - - + + + +-

-----+-- + 

++++-++-++---++---+-+- ++-+++ -+-+--

+-+++-+­

++++++++++--+--+++++----++ 

+-- +-
+ - + - + - ++ 

++-+++--+--+-+-+++---+-+++ ++-+--+ 

+--+-+-++- + 

51 ++++--++--++--+-+++++-++++-+--++-

+ +---++ 

++++++-+-+-++---+-+++-- +-+ 

+--+-++-+ 

-+--
+ + - + ++-

53 +++++-+-++++--+-++--++++-+ +-+-++ 

-+-----++-- + - + ---
++++-++--+--++--++++--+-- -++- +-+++ 

+-++-+-+-++--

55 +++++-+++-++--+--+++-+-++++--+--++-+ 

-+ --- --++---+-+-­

+++++- --+++--+-+-+++-++--+-+- +--+­

+--+++-++++---+----

Table 5: Sample GL(f)-Pairs from Computer Searches - II. 
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