
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



:., .. 

• 

-----~--------------"'" 

NASA Contracto.t Report 165854 

(NASA-CR-165B5~) APPLICA110N OF TtiE }ltilTE N82-20561 
~Lta~NT aETHOD 10 ROTIR~ WING AEHOELA511CITY 
Fiual Report (CalifOrnia U~iV~) 232 P 
HC A 11/lH A01 CSCL 20K Unclas 

G3/39 0931l 

APPLICATION OF THE FINITE ELEMENT METHOD 
TO ROTARY WING AEROELASTICITY 

F. K. Straub and P. P. Friedmann 

Grant NSG-1578 
February 1982 

f\JJ\SI\ 
National Aeronautics and 
Space Administration 

Langley Research Cent. 
Hampton, Virginia 23665 



• 

• 

FOREWORD 

This research was conduct ~ at the Mechanics and stcuctures Depart­

ment, School of Engineering ant • .,lied Science, University of California, 

Loa Angeles under NASA Grant NSG - 1578 funded by the structures Labora­

tory AVRADCOM Research and Technology Laboratories and NASA Langley 

Research Center, Hampton, VA. 

The research was monitored by Dr. c. E. Hammond and Dr. Warren Young 

from the structures Laboratory. The authors wish to express their appre­

ciation to the grant monitors for their useful comments and suggestions. 

The principal investigator for the grant was Professor Peretz P. 

Friedmann. This document constitutes the first author's ph.D dissertation • 



• 

• 

SUMMARY 

A finite element method for the ~patial discretization of the dynamic equa­
~ions of equilibrium governing rotary-wing aeroelastic problems is presented. 
The equations of motion are nonself-adjoint. nonlinear. and in partial differen­
tial form. For this class of problems. variational principles are not avail­
able. 7h ~s. formulation of the finite element equations is based on weighted 
Galerl in residual!. This Galerkin finite element method reduces algebraic manip­
ulativ~ labor significantly, when compared to the application of the global 
Galerk1n method to similar problems. However. more computer time is spent on the 
numerical calculations • 

To illustrate the application of the Galerkin finite element method. the 
coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor 
blades in hover are calculated. The fin'lte element method is used to remove the 
spat1al derendence from the equations. The ensuing set of nonlinear, ordinary 
differential equations is linearized about an appropriate nonlinear static equi­
librium position. The number of nodal degrees of freedom in the discretized sys­
tem is reduced significantly through a normal mode transformation. The nonlinear 
static equations. determir.ing the equilibrium position, are solved iteratively 
using the Newton-Raphson method. The linearized dynamic equations are reduced to 
the standard eigenvalue problem from which the aeroelastic stability boundaries 
are obtained. 

The convergence properties of the Galerkin finite element method are studied 
numerically by refining the discretization process. Results indicate that four 
or five elements suffice to capture the dynamiCS of the blade with the same accu­
racy as the global Galerkin method. However. for a reliabl~ analysis, two modes 
for each elastic degree offreedom are required, since the second lag mode deter­
mines system stability for certain values of elastic coupling. 

Next. the method is applied to the more practical couplea flap-lag-torsion 
aeroelastic stability and response problem of hingeless helicopter rotor blades 
in trimmed forward flight. Emphasis is placed on consistent discretization of 
the torsional degree of freedom. 

No previous finite element solutions for the stability and response of non­
linear. nonconservative systems with periodic coefficients are available. There­
fore, the general formulation is specialized to the coupled flap-lag problem in 
forward flight which is used to establish the computational feasiblity of the 
Galerkin finite element method in the forward flight regime • 

The nonlinear. periodic coefficient. finite element equations are linearized 
about a nonlinear time dependent equilibrium position. namely. the steady-state 
response of the system. This response is obtained iteratively using quasilinear­
ization. Aeroelastic stability is determined from the linearized perturbation 
equations using Floquet theory. 
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1.1 Introduction 

SECTION 1 

nmOOOCTION AND REVIEW OF 

PEBTINENT LITERATURE 

Rotary-wing aircraft are widely used today in uoth civilian and 

military veraiona. However, performance characteristics mu.st be 

improved to meet requirements on improved speed, range, payload, 

maneuverability, maintenance .md comfort. Of the ma.ny canponents 

governing the performance of rotary-wing aircraft, the rotor is of 

outstanding importance. Consequently, one of the most active research 

areas in aeroelasticity t~ is rotary-wing aeroelasticity. 

The coupled :nap (bending out-of-plane of rotat ion), lag (bending 

in-plane of' rotation), and torsional aeroelastic behavior of an 180-

lated rotar blade is the basic buUd1..'lg block f"ran which a more can-

plete syetem an.al.ys is can be developed. A clear Wlderstanding of the 

single blade behavior, governed by the canplex interaction of struc-

tural, inertia, and aerodynamic forces, 13 therefore imperative. Both, 

stabUity and response, lIlUBt be well uncierstocxl. Terminology and con-

figuration parameters associated with hingeless rotor blades which 

bave uecane an incre&8~ attractive concept are given in Figs. 1.2. 

Several. studies have derived equations capable of simul~t;:tng the 

motion of this configuration with varying degrees of sophistication. 

A canpr~hensive review of rer:ent tievelopcent8~.n this area 1.8 given by 
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Friedmann (1]. The moat s~1ficant conclusion from previous research 

is the fact that the rotary-wing aeroelastic stabUity problem is 

1nr~rently nonl1..,ear. As a consequence, the corre(;t treatment of this 

aeroelastic stability problem requires the derivation ot the dynamic 

equations of equilibrium in a carefUl and consistent manner such that 

moderate defiections I based upon the assumption of sma.ll strains aDd 

finite slopes, are properly incorporated in the matht"!ll&tie&l. model (1], 

[2] • When the equations o'f motlon are formuJ.ated in tb1s lII&lUler, non­

linear terms can appear in the structural, inertia and aerodynamic 

operators associated with t~is aeroelastic problem and the f1naJ. 

equations of motion Will he··e a partial d1f:t"erential nonlinear form 

(1], [2]. 

In rota."'Y-~~ aer~l&sticity the nonlinear equations of motion 

in p&rt:1&l. differential form are usually 801'red by applying Gal.erltin I s 

method to elim.in&te the spe.t1.&l. de1Jel1dence of the problem [1] - [3]. 

This procedure yields a set of coupled nonlinear ordinary d11'ferent ial 

e~uations for the dynamics of the blade. It is common practice, [1]­

(3], to obtain actual aeroelastic stabUity boundaries by linearizing 

the equations of motion about an appropriate equUibrium position and 

extracting stabUity in1"ormation fran the eigendata associated with 

the linearized system. 

Typical studies, [1] - [3] 1 dealing with practical blade configura­

tions in hover, or in fOI"Wl\rd night, are representative of the e.lge­

braic complexity encountered when applying Galerkin's method to 

rotary-wing aeroel.astic problems. From the 1.nBpection of these and 
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similar studies it is c~ear that methods of 8o~ution baaed upon the 

modal G&lerk,1n method. ~e&d. to extremely cumbersome algebraic manipula­

tions, 'Which have to be carried out m&mlAl.ly or by alternative meana 

such aa algebraic manipulative systems. In aome cases, the amount at 

~ebraic manipulAtions &8sociated 'With the glo'ou Ge.."'..erltin method is 

c:..~ excessive &8 to prohibit treatment of canplicated blade con:r~a­

t10ns in a realistic manner. Therefore, in this study the spatial 

dependence will be elilllinated using a Ge.lerkin type finite ~ement 

method. Th:l.s essentially local G&lerltin method enables one to dis­

cretize the pa.rt1a.l ditterentiaJ. equat1on~ of motion directly. Conse­

quently, a significant reduction in the al8ebraic manipulative labor 

required for the solution at the problem i8 a.ccanpl.1shed. 

During the past f1ft~en years, the finite element method has 

undergone explosive growth and~ at the present 5 it has evolved fran a 

structural analysis tool to a general mathematical method for solving 

partial. differential equations, which is competitive with finite dif­

ferences, for general applications, and superior to finite differences 

in structural dynamic a applications [4] - (8]. For conaervative self­

adjoint, linear problema, the finite element model faJ:' the system can 

be conveniently generated by applying appropriate variational princi­

ples. Existence at these variational principles will also, in most 

cases, gu.e.rantee the ccxw"<'::gence of the method. For nonael.1'-adjoint, 

nonconservative problema, such as the flutter or aeroela.8tic problem, 

variational. prine iples are not ava1lable. Thus, generation ot the 

finite element model fo~ aeroelastic, nonconservative systems is more 
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canpl.icated and. convergence of the method 18 not suaranteed [9]. 

The rotary-wing aeroelastic problem 1s nonself-adjoint, noneOD-

servat1ve and. nonlinear, thus, formulation of a finite element method 

for this problem 13 by no means straightforward. However, finite 

elemen"" discretization of theae equations of motion will essentia.lly 

el1minate the cumbersome algebraic manipulations &asociated with the 

global. Galerk1n method. 

The purpose of the present study u to develop a local. Gal.erkin 

method of lie ighted res idUAls (5) - [8], [10), [ll ] , which 1.3 used to 

diacretize the spat1&! dependence of the equations re3ulting in a 

f1nite element formulation of the rot&ry-~1ng ~roelaatic problem. 

This method 13 aPJllied directly to the equations of motion ~ pu-t1a.l. 

ditrerential form and leads to a finite element formulation of tte 

rotary-wing aeroelaatic problem, avoiding the excessive algebraic man-

1:pu.lAt1ona required by the application of GeJ.erkin I s method when using 

global. modes (1. e • J convent 10nal method). 

To illustrate the method and establish its convergence properties, 

the method is applied to some t:roica.l. rotating blade free 'tibration 

i1roblems and to the coupled nap-l~ aeroelastic stability calculation 

of a hingelesB helicopter rotor blade in hover. Comparison of the 

solutions obtained, 'h-.r using the finite element !lJethod, with previously 

published results is U3ed to establl£h the convergence properties of 

the method. It is concluded that this formulation hAS the potentiAl uf 

becOOling a powerful and practical tool tor salving ratarJwwir..g aero-

elastic stability or response probl.ema. 

'+ 
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Next, the Galerltin finite element method is extended to dis­

cretize the coupled flap-lag-torsion aeroelastic stability and 

response problem of hingeleas helicopter rotor blades in forward 

flight. In this caae, the equations of motion contain periodic time­

vary11lg coefficients. For simple blade configurations l finite element 

solutions for the flap-lag case are compared with previoualy published 

results. In addition, more complicated blade configurations c~n be 

treated efficiently. Here, th& full potential of the ~« method 

becomes evident, as it enables one to model the blade more realistic­

ally to a degree which has not been achieved previously. 

1.2 Review of Discretization Procedures Used in Rot!EY-Wing 

Dynamics and Aeroelasticity 

The rotal"'Y'-wing aeroelastic problem is governed by partial dif­

ferential equations. lbe first step in solving these equations is to 

discretize the spatial dependence of the dependent variables such 

that a set of ordi.n&ry differential equations is obtained. Analysis 

of these equations will yield the dynamic sYEtem behavior. 

Ty:plcally, Galerkin I s method of we ighted res iduals is used for 

the discretiza.tion procedure (1] - [3]. Thus, each elastic degree of 

freedom is represented as a finite sum of mode shapes. T'aese modes 

are taken as the coupled [3] or uncoupled (2) free vibration modes of 

a rotating blade. They ar\.. genera.ted fran the uncoupled free v1bra.­

tion mode shapes of a nonrotating blade, for which exact expressions 

are available. Most studies, in particular those considering the 
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forward flight case, use only oD.e mode for each el.astic degree of 

freedom. When more than one mode is used, the complexity of the 

problem leads to extremely cumbersome algebraic manipulations which, 

in some cases, are so excessive as to prohibit realistic treatment of 

complicated blade configurations. 

Thua, it becomes compulsory to look for alternative discr~tiza-

tion procedures. Two such methods, the integrating matrix method and 

the finite element method: will be introduced in this section. There 

are, of course, other methods. However, these two have been applied 

more widely to rotating beam problems and seem to have greater promise 

with respect to treatment (If aeroelastic problems. 

The integrating matrix method (IMH) provides a means to eliminate 

the spatial dependence in rotating beam vibration problems. Vakhitov 

developed the method and used it to solve for stl.tic deflections of 

beams [12] and for coupled bending-torsion vibra.tions of a rotating 

blade [13]. However, only few numerical results were presented. 

Hunter [14] extended the numerical scope of the method and investigat-

ed coupled bending-bending vibrations of a rotating propeller blade. 

Subsequently, several researchers applied the ]}'1M to a variety of 

rotating beam vibration problems. \olhi te [15] formulated the coupled 

bending-tor-::ion problem. Murthy [16] inve8t~ated flapwise bending 

and coupled nap-torsion vibrations. White and l-1alatino [18] solved 

the :tlap-lag and the nonlinear torsion proble:m for the same propeller 

blade as considered by Hunter [14J. Finally, Kvatcrnik, fihite, and 

Kaz& [19] usp.d the I!~l to solve nonlinear flap-lag ancl axial. vibration 
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problems. They also indicated the possibility of applying the IMM in 

aeroelastic stability analyses of helicopter rotor blades. In what 

follows, a br~ef description of the II<M, its basic properties and 

numerical performance when applied to rotating beam problems, is 

given. 

The IMM is based on direct numerical integration. The illtegrating 

matrix may be viewed as a matrix operator which by premultiplying a 

vector, containing as elements the values of a fUnction ~t discrete 

stations along the blade, transforms it into another vector having the 

integ:rals of the function (frm one end of the blt>.de to each station) 

as elements. To accOWlt for the boundary condition, a constant 

vector has to be added. In order to apply the IMM to\'l8.I'ds the solu-

tion of a di'ffereptial equation, it is necessary to write the differ­

ential equation, or an integrated form of it, at a number of stations 

along the blade. The resulti...'1g set of equations ba.s to b~ cast in 

matrix form. The integrating Ul&trix can then be used to express the 

equations in terms of one set of unknowns, either the displacements or 

the ~~ental derivatives (second-order for bending, first-order for 

torsion) at each station. Thus, discretization is achieved and the 

vibration problem is now posed in the form of a matrix eigenvalue 

'PI'oblem. 

Derivation of the integrating matrix is base-l on piecewise poly-

nomial interpolation. If', fOl' convenience, eqll8J.ly spaced collocation 

points are chosen, Newton's forward-dif'ference interpolation formula 

can be used to expr~ss the poJ.yr.omial coefficients in terms of the 
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function values at the appropriate colloc&tion points. Integration 

of the polynomial expressions yie~ds the e~ement8 of the integrating 

matrix. 

The IMM al~ leads to nonsymmetric system matrices, even when 

considering a self-adjoint problem. Furthermore, the m&trices are not 

banded. The ei8envectors are not orthogonal with respect to the sys-

tem matrices. Further, the 004 does not yield upper bound solutions. 

Last, the dynamic matrix i8 degenerate, leading to zero eigenvalues 

which correspond to infinite 'frequencies. 

The inputs for the matrix equations are simply the va..1 .. ues of the 

cross-sectional properties at the discrete stations. UonunU'orm 

properties are therefore easily incorporated. Boundary conditions are 

readily applied when considering the clamped-tree ca~~. ?or other 

cases, modification of the method is necessary (12] and. some of its 

appealing simplicity is lo~t. 

The IMM has been applied to a number of static, vibration, and 

buckling problems of beams. Results were compared "nth exact and 

other approximate solutions, employing the finite difference, tr~~fer 

matrix, and Rayleigh- Ritz methods, and with experimental. results. 

Extensive convergen~e studies were performed by Hunter [14] for bend-

ing free vibrations of a cantUever beam. Overall, accuracy increases 

with the number of stations and the degree of the interpolating poly-

nau1als. In general, higher degree polynomial representation gives 

higher accuracy when using a fixed number of stations. However, the 

number of stations employed should always ·oe considerably larger 
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(about twice as much) as the degree of the interpolating POlynomials, 

especially when higher frequencies are desired. A convergence study 

for more complex systems, which for instance display dynamic in­

stabUity, was not performed. ReSUlts for nonlinear problems are 

indicative of trends only. 

The Df.{ has been estahlished as 8. very useful. tool to solve f'ree 

vibration problems of rotating beams. The method is very accurate and 

converges well. This is not surprising as it is solely based on 

numericaJ.. integration. The IM?~ has the potential of being applied to 

rotary-wing a.eroelastic problems. However, more information on its 

performance, when solving nonlinear and noncanservative problems, 

needs to be obtained. One particular disadvantage of the method is, 

that it does not yield orthogonal. mode shapes. Thus, it becomes 

questionable "whether modes from the ]}~ could be used to reduce the 

number of degrees of f'reedam, Which is essential for calculating aero­

elastic stabUity b~~da.ries. 

The finite element method (mti) has been used enensively and 

with great SUccess tor the solution of beam vibration problems. In 

particular, it has been applied in the analysis of rotating blades. 

Solutions for the"t1apwise f'ree vibrations or a pinned-free rotating 

beam using a Galerkin-type finite element method were presented by 

Nagaraj and Shantakumar [20]. Their treatment was based on a bending 

element with four degrees of freedom per node, satisfying all boundary 

conditions. Comparison with results obtained by using the global 

Galer~in method showed good. agreement. 
A conventional finite element 
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model for the naturaJ. vibrations of t6.pered and pre twisted canti-

levered rotor blades was formulated in Reference (21]. The equations 

were developed for coupled flap-lag-torsion motion. A simple finite 

element, having ten degrees of freedom, was employed. However, numer-

icaJ. results were restricted to flapwise bending of a rotating tapered 

be~ and Co nonrotating pretwiBted beam. The results displayed satis-

factory convergence trends and agreed well with previous sclutions. 

Application of the F&\f to nonlinear problems is, by now, 

standard. Hany solution al.gorithms are available, and their numerical 

performance is well documented. In addition, the FEM has been used 

for the ana.l.ysis of a large variety of nonconservative systems. Here, 

the Galerkin finite element method has found its most prominent area 

of application. 

The FEl-i, in contrast to the TIM, car. aJ.ways be formulated such 

that it yields symmetric matrices for self-adjoint problems. This, 

tcgether with the banded na.ture of the matrices represents an advan-

tage for certain solution algorithms. Another advantage of the FEM is 

the handling of boundary conditions of a.:ny tyye witllout any modUica-

tions. On the other hand, formulation of nonlinear terms and, in 

particular, integral terms, as they appear in rotor blade equations, 

is quite stra.1ghtforwa..~ when using the IMM. Fi.nall.y, the FEM leads 

to orthogonal eigenvectors. Such eigenvectors have been successf'ully 

employed in coordinate transformations to reduce the number of degrees 

of freedom used to model a dynamic system. Such a reduction is of 

great importance, since the aeroelastic problem at hand requires a 
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large number of eigenproblem solutiona. This last point and the 

large amount of' 1nf"oI'm:'ltion available on application of the FEH to 

nonlinear and nonconservative systems, represent the main advantages 

of the FEl-1 over the IBM. It also should be noted that the D-1M is 

purely a numerical integration procedure, while the FEM retail'l8 a re-

lation to the physical properties of' the system under consideration. 

A thorough examination of the relevant FEl.f literature will fol-

low in the next section. From this, it becomes clear that the Galer-

kin finite element method is extremely well suited for dealing with 

rotary-wing aeroelasticity. A further advantage in using a Galerkin-

type finite element approach consists of the considerable amount of 

research done by applied mathematicians and eng~~eers to establish the 

numerical properties of' this method. ThiB vigorous, ongoing research 

activity provides the aeroelastician with more intormatiot, on the DUm-

er1cal aspects, and particularly, convergence properties of the method 

than is available on the integrating m.a.trix method. 

1.3 Review of Pertinent Literature on Finite Elements 

Fran previous remarka, it is clear that two aspects of the finite 

element method are of :particular concern here. NameJ.y, a.pplication to 

problems which d.o not allow a var1a.tiona.l formuJ.~.t . .l.on and nonlinear 

problems. Accordingly, the f'ollow1Dg literature review w1l1. emphasize 

these apecia.l features. 

The finite element method (FEl-1) originated in the area of' 
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structural analys is. Its formulation was based on elementary concepts 

such as the principle of virtual work or Cast1gliano's theorem. 

Recognizing that the FEM can be viewed as an application of the princi-

ple of stationary potential energy soon led to its use in other areas. 

In general, all problems for which a variational principle existed 

could be solved. This variational formulation alao, in moat cases, 

guarantees the convergence of the method. with mesh refinement. How-

ever, there is a large number of problems for which no variational. 

principle exists. 

Olson (22] solved the no.'18elf-adjoint panel nutter problem. He 

used the principle of virtual work to derive consistent aerodynamic 

load matrices. The eigenvalues did converge when the number of ele-

menta was increased. However, this convergence was not monotonic. 

BarsOUDl (23] used the extended Ham1lton's prinCiple to solve the dyna-

mic stabUity of thin-ws.J.led beams subjected to nonconservative 

loading. The nonself-adjoint character ot the system wan renected in 

the nonsymmetric load matrix. The same problem was treated by 

1C1kuchi (9]. It is interesting to note that convergence of the re-

sults wae best when the system was ccnservative, but became worse as 

the degree of nonconservativenes~ became dominant. 

A much more general approach was ~irst developed by Szabo and Lee 

(24]. They ccmbined the method of weighted residuals, using Ga.ler-

kin's weighting criteria, with the F&~ to calculate stiffness matrices 

fOI' problems 1,n plane elasticity. This procedure requires only know-

ledge o'f the differential equations and boundary conditions in a given 
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dClll&1n' and boundary. No variational. concepts are involved. In Refer­

ence [24] the weighted residual of the governing differential equa­

tions was eva.luated over the element (local danain). Integration by 

parts led to a formulation which yields the same element matrices as 

the conventional FEM. This aJ.so introduced element boundary terms, 

tlbich.would vani3h in the element &.Bsembly process if (and only if) 

both the approximate displacement and stress fields were continuous. 

This is, in general, not the case. Therefore, inter-element boundary 

contributions were neglected while, for external boundaries, the act-

ual boundary conditions were substituted. 

Zieriliewicz and Parekh (25] applied the Galerkin weighted resid­

ual. finite element method (GFEH) to transient field problems. In 

contrast to Reference [24], the residual was formulated for the system 

(global domain). Green r s theorem was used to remove higher order con-

tinuity conditions between elements. Formally, no inter-element 

boundary terms appeared because the integration was carried out over 

the global domain. 

A more rigorous treatment of the GFEM was presented by Hutton and 

Anderson (11). They used approx1ma.ting .fUnctions over the global do-

main which were nonzero only within the local. dClll&1n. Th1a made it 

possible to apply convergence relults from the global GaJ.erltin method. 

Further, it was clearly stated which of the baundary conditions have 

to be satisfied and what the inter-element continuity requirements 

are. Both issues ar~ closely related to the integration by parts. It 

was also shown that inter-element boundary residuals need to be 
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introduced when deriving the equations ('In the element level. Finally, 

it was established that all those problems that can be solved using a 

variational approach are 8. subcla.ss of those a.menable to the GFEM. 

It' 8. variational principle is available, both methods lead to the 

same results. Last, deriving the equations on the basis of virtual 

work is equivalent to usillg G&lerkin' s method. as long as the geometric 

bou.nclary' conditions are homogeneous. 

AraJ., l-iayer and Smith [26] discussed the relation between Ge.l.er-

~1n' s approach and true- , quasi-, and restricted variational princi-

ples. It' available, they al.l lead to the same results. The approxi-

ma.t1Dg equations, using the GFEH, were derived on the element level. 

Consequently, inter-element botUldary res iduals were introduced to call-

cel identical terms arising troc integration by parts ever each 

element. 

Use of the GFEM without performing integration by parts was il-

lustrated in References [27] - [29]. Prasad and Hurty [27) solved 

flexurs.l beam vibration problems. They used seventh-order interpolat-

1ng polynomials as shape ~~ctions to satisfy contL,uity requirements 

on the higher derivatives. Comparison with the conventional Fm~ (cub­

ic interpolating po1yncmials) proved the GFEB, in this fom, to be 

very accurate. In Reference [28] the stability of nonconservative 

systems was analyzed. Results were more accurate than those of 

Kikuchi [9]. This improved accuracy has to be attributed to the stip-

u1at1on of h~ner-order continuity, see Barsoum [23]. A disadvantage 

of this particular implementation of the GFEH beccmes apparent when 
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considering problema with mixed boundary conditions. Then it is 

necessary to perform a congruent coordinate tr~formation such that 

these boundary conditions can be satisfied [28] , [29]. Furthermore, 

matrices which would be symmetric when applying integration by parts 

now becane unsymmetric. 

A comparative study of several finite element models applied to 

vibrations of beama was presented in Reference [30]. The basic fea.-

tures of the conventional- , hybrid-, least-square-, collocation- , 

and GFEM were discussed. The possibility of using the GFEl-1 in non-

linear analyses was pointed out. Further material on several approx-

imation procedures, used in conjunction with the FE2-1, can be found in 

Reference [81. 

Application of the FEM to nonl·inear structural problems has re-

ceived considerable a.ttention and a large number of publicationB on 

this subject are availa.ble. A comprehensive review of solution ,ro-

cedures applied in static anaJ.yses of structures, displaying both 

geometriC and/or materiai nonlinearities, was presented by Tillerson, 

Stricklin and Haisler [311. Selection of a solution procedure was 

shown to be governed by interaction of several f"-Ctors, such as type 

of analysis, ease of implementation, storage space, problem size, 

desired accuracy, degree of nonlinearity, computational economy, and 

user experience. Another review by Gallagher [321 dealt with geometri-

ca.lly nonlinear problema. Construction of finite element equations 

and solutic..n algorithmS were ,,::,~ated. It was shown that tensor nota-

tion [331, rather than matrix notation, permits a greater simplicity 
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and eN'iciency in formulating the equations. It was &lao point~d out 

that some advantage: might be gained by usin8 inconsistent formu.l&-

tiona, in which simplH'ied interpolation polJ"llomials are used for ccm-

putation of the nonlinear terms. Such an approa.ch was used by Bergan 

and Clough [34]. A more detaUed investigation of inconsistent formu­

lations can be found in Reference (35]. F1nally, Gallagher [~] sug-

gested use ot condensation techniques to reduce the number of degrees 

of freedcm, prior to performing the nonlinear analysis computat ions. 

This could lead to significo.nt savings in ccmp.ltational. expense. The 

no:rma.l. mode concept was applied tor this purpose by KAvanagh [36]. 

The FEM bas &lso been used success tully in problems of nonlinear 

structural. dynamics. However, applicat.iona were mainly restricted to 

the transient response under impu.lsive loadinas, such as impact, 

8~ism1c, ar blast loa.ds, wherein the time history was found by numeri-

cal integration (37) - [39]. 

The first attempt to solve large amplitude natura.l vibrations of 

beams and plates was made by !·~i [40), [41]. lie calculated the non-

linear terms from the linear mode shape, multiplied by an amplitude 

factor, and then extracted the e~endata from the linearized system. 

Comparison with other 6nAlytical solutions and experimental data 

showed the FEM to match the experiments more closely. Convergence is 

m(::: .. ;~onic with increasing mesh refinement. l·~i, later on, included an 

iterative solution technique, where the nonlinear terms were calcu-

lated from the Vibration mode shape of the previl'JUS iteration cycle 

[ 42 ) 1 [431. The iteration led to lower frequenc ies • The number of 
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iteration steps to achieve a cp.rtain ac~acy was larger for higher 

values of the prescribed ampli~ude, i.e., it increased with the degree 

of nonlinearity. Convergenco! was not monotonic during the iteration. 

The f'ame problema were solved in References [44] and [45] using the 
. 

same iterative procedure. However, the nonlinear terms were modeled 

in a different me.nner , without mak1ng some of the s 1mplit'ying 8£Sump-

tiona used by Mei. Comparison of the period for the fundamental. mode 

of a simply supported square plate showed res'uts of Reference (45] to 

be more ac~ate than those of Reference [41]. This illustrates the 

importance of modeling the nonl:1nea.:.. terms adequately. 

Of pa.rticul~...r intere:'lt i8 Mei' 8 finite element approach to non-

linear panel nutter r46] which represents a typical. nonself-lldJoint 

nonlinear aeroelastic problem. Developnent of the aerodynamic matrices 

was based on Olson I s work [22]. l·bdeling of the nonlinear terms I the 

iterative solution procedure and eqll1valent linearization technique 

",ere taken fran References (41] and (42]. For large d.enections, the 

nonlinear effects, mainly due to membrane stresses, restrain the panel 

motion to bounded limit cycle oscillations with increasing ~litude 

as the dynamic pressure increases. In general, three to six iteration 

cycl"!s "'ere su.f'ficient for convergence. Convergence rlth respect to 

the number of elements used was not studied for the nonlinear case. 

The FEM described the panel behavior correctl.y. However, a numerical. 

coorparison 'With previoua nonlinear panel flutter 3alution.s 'W'U not 

gloven. Thus, the accuracy of the nonlinear finite element solution 

cannot be assessed. 



F1.'1Ally, it is worthwhile to mention that the GF~ 1s very well 

su~.ted for application to nonlinear problema. Oden (47] characterized. 

it , .. " •.. perhaps the most powerful technique for generating accept­

able finite element models of nonlinear equations." Rae and Raju [48] 

applied it to the post buckling analysis of uniform cantUever columna. 

Agreement of results with those found by using elliptic integra1a 'W&3 

very good, even tor a small number of elements. ~f! GFEM was alao 

used in nonlinear reactor dynamics [ 49] and nonlinear boundary layer 

amra [50]. 'l'his illustrates I again, the versatility of the w""'E1l.. 

1.4 Objectives of the Present Study 

The objectives of the present study are summarized below: 

1. Developnent of a local. method. of we:ight~ residu.a.l3, using 

Ge.l.erkin I tl weighting criteria. This results in a finite 

element formulation which can be used to discretize nonsel.f­

adjoint and nQr.l.inear partial dit't'erential equations 

encountered in rotary-wir~ aeroelasticity. 

2. Application of thia Galerkin finite element method (GFEH) to 

coupled. nap-lag aeroelastic stabUity calculati :1:' of hin8e­

le~8 helicopter rotor blt>.d.es in hover. The GFEM is used to 

transform the nonaelf-adjoint, nonlinear partial differential 

eqUAtions of motion into a set of ordina.ry nOl'llinear differ­

ent ia.l. equat ions. The equations are tbm linearized about 

an appropriate nonlinear st.atic equUit.dum position. The 



number of unknowns modeling the discretized system is re-

duced significantly through modal analys is • 'lbe nonlin~ar 

static equations are solved iteratively, using the Newton-

Raphson method. 'lbe lineari~ed dynamic equations yield a 

fI "aaIard eigenvalue problem 'frem which the aeroelast1.c 

s't.:laility boundaries are obtained. The convergen~e proper-

ties of the G..1i'EM are studied numeric~ by refining the 

disc: -:>.t.zation :r~ocedure. Results wj II also be compared. 

with P'I:'c'.rious analyses where the global Galerkin method was 

employed. It should be stressed here that the major inter-

est is the spacewise discreti2ation of a typical rotary-

wing aeroelaatic problem via the ~~. 

:3. The Galerkln finite element method is lleed to discretize 

the coupled flap-la8-torsion ae~oelastic stability and re-

sponse problem of hingeles8 helicopter blades in trimmed 

forward flight. Emphasis is placed on consistent discreti-

zation of the torsional degree of freedom. The blade is 

assumed to have built-in twist, cross-sectional offsets "ue-

tw€en the aeroelastic center: center of gravity, and elastic 

center, and nonuniform mass and stiffness properties. Root-

torsional spring stiffness and nonuniform cyclic inflow are 

also inclu.ded in the model. When solving the discretized 

dynamiC equations, a major complication arises due to thl;' 

forward flight condition which introduces periodic time-

varying coefficients in the equatiOns of motion, as well as 
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a la:rge number of additional aerodynamic loading terms. 

Due to the complexity of this problem it was deCided, 

at this stage, to specialize the general formulation to the 

coupled flap-lag problem in trimmed forward flight. This 

problem, which is canputationally less expensive, is used to 

establish the computational feasibility of the Galerkin finite 

element method for the aeroelaatic problem in forward flight. 

In this portion of the present study, the discretizea, non-

linear ordinary d~fferential equations of mution are linear-

ized about a nonlinear time-dependent equilibrium POSition, 

namely: the steady-state r-esponse of the system. Aeroelastic 

stability bC'lWldaries are obtained from the linearized system. 

For a. number of sample problems, involving hingeless 

rotor blades, the finite element solutions are compared with 

previously published results obt.dned by usir;g the global 

Galerkin method. The convergence :propeI-ties of the Galerkin 

finite element method are studied numerically by varying the 

number of elements and mode shapes, i.e., by refining the 

discretization :procedure. The sensitivity of the aeroelastic 

steady-state response and stabUity to variations in the 

parameters governing this :problem is also considered. 
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SECTION 2 

GALERKII, FmITE ELENENT !-1ETHOD 

Fran the preceding literature review it is evident that the 

Ge.lerkin finite element method (GFEM) has been used successf'ul.ly in 

treating a large number of nonself-adjoint and nonlinear problems. In 

the next section a urief description of the method will be given. 

Emphasis is placed on its application to nonself'-adjoint systems. The 

GFEM, being applied directly to the governing differential equations, 

makes discretization of nonlinear terms straightforward. The ensuing 

nonlinear equations can then be solved with ~ of the algorithms used 

in the conventional. finite element method. This aspect 1s treated in 

Sections 3.3 and 4.3.1.. 

2,1 Global Galerkin Method 

The local C~erkin method, resulting in a finite element discre­

tization, can best be clarified by illustrating its application to a 

simple system. !<1ore detaUs can be found in References [8] and [ll]. 

Consider the following differential equation 

Q (q) + p(q) = F 

which 1s defined in a domaiu D, where Q is So symmetric positive 

definite differential operator of order 2r and P is a general 
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operator of order r or less, representing the nanself-adjoint por-

tion of the equation. Both are operating on an unknown function q 

to yie~d a given function F. Furthermore, the function q has to 

satisfy certain bou.nd.ary conditions on the boundary S of the domain 

D. For simplicity, q is chosen as a scalar fUnction; however, the 

subsequent development is equally applicable to vector functions. 

Next, an approximate global solution having the form, 

• b 
m m 

(2.2 ) 

is assumed. The • are linearly independent shape functions and the 
m 

b are the undetermined pa.rsmeters for this prob~em. When us ing the 
m . 

extended GeJ.erkin method, the • have to have continuous deriva-
m 

tives up to order (r -1), i.e., Cr _
l 

continuity. Further, they 

need to satisf'y only the geanetric boundary conditions, Le., those 

containing derivatives of order not higher than (r -lie This approx-

imate solution is then substituted into the differential equation and 

the boundary conditions. The error is minimized by requiring ortho-

gODality with respect to 1\ set of weighting functions. Thus, an 

integral statement, equivalent to the differential equation and the 

boundary conditions, is obtained. 

In the extended Gal.erkin method the original shape functions ~ 
m 

are chosen as weighting functions. It is then required tl:.At the sum 

of the weighted residuals of both the differential equation and the 
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natural boundary conditions, Le., those containing derivatives of 

order r and higher, be zero (10]. Thus, 

tEdD+J' 
m S 

m :: 1,2, ••• , M , 

where 

and EB is the residual associated with the natural. boundary 

conditions. 

(2.3) 

(2.4) 

In many cases it is pos6i~le to apply integration by parts to 

operator Q., 

This reduces the order of different18,tion in the symmetric 

thus lowering requirements on the shape function •• 
m 

fran CZr_
1 

to Cr _
l 

continuity. Furthermore, this algebraic step 

also yields terms which cancel some of the boundary residual contri-

butions. As a matter of fact, formulation of tile weighted boundary-

residual and its combination with the differential equation residual 

are made in such a way that, when integrating the last one by parts, 

identical terms of the boundary residual are canceled (101. In the 

case where the natural boundary conditiOns are homogeneO\l.d, all 

boundary residual terms cancel out and Eq. (2.3) becomes 

-where Q denotes the operator Q after integration by parts. 
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AppJ.ica.tion of the extended G8l.erltin method to beam bending can be 

found in Reference [51]. 

2.2 Finite Element Approach 

When fOrmulating a finite element version of Galerkin's method 

the danain' D is subdivided into E subdanains d, which are 

called elements. In each element an approximate solution of the form 

e q f 
I 

L 
n=l 

(2.6 ) 

is assumed, where e e 
a are the nodal. parameters and ljr are linearly n n 

independent shape functions defined only in the subdomain asSOciated 

with the element d. This lOCal approximation can be extended over 

the whol~ domain D by defining 

inside d 

(2.7) 

outside d 

Using Eq. (2.7), the global approximation can be expressed as 

.N 

L (2.8 ) 
e==l n=l 
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Arter imposing compatibility conditions on the nodal. parameters 

of adjacent elements (this is done during the process of assembly), 

equations (2.2) and (2.8) ar~ equivalent. 

Equation (2.5) can be rewritten using Eq. (2.8) as 

~ 
i=l 

j ::I 1,2, •.• ,N, e::l 1, .•. ,E, 

where ~ is obtained from Q by means of the previously mentioned 

integration by parts. In addition, it is ~plicitly assumed that no 

inter-element discontinuities occur. Thus, the functions ~ aud 

its derivatives of order less than r must be continuous such that 

derivatives from order r up to (2r -1) are finite on element 

interfaces. Equation (2.9) represents all weighted residuals for one 

element and for the total assemblage of elements (i.e., N* E 

weighted residuals), it represents an intermediate step and in reality 

only Eq. (2.10) below is used. 

in te As a consequence of the 1 ear independence of the ~ functions, 

Equation (2.9) can also be rewritten on the element level. 

(2.10 ) 

j =1,2, ••• ,N, e :al,2 , .•. ,E. 
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Equation (2.10) thus represents a set of N equations for each 

element, from whlch the element matrices CM be calcul.ated. 

Because of the unique choice of weighting :t\ulctions in Gal.erkin I s 

method and because of the integration by parts, Q yields s~etric 

matrices. Further, when P is equal to zero, Eq. (2.10) is the 

exact same expression as found when employing the variational formu­

lation of the finite element method. Operator P leads to unsym­

metric matrices. However, the banded nature of 'i;he system matrices is 

still preserved. 

Assembly of the system matrices and enforcement of ijhe geometric 

boundary conditions j~ handled as in the conventional f1~ite element 

method. 

Finally, it should be pointed out that when Equation (2.3) is 

solved directly, the approximate solution has to have Ccr-l contin­

uity and must satisfy all boundary G ondit ions . The gene!'ation of 

such finite elements is of course more diffiC'J.lt, in particular for 

nonlinear term2, than generation of eleL'1ents far the solution of 

Equation (2.5). In addition, all matriceG will be nonsymmetric. On 

the other hand, due to the higher-order continuity, one might expect 

more rapid convergence. Thua, it becomes obv'ious that integration by 

parts plays an important role. 

2.3 Convergence Pro;eerties 

The Galerkin finite element method is equivalent to tlle 
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conv~ntional finite element method when considering self-adjoint 

problems. It is well known that elements which are conforming and 

are able to approximate constant strain will ensure convergence fOi" 

thiB class of problems. Some elements even display monotonic converg-

ence, thus allowing use of efficient extrapolation procedures and 

give an upper bound on the potential. energy. 

Based on Mikhlin' s work [52 L [53], Hutton and Anderson [11] and 

Kikuchi (9] establi3he~ convergence criteria for the Galerkin finite 

element method wh~ applied to a wider class of problems than those 

amenable to the variational. FEl~. However, numerical. results show that 

convergence is, in general, not mnnotonic [22] and becomes less rapid 

when the nonself-adjoint character of the system under consideration 

becomes more pronounced [9]. 

Convergence studies for the Galerkin finite element method, when 

applied to nonlinear systems, are of numerical nature only (48j. 

Noor and Whiteman [54] derived an error bound for a cl~rtain class of 

nonlinear problems, solvable by the GFEH. There are a number of 

stUdies on convergence, accuracy, and stabUit~ of the FEl1 in non-

linear problems. They are, however, either too general to be useful 

for practical appli~Ations or restricted to certain special classes of 

problems. On the other hand, a large number of nonlinear problems 

have been solved using the FEM with great success. 

The cODJments made in this section are basically to be Wlderstood 

as an indication of the ongoing research effort. The rotary-wing 

aeroelastic problem -- because of its complexity -- will hardly be 
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accessable to any convergence proof. Thus, for the time being, 

convergence can only be established numeri~ally (55], i.e., by refin-

ing the discretization process. 
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SECTION 3 

APPLICATION OF THE HETHOD TO THE 

FIAP-LAG AEROELASTIC PROBLEH 

IN HOVER 

3.1 Brief Description of the Coupled Flap-Lag Equations 

of !t:>tion 

The coupled nap-lag equations of motion used in this study 

serve ma.1nl.y as an illustrative example for the application of a 

Galerkin-t~ finite element method to rotary-wing aeroelasticity. 

The flap-lag equations for hover are obtained froo the general equa-
.. 

tiona which have been presented in Reference (2) J by an appropriate 

elim1nat1on of the terms associated With forward night and the 

torsional degree of freedom. 

The geometry of the problem is shown in Figures 3 and 4. A few 

important assumptions made in the derivation of these equations a~e 

briefly stated below: 

1. The blade is assumed to have moderate denectio!'l"";' J which 

implies sma.ll strains and finite rotations or slopes. These 

elastic rotations are assumed ·to be of order ED (ED ~ 0.20) 

so that terms of O(En)2 are negligibJ.e compared to terms of 

order one J 0 (1 ) . The blade can bend in two mutua.lly per-pen-

dicular directions. Init1.a.l:J.Y the blade is straight; 



during deformation the Euler-Bernoulli assumption is used. 

Tbe structural operators resulting fran these assumptions 

have been presented in Reference [56]. 

2 • The blade has only precone ~ j it is cantUevered to the 
p 

hub and there i8 no built-in twist. Aerodyn.am1c, tension, 

mass, and elastic centers coincide, i.e., all cross-

sectional offsets are zero. Inertia and stiffness proper-

ties are assumed to be uniform. 

3. Tbere is no coupling between blade and fu.selage dynamics, 

1. e., pitch, roll, and yaw motions shown in Figure 1 are not 

coupled with the dynamics of the blade. 

4. Two-dimensional. quasisteady aerodynamic loads are used; 

apparent m~ss, stall, and compressibility are neglected. 

5· An orderin6 scheme identical to the one in Reference (2] is 

used and quantities having the magnitude of the squares of 

the blade slopes are neglected when compared to one, i.e., 

This ordering scheme is given in Section 4.1. Note, that in 

Section), el:o O(E
D

) is assumed. 

Using thesf:'; assumptions, the coupled flap-lag equations of motion 

for hover can be written as follows. 

Axial equilibrium: 

. 
T J X + (~+ e1 ) + 2 v = 0 
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Flap equilibrium: 

- h.., 3 v -B33 W + (w T) - t3 (X., + e
1

) - 2 Pp v ",XXXX: ,XlCCC ,x ,X p U 

. 
(Xa + e1)w - Xa v w'X + ~ v,x W,x - vw} ". 0 (3.2 ) 

La,;; equilibrium: 

(~ 
- R. v - R...3 w + (v T),x+~ J/

o -Z2 ,XXXX G ,::cooc ,XJT 
(-2 -2) -v + w dy. ,x ,x-1) 

- - .:. r[ (- -) R (R)2 C dO _ (_ _ ) 
+ v - v + 2 t3 p w+ - Q Xc + ellA + 1 A - a ~ ~ + 2 e

1 

C . 
+ (2 ~ A f'p - '1 Xa t3p )v - (9 ~ A + 2 ~o ~)v 

+ [2 ~ A - ~(~ + el)]~ + (2 ~ A - ~~)v v'X 

R • "'2 
- ~ A i.. v W + 2t3 v w - 9 v W + W .lu ,X ,x p 

. 
+ 2v w w-

,X 
x... v W w} 

U ,X IX 
:z 0 

The boundary conditions are given by [56] 

-at Xo '" 0; 

.. - - -
v '" w '" V :z W 20, ,x ,x 

at ~ '" 1; 

(3.4) 
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B.,3 V + B33 w,XXX • 0 
(3.5b) 

" ,xxx 

-
+ liz3 W,XX 

O.5c) 
~2 v = 0 

,xx 

-
+ B33 w,n (3.5d) 

~3 v :II 0 
,xx 

and ~ :II o. O. 5e) 

3.2 Implementation of th~ Galerkin Finite Element Method 

The Galerkin finite element method, as developed in Section 2, 

is now applied to Equations (3.2) &nd (3.3). To facilitate manipula-

tion ot these equatio~~ they are rewritten in matrix operator form. 

0.6 ) 

-
where fq 1 a r '! 1. other quantities are defined in Appendix D. It 

-w 

should be noted that th,- tension T "''8.3 eliminated usi..ne the axial 

equation. 

According to Eq. (2.2), an approximate global solution is given 

by 
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.. [~ J(b } • (3.7) 
m m 

Upon substitution into the d1t'ferent1a.l equations and boundary condi. 

tions, it yields the residuaJ.s {E} and {e
B
}. The weighted Galerkin 

res1dual3 become 

J1 [t]T {E + E - FJdi. + [t ]T E I :II 0 1 (3.8) o m -Q -p - .--0 m -.B 1 

Mx2 2 x 1 

where 

!Q .. [SBl(qg} - [Sn J(qg} - [C
T2

Hqg} + (:s.] fclg} - [11. J[qg} 

:II [B] D;rqg}-DX((T1J[qg}+ [~l{qg})+[I1]rqg1- [IS.](qg} (3.9a) 

[. ] T EB I = ( .. [~ ] T [B] D3 r q g} + D [e ] T [B] D2 (q g} 
m"' l m x xm x 

+ [tm]T([T1] {qg} + [T2]{qg}»/.. (3.9c) 
Xc:ll 1 

Integrating the ~ term by parts, Eq. (3.8) becQnes 
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~----~.~.--.~--------------------------~----~--~~~ 

(3.10 ) 

M x 1 

where 

Inside the element the displacements are g:.l.ven by 

T 

£1 1 
he "f - -

::: ['f(Xe )] (ae (..-)} (3.12) :l_ ( 
. 

0 e 
.... ~ 

In the present analysis, ordinary beam-type bending (5J _ [7] 

representation was chosen for modeling the flap-lag motion; the geo-

e metry of the element is illustrated in Figure 3b, where ~ and he -
represent symbolically the four nodal degrees of treedom associated 

with napwise and lagwise bending, respectively. T'nu.s, Ii;::: 4, 

"f = 1 are cubic Hermite interpolation polynomials, Appendix C, and n n 

h: and ~ represent nodal dis~cement3 and slopes for lag 
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-----~-~------.~--~--~-..... +---_______ ..,,;U_.i4 ___ ........ , 

(h:) and. nap <s:) I respectively. For convenience, the super­

script e is omitted f'rom the shape f'unction matrix [If]. 

As bas been indicated previously I stabUity boundaries in 

rotary-wing aeroelasticity can be obtained by ~ineariz1ng the equa-

tiona of motion about an appropriate equilibrium position. For the 

case of coupled nap-~ag in hover, the equilibrium position is taken 

as the static n~inear equilibrium position and the dynamic equa-

tiona of motion are perturbed about this equilibrium poSition, i.e., 

Equation (3.12) is now extended over the glob~ domain, in the 

senae of Eq. (2.7) and substituted, together with Eq. (3.13), into 

Eq. (3.~O). This yie~ds the no~inear static equilibrium position 

where it should be noted that r~] aJ.so depends on faeO, and thus 

Eq. (3.~4) is nonlinear. 

Similarly, the linearized dynamic equilibrium equations are 

given by 
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e-I 

-I [C~l[~1) + ([Be] + (T~] - [~l 
i-l 

e ... ~,2, ••• ,E • 

Equations (3.14) and (3.15) are equations written at the element 

level, thus [Be]'[I~], ..• , etc., represent element matrices which 

are defined in Appendix: D. For the cUbic shape functions which have 

been selected, six-point Gaussian quadrature yields the exact element .. 
matrices. Evaluation of the Con~t~lt term {Fe} and the linear terms 

[Be], [T~], [x: 1 and [~l in the static equilibrium equations, 

Eq. (3..14), is straightforward. The quadratic term [~] depends on 

the static equUibrium position itself. Since the nonlinear equUi­

brium position equation will be BoJ.ved by iteration, [~] cOUld be 

eO 
eva.luated using the V8.lue of fa } from the preVious iterative step. 

Here, a dit'ferent approach is ta.ken. Rather than CalCUlating [~] J 

the nonlinear system matrix, Eq. C3.~8), is calCUlated directly; see 

Appendix E. All the terms in the dynamic equation, Eq. (3.15), are 

linear. However, the matrices [~l, [D;l, [~l, [~11, [~1x], 
[ ei] [~] 
CAx and -C,! depend on the static equUlbrium POSition, which is 



-- -- -----~----~~---...---~------_a ____ ,_, 

a known Q,WUltity after the static problem has been solved. Thus, 

n.t'ter numerically integrd.ting the triple (quadruple, ~or (D;l) 

products o~ the shape f'unctions, again using su;-point Gaussian quad~ 

rature, the known values o~ eO 
(a } are used to evaluate those 

element matrices. 

The &88emb~ of the element matrices into the comPlete system 

matrices is the same as in the conventional finite element method. 

It should be noted, however, that bandedness of the velocity propor-

tional matrix is destroyed due to terms of type 

~ and 

i = e+-l 

which are a consequence of the inner integrals over the gJ.obal doma.in 

in the operators [ C'l:Z 1 and (C Ax] • 

Here, it should be mentioned that the nonlinear terms were 

modeled completel.v consistent with the linear terms. No simpl1fytng 

ass\.1IIlptions were involved. This, of course, impl1.es added computer 

time and storage. 

Equations (3.14) and (3.15) can now formaJ.ly be written on the 

system level. Thus, the partial differential equations, Eqs. (3.2) 

and (3.3), are reduced to a system of ordinary differential equations 

by using the Galerkin finite element method. 
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3.3 Hethod of Solut ion 

Before actually solving the finite element equations, the con-

siderable number of unknowna representing the nodal degrees of freedom 

will be reduced by applying modal. analysis. The basic assumption is 

that the nodal displacement vector can be expressed in terms of a 

small number of mode shapes which approximate the free vibration 

mode -shapes of the system. Thus, 

r o} \.a 

(A] (~) 

where (A] is the mO<ie:J. trans·formation matrix containing as columns 

the f1.l"st M approx1ma.te fiee vi.bration mode shapes of a rotating 

blade. In the present study, unless otherwise noted, the t~ lowest 

uncoup~ed. nap model and the !\ lowest ullcoupled lag modes are ueed, 

i.e., H::II 1\ + 1'1-" These mode shapes are also determined by using 

the finite element approach as applied to the rotating beam free 

vibration problem. Since the free vibration equations are sclf-

adjoint, the Galerkin fL~ite element method for this case is identical 

to a. conventional finite element method. Furthemore, (qO) and 

[6q) are the reduced vectors of generalized coordinates. For the 

static equilibrium position 
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j and s1mUarly, (6q} is the reduced perturbation vector of the gen-

eralized coordinates. I o 0 
The hl' h2 ' ... , etc., can be interpreted as 

ampl.itudes of the corresponding mode shapes. They constitute the new 

unlalowns of the problem. As a general rule, use of 11 assumed modes 

will yield M/2 actual mode shapes and :frequencies with good 

Clearly, modal analysu; provides an effective reduction in the 

size of the eigenvalue problem required. far the solution of the 

dynamic system equations. This is a considerable advantage since 

determination of stability boundaries requires repeated solutions of 

the eigenvalue problem. Furthermore, due to this approach, the band-

edness of the finite element system matrices becomes irrelevant since 

the reduced system matrices are fully populated. anyway. Also, the 

geometric boundary conditions can be enforced implicitly through the 

:free vibration mode shapes. F1nal.1y, it is important to realize -~hat 

modal analysis facilitates the solution of the nonlinear static equi-

librium equations. ThUB, the reduced rrumber of unknowns al.lows one 

to calculate the derivatives of the nonlinear terms conveniently and 

b ralatively efficient solution algorithm, based on the Newton-Raphson 

techn:f'{Ue can be used; see Appendix E. 

The final equations, after modal reduction, for static equil1~ 

~rium are 



-... --- ---. ~-.------...---------------____ :u_ .... "". 

and for dynamic equilibrium 

where, for example 

All matrices are defined in Appendix A. 

Solution of the aeroelastic problem, Eqs. (3.18) and (3.19), is 

accomplished in two stages. First .. the nonlinear eqUAtions for the 

static equilibrium position, Eq. (3.18), are solved using a Newton-

Raphson scheme, described in Appendix E. This method has ::;lroven it-

self as one of the best solution. techniques available in geometric-

ally ncnJ.inear analyses [31]. It is extremely accurate and possesses 

second .. order convergence. Furthermore, the completely mnnerical 

formulation of the FFJ4, together with the small number of modal co-

ordinates, reduces the cost of forming and inverting the Jacobian 

matrix, Eq. (E. 3) in the appendix. This cost usually wouJ.d have to 

be accounted for as one of the major drawbacks o'f the Newton-Raphson 

method. Another drawback is its sensitivity to the choice of the 

initial solution vector. 

In the present case, the nonlinear 30114tion from the previous 

vaJ.u~ of pitch setting, g, is taken as the initial guess. For the 

first value of g the linear solution is chosen as the L~itial 
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guess. The iteration is, considered to have converged when the abso-

lute change o~ each generalized coordinate during an iteration cycle 

-4 
is less than 10 . If the method fails to converge, the system 

u.sua.ll.y can be considered a8 bein8 statically unstable (57]. Such a 

situation was not encountered tor the flap-lag problem in hover. 

Next, the dynamic equations, Eq. (3.19), are formed and converted 

into first-order state variable form, 

~ - [mr1 [d] I - [mr1. [k] l ~ - I 
= - - - - - -1- - - - - -

.J 
(3.21) 

~ [ I ] I [ 0 ] ~ 

Assuming solutions of the form 

results in a standard eigenvalue problem 

[A][YI :It >..(y} C3.2 3) 

where [A] is a constant nonsymmetric matrix. Equation (3.23) is 

eas~ solved using one of the available eigenvalue solvers. The 

eigenvalues appear in complex conjugate pairs 
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Thus, the perturbed motion about the static equil1~rium position is 

stable when aJ..l ~ < O. The stability boundary is obtained by 

systematically varying the pitch setting Q until one of the ~ is 

zero. More details can be found in Section 5.1. 



SECTION 4 

APPLICATION 0' THE METHOD 

TO '!'HE FLAP-LAO-TORSION AEROELASTIC PROBLEM 

IN FORWARD FLIGHT 

In this section the Ge.lerltin finite element method (GFEM) 

is applied to a more practical problem, namely, the coupled flap-lag­

torsion aeroelastic stability and response calculation of hingelesB 

rotor blades in forw&rd night. The torsional. degree of freedom 

generates an additional. equation of motion, aasocir-ted with this added 

degree of freedom. The torsional degree of freedom also yields a 

number of nonlinear bending-torsion coupling terms in the structural 

operator. Since the torsional equation of motion is of second order 

with respect to the spatial variable, as compared to fourth order for 

bending, special care has to be exe~cised when discretizing the 

equations via the Galerkin finite element ~thod. When solving the 

discretized dynamic equations, a major complication arises 1ue to the 

forward night condition which introduces periodic time V8.r'/ing 

coefficients in the p.quations of motion. Due to this flight condition 

a !.arge number of additional aerodynamic loadinB terms appear in the 

equations of motion. 

4.1 Brief Description of the Equations of Motion 

The equations of motion for the flap-lag-torsion problem in 



forward night are coupled nonlinear, nonconaervative, partial differ­

ential equations with periodic coefficients. The structural operator 

is taken from Reference [56]. '!he inertia and aerodynamic loads are 

taken from Reference (2]. 

The geometry of the problem is described in Figures 3 and 

4. In addition to the assumptions made in Section 3.1 for the hover 

problem, the following assumptions are made: 

1. The blade has an angle of built-in twist QB(x
O

)' 

occurring about the undeformed elastic axis. Reca.ll 

that the undeformed elastic axia is assumed to be 

straight and coincident with the feathering axis. 

2. The blade cross-sectional aerodynamic center, center 

cf gravity, and elastic center are distinct points. 

The tension center coincides ~ith the elastic center, 

1.e., xII:II o. 

3. The e~astic torsional deformations of the blade occur 

about the deformed elastic axis. Root torsional. 

deformation, due to pitch link or control system flex­

ibility, is assumed to occur about the feathering 

axis. 

4. Cross-sectional stiffness and inertia properties, off­

sets, 8Jld airfoil chord vary uong the blade. 

5 • Structural or mechanical damping of Viscous t~ is 

included. 
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6. Aerodynamic effecta aaaociated with forward night 

introduce cyclic pitch variationa, thus, the pitch 

angle is given by 

and the total geometric pitch angle is 

(4.2 ) 

7. 'lbe 1n!'low is represented by the following general 

functional form 

A(i, t) - >u ~(i) + \ ~(i) sin .. 

8. The effect of reversed :flow is included in an exact 

manner. 

It should be pointed out that the 1n:tluence ot axial forces 

on the torsional rigidity of the rotor blade and the e:ffect ot croas-

sectional warping due to tors ion is neglected in Reference [56]. 

Furthermore, the et:fecta of stall and compressibUity are not incl.uded 

~ - the aerodynamic loads of Reference (2). Although the above effects 

may be important for certain rotor bla.ies and certain night condi-

tiona, no attempt is made to include them in the present study, since 

its primary objective is the appl.ication of the Galerkin finite 

1 
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element method. 

In applying the ordering scheme, according to AS8~ion 5 

in Section 3.1, the following orders of magnitude are asaigned to the 

variows pa.1.'a.m:;~ters in this study: 

! • :! & •• 0(£ ) 
l 1 D I 

J, Xo e l 
xA 0(1) I , I -. I 

R l l b 

sin t cos ... 
d a 0(1) ~ , I I I ~ • , 

ax 
0 

Qo I Qls I Qlc • 0(£1/2 ) , 
D 

b e
p ~ A A O(£D) I I I I • I R s c 

u XI Im2 -~ CiO ? 

~} 
• O(t:i) . 

J I • I , 
lila } 

I a ~ 

Using these &8sumpti(m.s , the c~p1ed equations of motion 

for forward flight are llresented below. Note that the equat1o~ ~ ... 

written in the reference frame e, which represents the undeformed 

blade. 

Ax!&) equilibrium: 

(4.4 ) 
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Lag equilibrium: 

- (M.. + GJ~ W - v T) 
--),X ',x,xx ,x ,x 

Flap equilibrium: 

(M- - Gj~ v + w T) 
-G,X ,x,xx,x,x 

= 0 

Toroion equilibrium: 

The corresponding boundary conditions are: 

at x = 0: o 

at Xo = 1: 

- - - -V=W""V .. w "0, ,.x ,x 

I 

- M - Gj~ w + v T - q :; 0 , 3,x ,x,xx IX 3I,x 
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(4.6 ) 

(4.8a) 

(4.8'0 ) 

. '. ~ t·. . • <I ~!. . ' '. 

\. ~.. . . ' . ' 
, ,f! _ 

1 
1 
1 



w -

~ + C.J~ V + W ~ + q,)r,x = 0 , -"2,x IX,XX ,X c.. (4.9b) 

(4.9c) 

~ • 0 

-'!be boundary conditions at the fi'ee E;na., XO::l 1, are natural bound-

ary conditions, expressing the fact that the sh~&rs, moments, and 

tension at the blade tip are zero. At the blade root, xo. 0, the 

boundary conditions for bending involve only geometric quantities, 

i.e., the bending displacements and slopes. The mixed boundary condi­

tion for torsion, Equation (4.8b), is a result of the root torsional 

spring. 

Equationa (4.4) - (4.9) are written in a general form which is 

most suitable when using the Ge..lerkin finite element method to dis-

cretize the spatial dependence. All quantities appearing in these 

equations are defined below. 

The elastic moments are given by: 

[( -2
1 

W - ~v ) sin2R ~G+ ~ cos 2Rc QG] ,xx ,xx c ,xx , (4.10a ) 

~ - - (EL - E13)[ (-2
1 v + ~ ) sin 2R Q

G 
+ ~v cos 2R ~GJ 

-Z ,xx,xx c ,xx c 

, (4.1Gb ) 

'1 
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• [ .1 (i _;,2 ) sin 2R Q
G 

- V ;, cos 2R QG]' (4.10c) 
2 ,xx ,xx c ,xx ,xx c 

M .. GJ(~ + V w) 
X ,x ,xx ,x • (4.10d) 

The distributed force and moment vectors, per unit length of 

the undeformed elastic axi3, are expressed as: 

(4.lla) 

(4.llb) 

In general, tbese loads contain inenia, aerodynamic, cmd structur&l. 

damping contributions, denoted by tbe subscripts I, A and D, 

respectively. In writing tbe equations of motion, (4.,4) - (4.7), tbe 

f1na.l form of the loads, Reference [2], bas been used. Note, bowever, 

that due to a more consistent application of tbe ordering scbeme, the 

torsional. inertia load, Equation (4.l3c), differs in some bigher-order 

terms • 

Inert ia loads: 

. 
PxI = i(e1 + Xo + 2v) I (4.l2a) 

.. .. .. 
PyI :0 m(v - v + 2~p W - 2u + XI COB ~G + XI QG sin QG) (4.l2b) 
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. . . .. 
Pz1 :I: Iii( - ~P (e1 + XO) - W - G~p v" - xI QG cos QG) • 

, (4.13a) 

:: ~I , (4.1jb) 

.. . 
+ cos QG ( - (~ + w )( e

1 
+ XO) - W - 2 ~ v p ,x p 

.. .. 
• ("eG" + , + W v ) - (t<:> - I 3) ,x,x UIt'o m 

• [cos 29G (~ - ~ v + 2 ~ ~ ) + sin 2 Q
G 

( -21 + ~ ) ] p,x,x ,x 

( - G _ G)': ( .:) - 1m2 sin Q~ + I 3 cos Q
G 

2w 1 + v 
;J m ,x,x 

- -- v ~ + w q + Q
1 ,x -yI ,x z1 -X , (4.13c) 

Aerodynamic lOads: 

c 
+ (QG F2+2 :0 F1 )F3 v,X + (QG F

l
-2F

2
+QG F

4
)F

3 
w,X 

+ F1FG ~+ (QG F1 - 2F2 - 2~p F3)v w'X + (QG ~ + F1FG )V,X W,X 
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- t:3 W W + (~ F1 V + F2 F3 V + F1F3 W )~ ,x,x p ,x,x 

+ (- 2v + F1 V )F
3 

W W + (F
1 

V + t:3 V )W ~ ,x ,x,x ,x ,x 

. . 
+ ('h F3 w,X + F2 ~)v + (QG F3 v,X - 2~p V • 2F3 w'X + F1 ~)W 

.. . 
+ F

3
F4 ; ~ + F3 ~ W v + (- 2 V w + F - V W + F3 ~ V )W ,x ,x ,x J.,x,x ,x 

. . 
+ QG W V - W W + F4 W ~ + ~ W v] , (4.14a) 

. . . 
- 2F1F3 V,X ~ + (F2 - 2QG Fl.)V + F1 W - "F1F4 ~ 

. ... . 
+ (F3 W'X - 2F1 ~)v+ F3 v'X w+ vw] , 

. . 
- 2F1F3 v'X ~ + (F2 - 2QG F1 )V + F1 W 

. . . 
F3 w V - 2F1 ~ V + F3 V w + V w] , (4.14c) ,x ,x 

where 
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Fl - R 
(4.14d) 

,. e
l 

+ Xo + ~ '] sin .- I 

F2 
R R .- (4.14e) :a A-+ III ~p cos I 1-

F3 ... ~ R .. (4.14r) l cos , 

F4 - R ( - ) (4.14g) = b 1 1.5 - xA , 

F5 
-2 R'2 

(0.5 - XA)(l - xA) (4.14h) = b -j 

Damping loads: 

· - - (4.15a) PyD = - ~L v , 

· - - (4.15b) PzD = - SsF W , 

· 
~ = - SST ~ (4.15c) • 

The coupled flap-lag-torsion problem is thus defined by Equa.-

tions (4.5) - (4.7), together with the elastic moments, Equations 

(4.10), and the loads, Equations (4.12) - (4.15). Note, that the 

tension T will be eliminated using the axial equation and correspond-

ing boundary condition, EquatiOns (4.4) and (4.9d). The axial dis-

placement, u, will be replaced using the assumption that the blade 

is inextenaional in the axial direction, an assumption which is commonly 

made in rotary-wing aeroelasticity. 
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4.2 Discretization of the Equations of Motion Using the 

Galerkin Finite Element Hethod 

The first step in so~ving the equations of motion, presented 

in the previous section, is the discretization of the spatial depend-

ence. This is a.ccoll11'lished through application of the Galerkin finite 

element method. Subsequently, modal. ane.lys is is used to reduce the 

number of discrete unknowns describing the prob~em. 

The procedure followed here is similar to that described jn 

Section 3.2, for the hover prob~em. Therefore, only the major st~ps 

will be outlined. However, special emphasis 13 placed on the appropri-

ate modeling of the torsional degree of freedom. 

The awroximate global solution given by Equation (3.7) is 

extended to include the torsional deformation: 

This solution is now substituted into the flap-lag-torsion equations 

of motion, Equations (4.5) - (4.7), and the corresponding bou.'ldary 

conditions. 

functions 

Recall, that in the extended Galerkin method the shape 

~ need to satisfy only the geometric boundary conditions. m 

Therefore, both the natural boundary conditions at the blade tip, 

Equations (4.9a - c), alld the mixed boundary condition, due to the root-
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torsional spring, Equation (4.8b), contributPo to the bO~dary residual. 

The weighted Galerldn residual, obtained through appropriate 

ccmbination of the weighted differential equation and boundary condi-

tion residuals is given below. 

r l 

J' [~ ]T 
o m 

- (M.. + GJ ~ W - v T) _ q _ 
~,x ,X ,XX ,X ,~ 3~,x 

g 

(M.. + 53 ~ v + W ! ) + a~ -"2,x ,x ,xx ,x ,x -~ I,x 

M 
x" x 

die 

-(M.. + GJ~ v + W 'r + o-r)+ M.. -G,X ,x ,xx ,x ~ -~ 

- M x 

0 
g 

T 
+ [¢lm(O)] 0 = 0 . -

M - R~ ~ x x =0 e 



Integrating by parta and cancelling the bound.a.ry terms, the 

final expression, corresponding to Equation (3.10), iJ obtained as: 

[~ ]T 
m 

+ [~m( 0)] 
T 

g 

-Mz 

GJ~ v + W T + a~ I ,x ,:ct ,x -.::; 

Pz1 + PzA + 

M 
x 

Pzn 

~+qlI+~+~ 

g 
0 ( 
0 

J R~ ~ 
x ~O 

0 

g 

dXO 

• 0 . 

g 

(4.18) 

In the interior of the element the displacements are given by: 
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For bending, the same cubic Hermite interpolation polynomialB 

as in the hover case are used, see Append.:!.."t C. The nodal parameters 

are the lag and nap displacements and slopes at the element boundar-

ies, see Figure 3b. This element satisfies the requirement of Cl 

cont1auity of the global solution, since it provides interelement 

cont1auity for bending displacements and slopes. Bending strains vary 

linearly within the element which goes beyond the minimum requirement 

of constant strain within the element. 

The torsion equation of motion is of second order with respect 

t.o thr: spatial variable. Thus, a linear interpolation will achieve 

the required Co continuity and con3tant strain. However, in the 

coupled bending-torsion analysis, it is desirable to use a torsion 

element which provides the same accuracy as the bending element. 'lbis 

allows discretization of the torsional variable with the same number 

of elements as needed for the adequate modeling of bending. 

In the present analysis, an improved torsion element, providing 

linear variation of tO~3ional straL~, is obtained by using the torsion 

deformation at the element mid-point as additional nodal parameter, see 
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Figure 5. Thus, N • 3, 

,. 

aud the ~ are quadratic interpolation 
n 

polynomials [58], given in Appendix C. 

In general, refined finite element ... can be obtained uaing any 

number of internal nodes. An alternative approach is the U3e of higher 

order derivatives (second for bending and first for torsion, or higher) 

as nodal parameters. These higher-order elements. however, experience 

d1ffi~ties in modeling concentrated loads. Furthermore, the bound-

ary conditions involving the higher-order derivatives must be sat is-

fied. Therefore, such elements were not considered. Results for free 

vibrations of beams, using elements with internal nodes or higher-

order continuity can be found in References [591 and (60]. 

In conclusion, it can be stated that the elements selected in 

the present study are the most basic (or simple) elements which yield 

a cons-istent formulation for coupled bending and torsion. This takes on 

an additional signif'icance in light of the large number of nonll.Uear 

terms which have to be modeled. The exact form of the element inter-

polation polynomials !, .!1 ' and t is given in Appendix C. 

The element displacements, Equation (4.19), are now extended 

over the global domain in the sense of Equa.tion (2.7) and then sub-

stituted into the integrated Galerkin residual, given by Equation 

( 4 .18) • This yields the nonlinear, periodic element equat ions • 

, 
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• 0 - for e-l,G, ••• ,E. (4.20) 

All element matrices in Equation (4.20), indicated by the 

superscript e, are defined in Appendix F. 'Ihe structural operator 

is &8sociated with the matrices (B~] and [a;]. The axial. te':lSion 

results in the contributions represented by [~], (r;l and [;i]. 

The inert 1a loads are inc1uded in [ ~ ] , [ r; ] , [ c~ ] , [ C;] , [Y~ ] , 

[~], {F~1~ [C1x] and [C~], where the last two matrices are due 

to the axial shortening effect. 'Ibe aerodynamic loads are contained 

in the [D~], [D~], [D~2]' [D;], (D~], [~], [~J, [A;] and 

{F~} matrices. 'Ibe structural. damping effect is represented by 

1 
[B] matrix accounts for the root torsional c 

condition, where the Kronecker delta, ee1' indicates that this te~ 

is only present in the first element, i.e., the element at the root of 

the blade. 
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The functional dependence of the element matrices on the nodal 

displacements 1s as indicated in Equat ion (4.20). Note, that the 

matricef' in Equation (4.20) have both single and double numerical sub-

scripts. '!be first subscript is an ident1tier of nonl.inear terms. A 

first subscript having a value of 2 or 3 is indicative of quad-

ratic or cubic terms, respectively. A second subscript is attached to 

all velocity-uependent element matrices. All eJ.ement matrices are 

evaluated usiDg six-point Gaussian quadrature. '!he nonuniform element 

properties are included in the numerical integration. 

Next, the e~ement matrices are assembled into the complete 

system matrices. The nodal parameters within the nonlinear element 

matrices are replaced by their modal representation, 

tal • (A] tq} , 

using ~ lag, ~ nap, and l>i.r torsion free vibration mode 

shapes of the rotating blade. Subsequently, the modal. reduction 

(4.21) 

process is completed by pre- and post-multip~ing the system matrices 

with the modal transformation matrix, [A], and its transpose. For 

more details regarding the treatment ot nonlinear terms J see Appendix 

E. 

The final equations ot motion, in terms of the reduced set ot 

M modal degrees of freedom, can be \r'Titten symbolica1.ly as ~ 

. 
(4.22 ) 



-------------------_.-., 
... 

~ matrices in Equation (4.22) are defined 1n Appendix G. Note, that 

the inertia, damping, and stiffness terms hav-e both linear and nonlinear .. , 
contributions. Also recall, that for forward night, most matrices 

have periodic coefficients, i.e., 

f!(q,q,q,t) .. S!(q,q,q,t+ 2..-) , 

with the common period being 2'1f, which corresponds to one blade 

revolution. 

For convenient numerical treatment, Equation (4.22) is re-

written in first-order state variable form. 

(y} . { (4.23 ) 

and 

. 
~ 

{Y} :II (4.238.) 

It should be understood that 

{y} :t [:i(;(1 ... )} 

! 
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is a periodic function depending nonlinearly on (y). 

4.3 Method of Solution 

As indicated before, Equations (4.22), governing the aero­

elastj.c behavior of an isolated blade, are a set of coupled, nonlb1ear 

ordinary differential equations with periodic coefficients. It has 

been shown in previous research, References (1] 8.Zld [61], that in 

forward flight the aeroelaatic stability Nld response problem of an 

isolated blade is strongly coupled with the overall equilibrium of 

the helicopter. Th:! overall. equUibrium of the helicopter in forward 

~light is normally obtained by enforcing the overall force and moment 

equllibril.un of the complete helicopter. Such an analysis is called 

trim anaJ.ysis. The results of this trim ane.lysis are used as. input 

to the aeroelastic a.nalysis of the blade. DetaUs of the trim proced­

ures and the mutual interaction between the trim ana.l,.vsis and the 

aeroelastic analysis are presented in Section 4.3.3. 

A solution to Equation (4.22) will provide both stability 

and response inf'ormation. A response solution of Equation (4.23), 

subjec~, to known initiU conditions, can be obtained by numerical 

integration. However, this approach can become expensive in terms of 

computer time, since the transient response might be Significant for 

a large number of rotor revolutions. Furthermore, numerical integra­

tion has proved itself' to be a somewhat unreliable tool when dealing 

with pe!'iodic systelilB, unless it is compl.emen'~eu. uy eApll(;lt stability 

information. Therefore, in this study, the desired information about 
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the aeroelast1c stability of t.he blade is obtained from the eigendata 

extracted from a linearized system. The linearized equations are 

obtained by linearizing the nonlinear equations, Equation (4.23), 

about a suitable equilibrium position. ~-Il equilibrium position ~s 

considered to be suitable if perturbations about it are suffiCiently 

small, such tlat terms containing nOnlinear products of the perturba­

tion quantities can be neglected. For the case of fo~~ flight, 

the primary source of exchntion is periodic. ha, the approximate 

:lonlinear steady-state response of the blade is used as an equilibrium 

position about which the equations are linearized. Subsequently, the 

stabUity analysis of the linearized perturbation equations is explic­

itly considered. 

4.3.1 Nonlinear Steady-State Response- of Periodic 

Systems 

PreVious analyses, see References [2] and [61], have used a 

simple harmonic balance technique to calCUlate the time dependent 

equilibrium position. This approach is algebraically very tedious, 

Furthermore, since terms above the first harmonic wer' not retained, 

the accuracy of the resulting equilibrium position is somewhat 

questionable. Another shortcoming of the harmonic bal.ar!ce method is 

its failure to provide sufficient information on the stability of the 

response solution. 

In the present study, the equilibrium position is obtained by 

applying an algorithm Which has been de·.reloped in Reference [62] for 
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the steady-state response calculation of linear systems. In order to 

apply this method to ~he aeroelastic problem in forward night, 

quasUinearization (63], [64] is used to transform the nonlinear equa-

tiona (4.23) into a sequence of linear equations. The steady-state 

response for the linearized system at each iteration step is then 

obtained using the method of Reference [62]. In the limit, the 

s~quence of linear problems converges to the solution of the original 

nonlinear problem. Additional and general informatic!! on quasi­

linearization can be found in Reference [64]. 

The method employed in this study has two key ingredients, 

namely, qus.sllinearization and the linear periodIc response solution. 

These ingredients are described in detail below. 

Quasllinearization, as formulated in Reference [63J, employs 

the first-order equations, i.e., Equation (4.23). However, when the 

Galerkin finite element method is used for spatial discretization it 

is more convenient to start with the second-order system, Equation 

(4.22). These equations are expanded in a Taylor series about a 

previOUS solution, keeping only linear terms. The linearizeG. second­

order system is then transformed into first-order form. 

During the Kth iteration step, the previous solution is 

denoted by (qK-l(')l. This solution has to satisfy the boundary 

conditions exactly, i.e., it must be periodic, 

: 
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and its derivatives with respect to .. must be known up to tbe 

highest order appearing in the derivatives of G (see Equations .... 

(4.25) below). Furthermore, it is assumed that the derivatives of 

G ~x1st and that they are also per iodic in f. 'lhus, -
eo .. ,.. 

.. 0 • -

... J 
K-l 

9. 

(4.24) 

To write Equation (4.2~) in a more compact fashion the following 

quantities are defined; for additional details, see Appendix G. 

GK 
:: (K-l .K-l .. K-l) 

Q.s. ,2, '2-

:z [m(iK-l)][qK-l} + [rAJ , (4.25a) 

£FK} = [d(~K-l, iK-l)][clK-l} 

+ [k(qK-I)]{qK-l} + ... .... {f} , (4.25b ) 

[SK] 
.:X; 

(K-I .K-l .. K-l) ... 
(4 .25c) 

:: 

~ 9. ,s. ,q , 

[CK] 
ex; 

(K-l .K-I) .... 
(4.25d) = ~ 1:l, , 

~ 

[rf] 
d:1 

(s.K-I) [m(9.K-1 )] 
... 

(4 .25e) = = 
a:l 
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The variation, ~ I which is the dit'terence between the current 

and the previous solution, i.e., 

, 

is now substituted, together with Equations (4.25), into Equation 

(4.24), which is rewritten as: 

[rfJ rqK) + (CK]tci.K) + (SK]{qK) 

_ (CK)(qK-l) _ [SK](qK-l) + t~) :a 0 • -

(4 .26) 

( 4 .• 27) 

Equation (4.27) represents the linearized second-order system during 

th the K quaallinearization step. Using 

Equation (4.27) is transformed into firs t -order f'r om : 

(4.28 ) 

where 

_ (ll)-l [CK] _ (ll]-l (SK) 

1 (AK ] ::& , (4.28&) 

(I) [0] 

... 



~--.~------------------- -------------------~----------------------~------Q~.~~<~~ .. 
"'" 

The variation, ~, which is the difference between the current 

and the previous solution. i.e., 

, 

is now substituted, together with Equations (4.25). into Equation 

(4.24), which is rewritten as: 

[~]rqK} + [CK1{qKl + [SK]{qK} 

_ [cKl{qK-l} _ [SK](qK-l) + [~1 = 0 

(4.26 ) 

( 4 .• 27) 

Equation (4.27) represents the linearized second-order system during 

the Kth quas1linearization step_ Using 

{ 
.K 

l J 
.K-l 

J ' 
i 9. 

{yK} ... and {yK-l} = 
K } ~ K-l 

i i 

Equation (4.27) is transformed into first-order fro~: 

(4.28 ) 

where 

I (4.28a) 

[ rJ [ l! ] 



• 
{ 

_[MK]-l (_(CK](4K- 1) _ (SK](qK-l) + 

(0 ) 

Both (Ale] and (bK) are periodic in , (with period 2 ) and 

dependent on the previous solution, K-l 
l 

The solution of Equation (4.28), i.e., the periodic response 

(yK(,)}, is then used aa the previous solution for the next iteration 

step. '!bis process is continued until. convergence is achieved, at 

which step (yK(,)) represents the periodic steady-state response of 

the nonlin~ar system, which is denoted as (y(,)). This solution is 

used &8 the equilibrium position for the stability ca.l.cu.lation • 

.. 
For periodic systems of the type encountered in rotary-wing 

aeroelaaticity, qU&8ilinearization is particularly attractive because 

the numerical treatment required for the linear analysis of such 

systems is available. Quasilinearization is a generUized Newton-

Raphson method. It possesses second-order convergence (64] . Selec-

tion of the initial solution is crucial t~ the success of the m£thod. 

Additional information on quasil.inearization and its properties, a.s 

applied to rotary-wing problems, can be found in Reference [63]. 

In the present study, two options for initiating the quas1-

inearizat i on process were implemented. Stability information in 

foI'l'ar<i night is usu.a.Uy plotted as a function of the advance ratio 

~ • Therefore , at a given value of ~, either the linear response 
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ot tbe system (witb all nonlinear terms deleted) was used as tbe 

initial solut ion, or tbe nonlinear response for a previous lower 

value ot ~ was used as the initial solution. 

Tbp. linear, periodic response ao1ution ot Equation (4.28) is 

calculated using tbe algorithm developed in Reference [62 1 for linear 

syatema. Recall that Equation (4.28) is tbe K th linear appraxilila­

tion to the original nonlinear problem, Equation (4.23); tberefore, 

the method of' [62] is applicable. '!he solution procedure is outlined 

tb below, using tbe notation associated with the K quaa Uinearizat ion 

step. 

Urabe [651 bas shown that if tbe IIIll1tipliers, \, k -

l,2, ••• ,2M, of the homogeneous part of Equatial (4.28), 

(4.29 ) 

are all dif'f'erent :from one, tben Equation (4.28) has one and only one 

period1c solution. of period 2'Jr, given by 

(4.30) 

with the initial condition 

(4 .31) 
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where [~K(")l is the fwldemental matrix of Equation (4 .• 29), defined 

(4.32) 

It 18 important to note that K (y (0)) , exiats on.ly it ([ I] -

[~(2'1t')]) 18 nona1r.gu.la.r. 'this is the case when the mqnitudes of 

all the characteristic mu..l.tipl1ers of Equation (4.29) are d:ltferent 

from one, 1. e • , 1'1t I f 1. It all I \ I < 1, then the homogenous 

system, Equation (4.29), is asymptotically stable, according to Floquet 

theory [66], and (y!(,)) from E uation (4.30) is t~e desired ste~y-

state solution. 'this response is then used as the previOUS Isollltjon 

in the next iteration step. If any one I~ I > 1, then the hontogen­

eoua system is asymptotically unatable. In this case, a.l.though 

Equation (4.30) is stUl mathematical..ly valid, th~ periodic so1ut~\on is 

pbysical.l.y meaningless. 

To find the periodic solution, first the initi&l conditions, 

Equation (4.31), are c&lculated. 'the transition matrL"( at the end of 

one period is eva..l.uated using Hsu t s approximate, semia.nal.ytical. method 

(see Reference [67]). 'the periodic matrix [A K(,,)] is approximated 

by a series of step functions. For each step, the matrix exponential 

is approximated by a finite number of terms of its defining series. 

'l't\e integr&l in Equation (4 .31) is eva..l.uated by taking a constant 

value of the integrand in each step and performing an ordinary summa-

K K tiona 'lhus, both [~(2 7r~] and (y (0)) are evaluated simultaneously 
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during a s1.ng1e peas over one period. 

Pr--A h lin i (yK-l(,j,») vy~ded that t e s.yatem ear zed about , i s 

stable, the linearized system, Equation (4.28), is integrated wsing 

(/':(OJ), Le., Equation (4.31), as the initial. condition. A fourth-

order Runge-Kutta integration scheme with Gill coefficients and con­

stant stepsize is used. This implies that Equation (4.30) is not used 

&t all in the cCDptltations. 

Instead of storing the response (yK( ... )} over one period (for 

wse in the next quasUinearization step), a Fourier analysis with a 

finite number of" terms is per'formed. The periodicity of the response 

is checked by integrating over several periods (i.e., blade revolu­

tions) until the Fourier r oefficients obtained in two subsequent 

periods agree within a desired accuracy. 

The flow chart preaented in Figure 0 summarizes the steady-

state response calculation ot periodic, nonlinear systems, as tormu-

lated in this section. '!he index K used in Figure 6 denotes the 

quasil1nearizatlon iteration index which is set to zero or one, ~.epend-

1.ng on whether a linear or nonlinear initial. solution is used. The 

integer NCONV indicates ~onverg~nce ot the response sO~ltion 

K (y ('t)), &s compared to the solution !'rom the previews quaaUineari-

zation step. At the beginning, NCONV is set to zero. When the 

response haa converged it is set to one (see Step 10 in Figure 6). '!he 

quantity E is a small prescribed number used in the convergence test 

and in the periodicity check.. '!be integer Kmax is the maximum 

al.lowed number of quaailinearization iteration steps. Note that 
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Figure 6 alao include. the stability determination of the final linear-

ized system, which i. described in the next section. 

4.3.2 StabUity of the Linearized Periodic Sy.tem 

Stability is determined by deriving linearized perturbation 

equations about the equ1l1brium position, (Y(,)) • Computat10n of this 

t1me-dependent, nonlinear equilibrium position has been described in 

the previous sectiouj thus, at the present .tap, the vector (y(t)} 

is as.umed to be known. Again, when using the finite element method, 

it is more convenient to de&! initially with the second-order system. 

Therefore, let 

'lbe equations of motion, Equation (4.22), are now expanded in a Taylor 

series about [q} . :')ince, by definition, the perturbations [tqJ are 

ama.ll, only linear tene are retained. Thus, 

ell" [\!+ (4.34) 

Recognizing that ~(~, i, ~, ,) - 0, -since ~ is the solution of 

Equation (4.22), Equation (4.34) is rewritten in first-order form &I: 
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(4YJ • 

_ 1- [Mr
1 

[el 

L (r] 

(4Y}, (4.35a) 
( 0) 

or 

. 
(~J • (A(i, i, t)1(.6 y L 

where 

ex; . -(s J - (~, ~, g) (4.36a) • 
~ , 

ex; . 
(C) - (~, ~) (4 .36b) - , 

Ci 
en 

(M) - (~) (4.36c ) 
:a 

ill 

ThE stabUity of tbe above bomogeneous, linear I periodic system 

is determined according to Floquet tbeory (66J. The transition matrix 

of Equation (4.35b ) i8 defined by 
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The characteristic multipliers are denoted by 

k • 1,2, ••• ,2M , 

where M is the totu number ot modes uaed in the analys is. Knowing 

the \, the character1at. i~ ~xponents 

are determined from 

, (4.40e.) 

(4.4Ob) 

The linearized aeroelaatic system is asymptotically stable !t all 

1 '\ 1 -:: 1, 1. e . , ~ < 0 • It any one 1 ~ 1 > 1 ,i.e., ~ > 0 , 

the system 18 aaymptotical..ly unstable. StarUity boundaries, repre­

senting neutral s t abllity, are obtalned when 1\ 1 • 1 or ~. o. 

Comparin8 Equations (4.X) with Equations (4 .25c - e), it is . 
evident that the periodic me.trix [A(i' ~, ,,)] in the linearized 

stabllity equations, Equ.e"G:'.on (4.35b), is 1.:it'ntical to [AKj in tht 

responae equat1ona, Equation (4 .2B) , when rK- l 1s replac d by i. 
This means that afte r a cOD.verged responae solut ion i is obtained, 



• 

calculation of the tran.ition matrix and tbe characteri.tic exponents, 

l.e., Steps 4 and 5 in Figure 6, 1a repeated one iIIOre time in order to 

determine the 8tabllIty of tbe linearIzed Iyatem governed by EquatIon 

(4. 35 b). Th~ tran.it ion IDIltrix at ~h. ~nd of OIle period. U evaluated 

ua1ng the lemi&nalytical numeric~ scbeme prelented in Reference (67). 

4.3.3 Trim Procedures 

It has been sbown in Reference. (1) and (61) that, due to the 

1nher~ntly nonlinear nature of rotary-wing seroelaaticity, the correct 

treatment of the forward fl1gbt aeroelaatic problem requires " coupled 

treatment of tbe dynudcs of tbe blade and toe overall equll tbrium of 

the entire helicopter. In practice , overall equilibrium of a h. ~i­

copter in forward flight is a complisb~d. by pilot manipulation of the _ 

controls, ~cb thAt the control variables yield a tr~d flight con­

dition. The matbematicAl procedure used to simulate tbe equilibri~ 

of a h~licopter in forward flight is co=monly denoted by the term 

tr i.'Il analysi •• 

A simplified trim analysis, suitable for aeroelaati~ &pp11ca­

tiona, haa been developed in Reference (61). The prellent study is 

baaed upon somewbat improv~c'. trim procedure., wbich are presented in 

Reference [63]. These trim procedures are sui table primarily for 

helicopters employing hingeless rotors. For the sake of completeness, 

tbe main featUl" ')s and assUll\'ptioca or the trim procedures, described in 

detail in Hef erence [63], are summari%ed t elow. 
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1. Blade elaatic flap dynamica, baaed upon a ain8le mode 

representation are included. 

2 . Blade precone, ~p' offset xA ' and linear built-in 

twist are accounted for. 

,. Variable inflow, given by Equation (4.3), and reversed 

flow effects are included. 

4. The helicopter is aasumed to be in atrai8bt, steady t'light 

at constant speed, i.e., ~ - o. 

5. Rotor shaft dynamics, n ~ 0 , and taU rotor effects 

are not cOOftidered. 

6 • S~all and ccmpreas ib ill ty effects are negl~cted. 

7. The linear steady-state nap response is evaluated 

using the method described in Section 4.'.1. 

Two different trim procedures are considered. 

Propulsive Trim (see Figure 7 ), simulates actual forward 

flight coniitions. The advance ratio ~ and the weight coefficient 

SJ (approximately equal to tbe thrust coefficient CT) are 

specified and horizontal and vertic~ force equilibr ium, as well as 

r~ll and pitch moment equilibrium, are satisfied. The computed t rim 

outputa are the rotor angl.e of attack, ~ , t he thrust coefficient 

CT ' the pitch components Qot Qls I 0lc' the inflc-.f A, and t be 

steady-state f lap responae. 
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Moment Trim (see Figure 7), s1mu.lates conditions under which 

a rotor would be tested in a wind tunnel. Pitching and rolling 

moments are maintained at zero. Force equilibrium is satisfied 

tmplicitly, since the rotor is mounted on a supporting structure. 

When using this trim procedure, ~ QO' and ~ are specified and 

C
T

, QIs' Qlc' ", and the nap response are computed. 

The control settings, Qo' Qls' Qlc' and the inflow " 

obtained from the trim analysiS are then used as input in the aero-

elastic (single blade) ~is. 

The iterative process, combining trtm and aeroelastic analysis 

(see also, Figure 8) , can now be described as follows: For a specific 

blade and a given flight condition (Steps 1 and .3 in Figure 8), 

L 

a) a trim an&l.ys~ is performed to compute the trim values 

QO' Qls' Qlc and. A. (During the first trim analysis -

Step 4 in Figure 8 - a simplified elastic flap response is 

calculated within trim.) 

b) Using the trim values from a), the aeroelastic analysis is 

performed to cuculate the stability and steady-state 

response of the rotor blade (Step 5 in Figure 8). 

c ) The flap response from a) is compared with the more accur­

ate flap response obtained in b). If they agree within a 

desired accuracy, the results obtained in b) are the solu­

tion of the a.eroelastic problem and the computations are 

terminated. 
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d) U the convergence teat in c) is not met, the tlap response 

trom b) is imposed on the trim analya is • Subsequently, 

the trim values are recomputed (Step 7 in Figure 8). These 

new, improved trim ~ ~s are then used to reevaluate the 

steady-state tlAp resy... ... .J trom the aeroelaat1c analysis. 

Thil process is continued, iteratively, until the converg­

ence test indicated in c) i8 passed. 
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SECTION 5 

RESULTS AND DISCUSSION 

The numerical reaults presented in this section are intended 

to illustrate the application of the Galerkin finite element method to 

rotary-wing aeroelasticity. It should be noted that the main emphasis 

is on the application of the method to hingeless rotored helicopters. 

However, the method is equally applicable to other types of rotors, 

such as teetering or articulated rotors. Furthermore, the method is 

eminently suitable tor analysis of modern bear1ngJ.ess fiexbeam-type 

rotors which have a canplicated redundant structure. In the following 

section, three separate groups of results will be presented : First, 

results tor sane rotating beam-type free vibration problems will ,be 

given in terms of free vibration frequencies and mode shapes. Next, 

the coupled flap-lag aeroelastic stability boundaries in hover will be 

evaluated. In this case, the critical collective pitch angle at which 

instabUity occurs will be presented as a f'unction of the inplane 

frequency . FinAlly, results illustrating the aeroelastic stabUity 

and response of the coupled flap-lag dynamics of a hingeless rotor 

blade in forward night are presenter!. For this case the governing 

parameter is the advance ratio and the results will illustrate the 

variations of system damping and response as a function of advance 

ratio. 
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5.1 Some Computation&l Details 

• I ' 
I 

, . . 

Due to the different nature of the haver and the forward fli8ht 

casel, tvo separate caaputer programs were written. 'Ibis approach 

permitted a more efficient treatment of each problem. 

In the hover case all matrices are ti.me invariant. Thus, for 

a uniform blade the bas ic parameters of the problem, 1. e., the lag and 

flap stiffness, the collecti7e pitch angle and the inflow, could be 

extracted from the element matrices. Hence, these quantities appear 

expl1citl1 as scalar factors in the finite element equations. There-

fore, after selecting the appropriate number of elements, the element 

matrices need to be c&lculated and assembled into the system matrices 

only once. Next, for a particular value of lag and flap stiffness, 

the uncoupled tree vibration modes are c&1culated and the modal reduc-

tion is carried out. The reduced linear and nonlinear system matrices 

are stored. For a particular value of pitch setting the reduced system 

matrices are multipl1~d by the basic parameters and added up to give 

the f1nal equations, Equations (3.18) and (3.19). The iterative 

Newton-Raphsoll solution to the nonlinear static equilibrium equations, 

Equation (3.18), is considered to have converged wben the absolute 

-4 change of each generalized coordinate is less than 10 • 

The search for the stability boundary is started from zero 

pitch setting. The pitch setting is then increased in eG.ual steps 

until the system becomes unstable. To obtain a more accurate es t imate 

of g, bisection is used in the interval in whi ch t he system has 
c 

78 



become unstable. Subsequent~, the pitch setting is incremented 

turther to determine whether the system rema1rus unstable. This search 

algorithm routinl! is a modified version of that need in Reference (57]. 

In forward flight most matrices contain periodic coefficients. 

'l'bua, calcul.ation of the element matrices, assembly of the system 

matrices, and modal reduction has to be repeated at each value of the 

dimensionless time ... Efficient programming and use of efficient 

methods t o compute &tabUity and r esponse is, therefore, crucial ff'Jr 

the effective treatment of this problem. 

The efficient numerical computation of transition matrices is 

very important. Transition matrices are evaluated us!ne the semi­

analytical scheme presented in Reference [67]. To find the transition 

matrix at the end of <Xle revolution (i.e., common period) and to 

compute the integral in the initial conditiona, the interval 0 to 21" 

is divided into N i equal sectCTs. In each sector the required 
ps 

matrix exponential is approximated by the f irs five te~ of its 

defining series eJqJanaion. 

'l'hf'! periodic responae of the th K linearized system is comput-

ed with a fourth-order Runge-Kutta scheme with Gill coefficients. The 

first-order system is integrated over several revolutions using a 

step size of 21"/Nrki • During each revolution, where N ::a 
rev 

1 denotes the interval 0 to 217', the response 1s Fourier s.na.lyzed, 

keeping ~ harmonics, 1. e • , (l + 2 ~ ) terms, for each generalized 

coordinate . An absolute change of less than 10 - 3 for each Fourier 
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coetticient indicates the periodicity and the convergence of the non­

linear response; see Steps 8 and 9 in Figure 8. The Runge-Kutta 

integration and Fourier analysis routines are 1lIproved versions of 

those used in Reference [62]. 

The trtm results computed in this study are generated using 

the trtm program from Reference [63]. In order to perform the trim 

and Mroelaatic analyae. iteratively, the trim ~rogram had to be 

linked to the finite element a.eroel.&stic anal.y8is program. 

The eigenva.lues of the dynamic system in hover, Equation 

(3.23), and the trans Uion matrices at the end of one pericd (forward 

flight case) are obtained by utilizing the OOL Mathematical Sub­

routine Library provided by IBM. First, the matrix is preconditioned 

by reducing its norm through exact diagonal stmilarity transf~rmations. 

The matrix is then reduced to upper Hessenberg form by orthogonal 

simUarity tre.."tsformations. Finally, all eigenvaJ.ues are canputed by 

using the QR method with origin shifts at each iteration. 

All element matrices are evaluated using six-point Gaussian 

quadrature. 

Results based on the global Galerkin method are canputed using 

a modified version of Power's canputer code, Reference [57]. Five 

nonrotating modes for each flap, lag, and torsion are use1 to obtain 

the uncoupled free vibration frequencies and mode shapes of the 

rotating blade. 
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5.2 Free Vibration Results 

In order to validate the finite element method, uncoupled free 

vibrations of a cantilevered beam were considered first. 

'!'he convergence properties of the selected finite elements can 

best be evaluated by computing the free vibration bending and torsion 

frequencies at a nonrotat1.ng uniform beam. Figure 9 shows the relative 

accuracy of the finite element solutions, as compared to the exact 

solutions, when the number of elements is increased. The first bending 

and torsion frequencies, curves labeled lB and IT respectively, a~e 

obtained with excellent accuracy even when only two elements are used. 

The second and third bending and torsion frequencies (curves labeled 

2B, 2T and 311, 3T) are obtained with less than one percent error 

when three and five elements are used, respectively. FurthermO!'e, it 

is apparent that the cubic interpolation bending element and the 

quadratic interpolation torsion element provide approximately the same 

accuracy. For comparison, the results for the first torsional. fre­

q\lency, when using the linear interpolation torsion element, are also 

shOtm. !be performance of this element is considerably inferior when 

compared to the refined torsion element based upon quadratic interpo­

lation. All elements exhibit unifonn convergE:nce. This vu antic­

ipated, since the finite element model for this conservative problem 

can be derived from a variational principle. 

Results for the fir!.,t bending frequency at a nonrotating, 

noouniform beam are shown in Figur@" J o. The beam has linear width and 

81 

.... 



~ 

depth taper, the width and depth value. at the tree end being 80 

percent of the respective root values. The ensuing quadratic !DUS and 

cubic bending stiffness distributions are approximated by using the 

functional values at ten equidistant points and assuming linear varia-

tion in between. Baaed OIl this approximation, the DIU. and stitt'ness 

prope:-ties within the elements are modeled in three different ways. 

'irst, the mass and stittne.s within the element are assumed to be 

cOll8tant, using the averap at the re8pective nodal values. Second, 

mu8 and stiffness are assumed to V&r./ linearly ..... ithin the eleme:lt. 

Third, the beam properties are integrated together with the element 

shape functions, using su-pcint Gaussian quadrature. All frequencies 

are referenced to a su-element solution, where the exact functional. 

form at the hee.m pr~rties is included in the element integrals. 

F1g\:re 10 shovs that numerical integration of beam properties yields 

accuracy cc:mparable to the cue of a uniform beam (see curve 1B in 

F1.gure 9). Modelin8 the beam properties lUI linear within the element 

gives acceptable results. However., it is cauputationally lDOre tedious. 

Last~, using the corustant model would require a significantly larger 

number of elements, solely for the purpose of modeling the nonuniform 

maas and stiffness properties. 

In the present study, numerical integration of the nonuniform 

beam propertIes is chosen. It gives the best results and Is ccmputa-

tiona.l.ly most eas1ly implemented, since the element matrices are eval-

uated using numerical integration. 

The tree vibration problem of a uniform, rotating beam, havi ng 



in- and out-ot-plane bending and torsion degrees of freed aD, is 

conaider~d next. 1be fundament&! uncoopled ~, flap, and torsion 

frequencies are c&!culated using two methods: 

1. A glob&l G&lerkin mt!thod in which tive nonrot&ting modes 

ot a unitorm beam are used to obtain e rundament&l, 

uncoupled, tlap, lag, and torsiCXl frequencies of a 

rotating beam, and 

2. The G&!erkin tini te element method of we ighted res iduals • 

Cauparison between the two sets of results, shOWing the un­

coopled rotating tlap and lag frequencie s , wFl and w
Ll

' and the 

torsion frequency, wTl as & function of the nonrotating frequencies 

is shown in Figures 11 and 12 , respectively. The results for the 

fundamental frequencies are identic&! when three or six elements are 

used, indicating that good accuracy can be obtained with a relatively 

small number ot elements. 

A ccmpe.risOll of the tirst- anci second-flap mode shape, obtained 

using both methods is presented in Figure 13 for the nonrotat1ng case 

and two different speeds ot rotation. For this case, eight elements 

were used because it was more convenient to plot the results when 

slightly more elements were used. Fran a numeric&! convergence point 

ot view, a smaller number ot elements would have been adequate. 

From these results it is clesr that excellent agreement between 

the global Galertin and the Galerkin tini te element method is obtained 

for both f'requencies and mode shapes. 
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The tree vibration results prelented in this .ection show tbat 

the selected cubic interpolation bending and quadratic interpolation 

torsion element. ere very accurate, even when only a smaJ...l number of 

elements i. used. It is reasonable to expect that theae element. will 

al.o perform very well in the aeroelutic anal.ysis, since the aero­

~c loe.d.t do not depend on the straina. Modeling of atraina, i. e. , 

the hisher-order derivative. of tbe elastic degrees of freedom, 

uaually governs tbe accuracy and convergence of tbe finite element 

solution. 

The actual number of elements used in the a.eroelaatic a.na1ys1s 

will be governed by tbe number of modes retained in the modal reduction 

process • 

5.3 Results f",. the Cue of Hover 

In tbis section tbe Galerkin finite element method is applied 

to a typical rotary-wing a.eroelastic problem. The coupled flap-lag 

aeroewtlc problem in hover rl], [68] is a convenient and simple 

example Which can be used to illustrate the Ga.l.erkln finite element 

metbod. The finite element equations for tbis problem bave been 

derived in Section 3.1. 

In calculating numerical. results, certain simplifYing as6~ 

tiona were made, since tbe objective of this section is primarily to 

illustrate the application of the Galerkin-type finite element method 

to rotary-wing aeroelastic1ty. 

These s1mpl.it'ying assumpticns are listed below: 
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1. The 1ntlow W1U ".Ulled to be c~tant over the blade and 

equal to the 1ntlow at 0.75 span, 1.e., 

2. Hub and tip loue. were nat included. 

,. Structural damping waa usumed to be zero. 

Pertinent values of the data used in the ca.lculations are 

pr esented in Table 5.1 below . 

TABLE 5 . 1 

CONIPIGURATION PARAMETERS FOR FLAP- LAG IN HOVER 

a ·2T C
dO 

... 0.01; 'Y • 5 ·0j 

b • 0.0'1,; - - 0.0 ~ - O. Oj e
1 

j 
p 

(1 • 
0 . 10 (0 . 05); -IoI

Fl • 1.~5 (1.0689) ; 
- R , E, M, • variable IoI
Ll

, 
c 

The OUlDIerica.l accuracy at the method can be belt seen by 

comparing a globa.l Ge.lerkin .olution, bued on one uncoupled 

rotating elutic mode far each deogree of freedcm, with a local 

Ga.lerkin finite element solut100 in which the blade i. 

represented by three finite elements and where, for conai.tency 

with the global method, one uncoupled elutic rotating mode 16 uud 

for ea.ch degree of freedom to reduce the number at nodal degrees of 
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rreedan. The comparison between the two methods is prf!sented 1n 

Table 1. For two separate collective pitch angll!:s Q, all pertinent 

values associated with these cases were evaluated. The agreement 

between the two methods is excellent when considering that only three 

elements are used to represent the blade. S:1.mi.lar ,~ ompe.risons were 

made for a variety of other cases, the results are not presented here 

since they would have been repetitive of the behavior illustrated by 

Table 1. The cases presented in Table 1 were stable conf1gure.tions 

because the elastiC' coupling pe.ramcter R V'\S taken as R • 1.0. c c 

Convergence properties of the Galerkin finite element method, 

when l.pplied to the aeroelastic problem, are conaidered next. I t is 

1mporUi.nt to note that convergence of Ga.lerltin-type methods in aero­

elasticity can be established only by numerical experimentation [55). 

In rotary-wing &eroelastic problems this is further complicated due to 

their nonlinear nature. Convergence of the method can be 1nvest~ated, 

a.l ternat i vely, by varying the number of e.lel:lents whUe retaining a 

f~xed number of modes in the modal reduction process , or y changing 

the number of modes and rnaintain1ng a fixed number of elements . 

Convergence with respect ~a the nonlinear iterative solution technique 

is not investi8ated here. It should be noted, however / that converg-

ence is very rapid. At most, three iteration cycles are required. 

F~ l U 1llU8trates the convergence of st&bUity ":>oundaries fo r 

three different values of the el..a.Btic ," \.pling parameter when the 

number of elements is allO\oled to vary from three to six, wbUe the 

number of modes used in the modal reduction process is maintained at 



• 

one lIIOde for each elutic degree ot freedOlll. !n &1.1 cues shown in 

tb~ figure, the unatable regions tend to decre~e as the number of 

elements is increased. The results tor E· 5 and E ~ S are &1-

moat 1dentica.l, ind~ eating that fouT' or f1V'P' elements are sut'f1cient 

to capture the bending dynamics of the blAde. 

F~e 15 sbows tbe convergence characteristics when the number 

of elements is maintained at four, E '" 4, while the number of modes 

used. 1n the mcxial. analysis is al.loo..red to var}'. The curves represent 

points at which the re&l. p&rt of those el.genva.lues associated rlth 

predarlnant l.a6 mode s , i. e . , s.r. and ~ L' is zeTO. The real part 

of tbe e18envalues associated with predar.1nant nap modes, i.e., 

and ~F' is always negative. The couplea modes of the aeroelastic 

system, Eq. (3.23), can be identified as pretiOlllinantly l~ or fia}:l 

modes by correlating tbe 1mag1.na.ry parts of the e!8envalues ~ rlth 

tbe frequencies of the uncoupled rotating beam v1bratiOM. System 

stability boundaries are obtained by piecewise combination of "1
st 

Lag" and "2nd te.g" C\.U'V1!S such that, ()ve~, the lowest value of 

Q c is maintained. For R - 0 .0 1nd R .. O. , c c 
system stability 

14 determined. by the behavior of the predcm1nant first l..&g mode. '!be 

vredan1..na.nt second l..&g mode 1s al ... '&y~ stable, i. e. , L < O . For 

R .. o. 0 it is intere at 1ng to note that convergence t:,~nds di ffe r , 
c 

depending on whetber the blade i~ .ott 1npl.ane or at111' inplane. 

In the intermediate range of el.ast1c coupling parameters, 0 . 5 < R < - c 

0 .8, the posaibility of a nap-lag type instability dan1n&tE:d by the 

second lag mode can occur. For R .. O. 
c 

tbe system ts uns table 



due to the second lag mode wen w
Ll 

< 1.6. -Above w~ • 1.6, the 

first lag mode cau.se8 the system to become unstable. For R a 0.8 
c 

the second. lag mode solely determines system stability. The first lag 

mode also becanes unstable, however, at higher va.l.ues of Q. Finally, 

although not shown in the figure, it should be noted that the system 

is stable for Rc above 0.9 far the complete range of w
Ll 

invest18ated. In conclusion, it can be said tr.a.t the difference be­

tween taking two or four modes ( i. e . , r·of,. 2 va . H ~ 4) is rela-

tively small with respect to the behavior of the first lag mode. This 

holds far va.l.ues of w
Ll 

up to 2.5, which is rarely exceeded in 

practical hingeless helicopter blade configurations. However, it is 

absolutely essential to use fau:.. .4odes, since the second lag mode 

governs ~stec stability for intermediate values. of elastic coupling. 

In Figure 16 the number of elements is kept constant at six, 

E ~ 6, and the number of modes is changed. The behavior of the tw~ 

and four-mode model follows bas ica.l..ly the same trends as those 

observed when four elements are used (see Fig. 15). Hhen using six 

modes, as canpared to four moaes (i.e., M = 6 vs. H = 4), the same 

results are obtained, except for the instability associated with the 

third predominant lag mode . However, this instability occurs at very 

h1gh pitch settings and is there~ore not relevant ~or system stabil-

ity. These results indicate that it is sufficient to us'! a total of 

four modes, two mode~ each l or the elastic flap and lag degrees of 

f~edam. As a cross-cn~ck, the four-element, four-mode solution for 

R = 0.6 is also shown in Fig. 16. The results are essentia.l.ly the 
c 
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same as in the six-element, four-mode solution. A difference occurs 

at wLl ""0 .8 and wLl. "" 1.6 ; however, it is very small, indicating 

that four or five elements are sufficiently accurate even when four 

modes are used. 

l;'!gures 17 and 18 illustrate the 1nnuence of the elastic coup­

ling parameter Rc on the real parts of the eigenvalues, which are a 

measure of modal damping and dei;ennine system stability. The pitch 

setting Q is kept constant and t wo different values of lag frequency 

w
Ll 

are considered. The predominant nap modes are very stable and 

damping associated with them remains almost constant when the elastic 

coupling is changed. Damping of the predominant lag mcxles changes 

considerably with elastic coupling. Damping of thf.! first mode is 

further strongl¥ influenced by the value of wLl. • It · is also evident 

that the instability of the second lag mode is relatively weak and 

usuaJ..l.y it can be eliminated by including a small amount of structural. 

damping in the analysis. 

A c~ison of stability results whe~ using uncoupled versus 

coupled mode shapes in the modal analysis is depicted in Figure 19. 

Use of coupled mode shapes should lead to more accurate results; 

however, it has the disadvantage that the coupled free vibration 

problem has to be recanputed for each increment of pitch setting. A 

total of four modes is used in each case. The four lowest frequency 

coupled mcxles include the two lowest lag and nap mcxles (predominant) 

when wLl < 1. 4 and, for w
Ll 

> 1 .4, the lowest lag and the three 

lowest nap modes (predominant ). This means that the actual modal 
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-representation changes with the inplane frequency w
Ll 

when simply 

using the lowest frequency coupled modes. Thus, the &n&l.ysis is not 

able to capture the behavior of the second predominant lag mode. 

P'18ure 19 shows that accuracy is not improved when using coupled 

modea. On the other hand, computing time increased roughly four-f'old 

for this example. Therefore, use of coupled modes is not recommended. 

It should be noted that when six coupled modes were used the predom­

inant second lag mode was present for all values of w
Ll 

and its be­

havior was modeled correctly. However, canputing cost increased in a 

prohibitive manner without any noticeable gain in accuracy when c~ 

pared to the results using uncoupled modes. 

In order to be able to ccmpare the GFEM with the global. G&l.erk.1n 

method, Pcwers' canputer code [57] was !l1odified by excluding torsion 

and introducing th~ elastic coupling parameter. The GFEM program was 

set up such that it can represent the governing dynamic equations of 

motion fran Reference [57] without torsion. Then both methods were 

applied to the same problem. Figures 20 and 21 show that excellent 

agreement is obtained when using four or six uncoupled rotating modes. 

These are modeled by four or six elements in the GFEM and ten un-

coupled nonrotat1Ilg modes (five for flap and five for lag) in the 

global. Ga.l.erkin method. Again, it is concluded that four elements 

and four modes will be sufficient to model simple flap-lag blade 

dynamics in hover. 

Figure 22 illustrates the effect of using different sets of non­

linear equations of !:!lotion. In Reference [3 the global Ga.lerkin 



method based on four coupled rotat1Dg modes (one predcminant lag, 

three predominant flap) is used. In the GFEM, four elements and four 

uncoupled rotat1n8 modes (1\ a ~ • 2) are used. Both, equations 

from Reference [571 (without torsion) and the present equations of 

motion are employed. InstabUity of the secood lag mode at R • 0.6 c 

is not shown. The trends established by the three solution11 are, 

overall, the same. There are, however, marked differences in the 

actual DUlllerical values, in particular, at R - 0.0. This must be c 

attributed to the fact that the equations are slightly d~erent. 

Furthermore, it should be noted that the flap- l~ &eroel3.8tic problem 

in hover, in the absence of elastic coupling terms, is very sensitive 

to small, higher-order terms; thus, small ditterences in these terms 

can lead to noticeable differences in the results. This also indicates 

that unless the equation3 ar~ derived in an identical manner, ditfer-

encer. can be observed for the same problem. These ditterences are, 

however, exaggerated by the fact that Rc was taken to be zero. 

Figure 22 concludes the results presented for the flap-lag in 

hover problem. The numerical experience gained by applying the 

Galerkin finite element method to this basic rotary-wing aeroelaatic 

problem provides valuable guidelines when dealing with the more prac-

tical flap-lag in forward flight problem, for which results are pre-

sented in the n~xt section. 

The comput1n8 times required to generate the stabUity bcundar-

es in this section were only slightly larger than those required when 

using the global Galerkin method. This might seem to be sanewhat 
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surprisingJ however, it has to be attributed to the ~act that the 

f~~ite element program was efficiently structured to avoid unnecessary 

recomputation of ele~~nt matrices, assembly of system matrices, and 

mod&.l reduction. The exact compa.riso.'l of caaputin8 times for each 

method depends, of course, on the number of elements employed in the 

finite element model. 

5.4 Results for Flap-Lag Blade Dynamics in Forward Flight 

Numerical. results presented in this section deal. with the coup­

led flap-lag aeroelastic problem in forward night. The finite element 

equations for the complete nap-lag-torsion problem in forward flight 

have been give~ in Section 4.2. No previous finite element solutions 

for the stabUity and response of nonlinear, nonconservative systems 

with periodic coefficients are avaUable. In view of the novel fea­

tures of the present research, where a finite element solution to such 

systems is given for the first time, it W83 deemed appropriate to avoid , 

initially, the added complexity of dealing with the torsional. degree of 

freedom. However, it should be mentioned that the torsional equation 

of motion and the additional terms associ~ted with the torsional degree 

of freedom in the lag and flap equations, do not introduce any concept­

ual..ly new effects. They do, on the other hand, increase the size of 

the problem, imposing additional. requirements on caaputer storage and 

computer time. 

The coupled nap-lag finite element equations in forward flight 



were obtained by simply disregarding all torsional 8ubmatrices (third 

row and column in the partitioned element matrices, see Equation 

(F.l» and deleting all torsion terms in the nonlinear bending sub-

matrices. This simplified system ~-8 caretully checked and found to 

be consistent with the ordering scheme. The method of solution pre­

sented in Section 4.3 was formulated in a general manner and is di-

rectly applicable to the flap-lag problem, as well as to the coupled 

tlap-lag-torsion problem. 

In calculating numerical results two types of inflow were in-

cluded in the ana.lys is • 

1. Uniform inflow, where ~ is given by Equation (5.2) and the 

cyclic 1n.flow canponents, ~ and ~, are set to zero; s c 

thus, 

(5.2 ) 

2. Nonuniform cyclic inflow, where t.o is given by Equation 

(5 .2) and the total 1ntlow is: 

(1 + 1.2x cos ..-) • 

For calculating the inflow at \..I. - 0.0 in the manent trim procedure, 

Equation (5.1) was used. 



The numerical results obtained for the flap-lag problem in far-

ward night are presented in two groups. 

First, resul.t s fran the application of the Galerkin finite ele.­

ment method (GFEM) are ccmpared with previous solutions, where the 

global G&l.erk1n method (GGM) was used. This group alBo contains 

results illustrating the numerical properties of the solution proced-

ure for the discretized dynamic equations, described in Section 4.3. 

Based on the experience gained with the hover problem, described in 

Lection 5.2, three elements and, for consistency with the GGM results, 

a total of two modes were used. The elastic coupling parameter was 

set to R = 1.0. The data for this group of results 1s presented in c 

Table 5.2. 

TABLE 5.2 

CONFIGURATION PARAMETEnS FOR FLAP-LAG ~ FORWARD FLIGHT 
(Figures 23-30) 

W
Ll 

= 1.417 wFl = 1.087; 

E '" 3 M = 2 R = 1.0 ; c 

b = 0.0313; 'Y = 5 ·0 C1 = 0 .05; 

Nps1 ' Nrki , ~ ~ variable. 

In all these cases, propulsive trim with a weight coefficient of 

Cw ~ 0.01 and uniform inflow was used. The actual trim values, 

'\, 



taken from the results of Reference [2], are listed in Table 2. 

The second group of results deals with the convergence proper-

ties of the Galerkin finite element method and with the influence of 

sever9.l. configuration parameters on system stabUity and response. 

The data values used for this group of results are presented in 

Table 5.3. For the soft inplane blade, these properties are close to 

those of the Boelkaw B0-105 hingeless roto:-. 

TAl3LE 5.3 

CONFIGURATION PARAMETERS FOR FLAP-LAG IN FORWARD FLIGHT 
(F1gures 31-39) 

W
Ll 

,.. Q..732 (1.417) wn • 1.125; 

b ,.. 0.0275; ~ - 4 'Y • 5.5 

(1 • 0.07 N psi ,. Nrlti ,.. 60; 1\ ,. 10 

E, M, R ~ variable. 
c 

The trim vaJ.ues were ca~culated using the trim procedures fran Refer-

~nce [63]. In all cases, the fuselage pitching moment and the var-

icus trim offsets ~ere set to zero. Propulsive trim values for a 

typical value of weight coefficient, Cw· 0.005, are shawn in Table 

Parameters which remained unchanged for all forward fli8ht 

results are: 0A -1.23 kg/m3 (0.00238 Slu8s/tt3); a· 27r, CdO " 
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CDP ~ 0.01; x. - 0.0; x. .• 1.0; e - ~ • i - '" - 0.0· and T'j -
.1. U 1 p A rF ' SL 

~F • 0.0. Furthermore, blade pretwist waa set to zero, QB· 0.0, 

and the blade properties were a.ssumed to be uniform over the span. 

other nertinent quantities are specified on the plots. 

Stability results, shoving the comparison between the 

Gal.erkin finite element method with the globa.l. Galerkin method, are 

given in Figures 23. The GGM results were taken frca Reference (2], 

Figure ~ and Reference (61], Figure 9. In Re':erence (2] the same 

equations of motion as in the present study were employed. Three 

different values of torsional stiffness were considered. For the 

compariSon, the results for the highest torsional stiffness, wTl -

15.033, were used. Reference [61] dealt with the flap-lag problem 

in forw&rd flight. However, the equations of motion did not include 

SaDe of the higher-order terms retained in the present study. In 

al.l three cases, stabUity results were obtained by linearizing the 

equations of motion about an approximate linear time-dependent equi-

librium position. To simulate the harmonic be.lance method, as it 

was used in References (2 ) and [61], only the first harmonic, (~ = 
1) waa used in generating the GFEM results. For two advance ratios, 

~ :a 0.2 and ~. 0.4, ten harmonics were &.lso used. To find the 

periodic response, the numerical integration was carried out over 

three blade revolutions and the Fourier coeffiCients, computed 

during the third revolution (N :II 3) were used. The number of rev 

azimutha.l steps (per revolution) for both stability (Npsi ) and 

response (Nrki ) was taken as 1.20} which 1s identical to the 
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step~ize uaed in Reference [2]. 

The real part of the characteristic exponent fo~ the predomi­

nant lag degree of freedem, ~lL ' versU8 the advance ratiO, ~, 1s 

plotted in Figure 2 3a. The value of tu. is a measure of the overall 

damping associated with the first lag mode. The GrEM results exhibit 

the same trend as resul.ts fran Reference [2]. The difference 1n ~ 

is roughly the same for all advance ratios. This difference lIIU.8t be 

attributed to the absence of the torsional degre~ of freedem in toe 

GFEM results. This conclusion is further conf'1rIIled by the fact thAt 

the GFEM Naults agre~ very well with those fran Reference [61], up 

to an advance ratio of ~. 0.2. Tilhen ~ is increased above that, 

the additional higher-order nonlinear terms in the presently employed 

equAtions of mation be-:ome more important, so that ev~ntuaJ.ly, at 

~ • 0.4, . the GFEM result is closer to the result frem Reference [2]. 

Stability ~esult8 for the fl.&p cegree of freedem, Figure 23b, 

general.l.y shllW the same behavior aa discussed above for lag. :r:t 

should be pointed out that results for the characteristic exponents 

ft-ca References [2] and [61] exhibit the splitting, typical of '94!r­

iod.ic aYltelll1l, for ~1F frem ~. 0.2 on upward, whUe the GFEM 

yields split values only at an advance ratio of ~. 0.4. At low~r 

values of ~ the characteristic exponents appear in caDplex conju­

gate pairs. This difference betwee[l the two methods arises, probably 

due to the new procedure employed far solving the dynamic eqUdtiona 

in the p~elent study. 

Agreement between the Galerkin finite element method a.od the 
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glob a.! Galerkin method results, presented in Figures 23, should be 

judged in light of the previously discu.sed differences in the blade 

model and in the procedure \l.IJed to obtain the linear time-dependent 

equilibrium position. Overall, qualitative ~reement between the 

two methods ia quite good. Stability results at ~ - 0.4, using 

four finite elements, brought the GFEM results in even better agree­

ment with results tran Reference [2]. For the cont'1guration in 

Figure 23, the blade motion was stable for a.ll advance ratioa 

considered. 

When canparing GFEM results based on one harmonic (1\ - 1) 

with those using ten harmonics (~- 10), it is abvious that at 

~ - 0.2 results for ~lL (Figure 23a) and ~ (Figure 23b) are 

almost identical. At ~ - 0.4 there is a minor difference for the 

rea.! part of the lag characteristic exponent. The flap degree of 

treedom, on the other hand, exhibits e rather remarkable change in 

~1F wbl!n using ten inst~ad of just one harmonic. ThiR last result 

indicates tha~ it is tmp~rtant to use more than one harmonic wben 

considering advance ratios above ~ = 0 .2 . 

Fignres 24a and 24b illustrate the effect of the number of 

harmonics used in the Fourier ~iR on the first approximation 

(K ~ 1) to the nonlinear steady-state lag and flap response. The 

blade tip displacements (generalized normalized coordinates) for :1 · 

0 .4, corresponding to the stabUity results in Figures 23 , are 

plotted during the third bl.&de revolution. Again, t he contribut ion of 

the higher ba.rmonics 1s more significant in ~lap than in lag. This , 
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&I a matter of fact, e:paw the remarkable change in fla . ., damP1ni, 

&I seen in Figure 23b. 

Table 4 containa the Fouriei' coet'ticier.ta of the relpon.te &I 

plotted in Figure. 24. FrClll the relative lIIqJlitude of these coeffi-

cienta 1t is apparent that, loIbUe 1t 1s euentl&l. to retain IIlOJ'e than 

the first harmonica, 1 t probably wruld be su.N'ic ient to use the first 

four harmonics. This canc.luaion wa.a also fOWld to be val.1d for other 

cont'igurat iOl1l • 

Since the CRJ t1lr" required far the Fourier analysis Wfi.8 very 

sm&l.l, ten harmonica 

calcula ticns • 

(. - 10) were used in all s'waequent 
11 

Figures 25a and 25b addrell the question of how many blade 

revolutions, i.e., periods, should be integrated in ard~r to obtain a 

periodic responae. These plots show that the responle is &!most th~ 

same during the first (N - 1) and the second (N • 2 ) blade rev rev 

revolution. The d1f'ference between the response frClll the second and 

third blade revolution cannot be distiJ:lguished on the plots. 

If the maximum absolute change of any Fourier coefficient, &I 

coarpeo.red to ita YfUue fran the previOWI revolution, is taken u a 

measure of ('onvergence, both the second and the third revolution 

yield Fouri er coefficients loIbicb bav@ converged within an accuracy of 

10-3• 'l'bua, an errar contr ol parameter baaed on such an accuracy 

(10- 3 ) seelDl to be adequate. Also recall that in the derivation ot 

the equations of motion the d1spl.acemef1t~ vere usumed to be ot order 
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2 
£D - 0.2 and tenu of O(EO) were neglected, aa compared to 

tenu of 0(1). Therefore, this error control quantity is alAo 108-

1cally consistent with the ordering Icheme. Furthermore, it .hould 

be noteJ. that the :1.n1 t1&l condi tiorJl used for the numerical integra-

tiOil theoretically wure a periodic responae. The eff~ct "f approx-

tmat~ODa and numerica~ errors in the actual calculAtion of the initial 

coc.d1tions rl..ll mc»t likely be corrected W:-.tt. I,;;he integratic.n over the 

second or third. blade revolution. Any further integration w1.ll merelj-

lead to an accumul.&tion of errora L"l t.he integration routine. 

Stability results (not shown), baaed on linearization about the 

steady-ltate response from the second and third reYolution, did not 

change in any s18nificant manner. This further con.firma that an 

accuracy of 10-3 tor the absolute change of the Fourier.coefficients 

i. IUf'ficient. 

Table 5 shows the firat-order state variable vector at the 

first three fUll blade revolutiona, for the response plotted in Fig-

ures 25. The elements of this vector are the lag and flap blade tip 

speeds and displacements in the rl)tating system. At the azimuthal 

angle .... 0, this vector is identical to the initial conditions. 

Fran ... - 2rr on, only s~ cba.n8es occur. A monotonic convergence 

trend fran one canplete revolution to the next cannot be a served. 

However, by using the error ~ . ' .trol parameter aasociated with the 

h&rmcmic ccmponents, as ducuased previoudy in this section, the 

periodicity can be accurately determ!ned . 

Convergence of the results indicative of stability, Ytgurea 

1.00 



26, and ot re.ponae, Figure. 27, vith the lNJIber ot qual1llnearizat1011 

.tep. wu .tud1ed next. A. expected, reault. tar .tabU1ty and. 

respoDIe change markedly when going trQll the linear ItabUi ty and 

re.ponse lolution, It· 0, to the first ncml.1near lolu~ ion, K· 1. 

S'";@Ulty resulta bued on the tust non.llnear equUibrium poaition, 

1. e. I curves labeled K· 2 in Figures 26, show a fUrther cbange on.ly 

at the higher end ot the ~vance ratio range, i.e., at ~. 0 . 4 . Thil 

re.ult, again, empbaaizel the importance ot retaining higher order 

nonlinear term. when advance ratiol above ~ . 0 .2 &re conaidered. 

Theretore, stabUity information should be obtained by linearization 

about a nanl.1near time-dependent equilibrium position. For the 

configuration conaidered in Figures 26 (dat!l tram Table 5.2), the 

. nonl.1near tenu decrease the Itab1l1 ty margin ot the lag degree ot 

freedam tar al..l values ot ~. Far the tlap deg:-ee ot treedQll, stabU­

ity i8 decreued only at IJ.. 0. 4 ; at lower va.luea ot IJ. the non­

lil'lear terma are stabUiz1ng. It 18 intere."ting to note that tlap 

a't&bUity resu.lts are lIOSt sensitive to the l'lUJIIber CIt qwul.linea.r1za­

tion steps c.aed in the ana.l.ysis, l.e., nonliaear1ties are lIore 

s ign1ticant tor tlap. As a matter ot tact, at IJ. . 0. 4 the question 

arisel 1t, indeed, the lower ot tb.e tvo vaJ.uu ot the charcter i tic 

exponent tar tlap baa caoverged with the second it~rat1on step; see 

Figure 26b. 
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Response results in Figuree. 27 shew that nonlinear terms (K· 

1) increase the amplitudes ot both the lag and nap response, as 

c:cmpe.red to the linear solution (K"" 0). When perto:nning an addi-

tiCJl1U iteration step, ice., going fran K· 1 to K =0 2, the 

response remains practically unchanged. The corresponding response 

curves cannot be distinguished within the accuracy of Figures 21. 

Inspecti~g the Fourier coefficients at K; 2 tor convergence, as 

compared with the previous iteration step K = 1, L, was seen that 

the max~ absolute change ot any Fourier coefficient at ~ =0 0,4 

is less than 10-3• 

The above question of convergence of the characteristic ex-

ponents with the number of quasllinearizatlon steps was pursued 

further by allowing a third quasilinearization step (K = 3) for 

stabUi ty only, 1. e., by linearizing the system about · the nonlinear 

response fran the second iteration step (K = 2). Figure 28 shows 

the relative c~ of the charact eristic exponents versus the number 

of quasilinearization steps for the most critical cases presented in 

Figures 26. At ~ = 0.4 the exact solu~ion was assumed to have been 

Obtained with the third iteration (K· 3), while at ~ =0 0 .2 , the 

second iterat ive solution (K =0 2 ) was used as reference. The 

results in Figure 28 indic~te that at ~ = 0.4 two iteration steps 

are needed, while at the lower value of advance ratio, ~; 0 .2, one 

iteration st~p is suffic ient to obtain converged values fer the char-

acteristic exponents. Thus, it can be concluded t hat at higher 

advance ratios, use of a nonlinear equilibrium position is necessary 
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to obtain accurate stability in!ormation. 

Frem the results presented in Figures 26 through 28, the 

tollOW'1ng procedure was established to obtain converged nonlinear 

response and stability results. First, the quas1linearization iter-

at10ns are carried on untU the maximum absolute change of any 

Fourier coet!1cient of the response 1s less than 10-3• Second, the 

system is linearized about this converged nonlinear steady-state 

response to yield the final explicit stab ili ty information, 1. e . , the 

real part of the characteristic exponents. It should be pOinted out 

that convergence of the characteristic exponents with the number of 

iteration steps can aJ.so be monitored, since this infonDation is 

avaUable at each q~Uinearization step. 1£owever, cOlllplltationa.lly, 

it would be very li11'f'icult to implement a c 'Jnvergence test based on 

the characteristic exponents, because their identification is compl1-

cated by the fact that the :lmaginary parts are not uniquely known and 

that they do not a.l.waya appear in ccmplex conjugate pairs. The iden-

t1f1cation would be particularly difficult in the case where more 

than one mode per elastic degree of f'reedcm is considered. 

The effect of the number ot azimuthal stations in calculating 

stabUity and the initial conditiona, N and the number of steps 
pSi" 

per b~e revolution in the Ru.nee-Kutta integration, N
rki

, is 

illustrated in Figures 29 and 30. Note that al.l results presented 

tor forward tH~t are obtained using the same step size tor the 

stability and response calculation, i.e., Npsi • Nrk1 • 
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The relative change of ~he real part of the characteristic 

exponents at ~ = 0.4 versus the number of azimuthal steps, is 

shown in Figure 29. The solution with Npsi = 120 was assumed to 

be correct. Note that the nap degree of heedan does not have 

complex conjugate characteristic exPonents, i.e., two distinct real 

parts are Nlsociated with it. Overall, results b!.sed on fourty steps 

are in excellent agreement. Even twenty steps, N i:l 20, ps give 

acceptable results. These canclusiOlls, however, should be viewed as 

dependent upon the particular configuration considered and the number 

of modes used to reduce the nodal degrees of heedan. When ten steps 

were used, the numerical procedure broke down. Note also, that for 

the particular configuration considered here (data from Table 5.2 ), 

the flap results conver~ slower than the lag results. The reason 

for this apparently being that higher harmonics are more significant 

for the flap response than for the lag response; see Figures 24. The 

higher harmonic response contributions obvious~ require a sma.l.ler 

stepaize for a certain, desired accuracy. 

Figures 30a and 30b compare the lag and flap response, respect­

ively, for 20 and 120 steps (per revolution). AgI'eement between 

the response curves for the different number of azimuthal steps is 

quite good, although the absolute val-uea of the Fourier coefficients 

differs by more than 10-3• When using 40 steps, the response could 

not be distinguillhed fran the curveB based on 120 steps, within the 

accuracy of the plot (result not shown). For this case (N i a 40), ps 

the absolute difference for the Fourier coefficients of the response 
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trom the two d1tferent step sizes was le8s than 10-3, indicating 

that torty steps would be sufticient. "', 

Figure 30b concludes the results intended to illustrate the 

ettects of the various parameters, associated with the solution pro-

cedure, on the blade dynamics in forward night. These parametric 

studies were necessary since previous numerical experience was limited 

and restricted to the casP.. where the linear steady-state response was 

used as the equll1brium position. No solutions to nonlinear aero-

elastic periodic systems using quasil1oearization were available. 

From the numerical experience gained in this study, the tol-

lowing conclusions were drawn. It is important to retain more than 

the first harmonic 10 the Fourier analySis of the response. In sub-

sequent calculations, ten harmonics, ~. ,10, were used. The non­

linear response was cons idered to be periodic and to have converged 

when the maxiWlm absolute change of each Fourier coefticient was less 

than 10-3• According to this criterion, periodicity was achieved 

with the second or third blade revolution and the quas1l1nearizs.tion 

procedure converged with the tirst (K· 1) or second (K· 2) non-

linear response, depending on the value of the advance ratio. Forty 

azimuthal steps were sufficient to obtain accurate response and stab-

Uity solutions. In a.ll subsequent calculations, sixty steps, N i­ps 

Nr1d - 60, were used. This should. be adequate even when more ele­

ments and mode shapes are used in the analysis. 

The configuration tar which these results were calculated 
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(data in Tables 5.2 and a) correspond to a relatively high loading 

case (~a 0.01). The choice of parameters made above should thus 

be considered conservative when cases with a more mode~ate blade 

loading are sought. Therefore, the parametric study above was not 

repeated for the other blade configurations and discretization models 

cOl18idered in this study. 

The conversence properties of the Galerkin finite element 

method are considered next. This is accCllllllished by changing the 

number of elements or the number of mode shapes in the modal reduc-

tian process. All the results are based on the con.f'iguration para-

meters given in Table 5.'. 
The relative change in the real part of the characteristic 

exponent versus the number of elements i~ shown in Figure 31 for the 

soft in-plane blade, wLl = 0.732, and elastic coupling ~ a 0.6. 
c 

The number of modes was kept constant at two. As reference, the five-

element solution was used. It is apparent that excellent convergence 

is achieved, in particular, when considering that the results in 

Figure 31 are for a high advance ratio, ~ - 0.4. Interestingly, the 

accuracy tor the flap degree of freedom is much higher than that for 

lag. This must be attributed to the lCTtrer stability margin for lag; 

see Figures 32. Overall, the three-element solution can be considered 

sufticientl¥ accurate. It should be kept in mind, however, that the 

con.f'1guration in Figure 31 is stable. For a more critical case, more 

elements ~t be required to model the system accurately. Finally, 

it is interesting to compare Figure 31 with the accuracy for the 
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tirst bending frequency ot & nonr~ating beam in Figure 9. As ex­

pected, the solution of the aeroelastic problem does require a larger 

number of elements than the tree vibration problem. 

Figures .32 show system stability when changing the number of 

modes t'rca two to tour, while keeping the I1U.IIIber ot elements constant 

at E· 4. The aeroelastic damping for the fundamental. modes, ~lL 

and. ~, remains unchanged when using four modes as ccmpared to two 

modes. The damping, i.e., real part of the characteristic exponents, 

for both predominant flap modes is practica1.l.y constant tar all ad­

vance ratios. The absolute value of ~F is s~tlhat lower than that 

tor the first nap mode, ~lF' however, both modes are strongly 

damped. The first lag mode has its lowest damping values at moderate 

advance ratios, IJ.. ~ 0.1- 0.2. When the advance ratio is increased, 

the regults indicate that the torward flight aero¢ynamics have a 

stabilizing effect. Overall, the smal.test stability margin occurs at 

hover, I.L ~ 0.0, for the second predcminant lag mode. However, with 

increasing advance ratiOS, more aeroelastic damping is ted into the 

second lag mode. Far advance ratios, I.L > 0.2, the real parts ot 

the characteristic exponents tor both lag modes, ~ and ~L' are 

roughly the same. 

The lag and flap blade tip response was plotted in Figures 33 

and 34. The conf'iguration considered is the same &8 that for which 

stability resulta were presented in Figures 31 and 32. 

Figures 33 show the response tor three different advance rat:toa, 
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obtained by using four elements and two modes. The time dependence 

of the response in forward flight (~. 0.2, 0.4) as canpe.red to 

the static response in hover (~. 0.0) is clearly illustrated. 

The time dependent contribution to the lag displAcements is basic­

ally a one per rev motion, while the major contribution to the flap 

diaplacements is a two per rev motion, 1.e., it stem.e f'rcm the sec­

Cl'ld harmonic. This is the same behavior as encountered for the 

st1.tf' in-plane blade in Figures 24. Another 1nteresting aspect of 

the response curves in Figures 33 is that the displacements at the 

advance ratio ~,. 0.2 are lower than those for hover. Frem the 

trim data in Table 3 it is obvious that there is a direct relation 

between the value of collective pitch setting QO and the magnitude 

of the response. The largest displacements occur at the advance 

ratio ~ - 0.4 which baa the largest value of Qo' 

The effect of the number of modes retained in the modal 

reduction process on the blade response at ~,. 0.4 is illustrated 

in Figures 34. The response of the second lag mode, ~ , is very 

small. Only in the reversed flow region can it be distinguished 

trom zero. The second flap mode response, 8oz, 1s more important. 

The behavior of the response associated with the first lag and flap 

mode, respectively, varies accordingly. For lag, the response of the 

first mode does not change Significantly when going from two to four 

modes in the analysis. For flap, on the other hand, there is 8. size­

able cbange. Wben the response of the first and secood flat' mode 

(tran the four-mode analysis, M:z 4) are added together, 1:.s 
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max~ value is roughly 8 percent large~ than that ot the responae 

based on the two-mode an&l.ysis (M. 2). 

The e~ect ot the number ot modes used in the analysis vaa 

further investigated by conaid.ering stability of a stitt in-plane 

blade, wLl • 1.417, With elaatic coupling R 2 0.8. 
c Resul ta tr::rr 

the real part ot the characteristic exponents are obtained by us 1ng 

two and tour modes. In b-oth cases, the blade is represented by four 

elements. The stab1l1t,y curves in Figures 35 exhibit the same gener­

al behavior as encountered for the soft in-plane blade (Figures 32). 

There are, however, two important ditterences. The second lag mode 

is unstable at IJ.. 0.0, l.e., ~L i8 positive. Therea.tter, the 

forward tlight aerodynsmics introduce a considerable amount of damp-

lng, so that at IJ.. 0.1 the second lag mode is more stable than 

the tirst 186 mode by a tactor of tive. A further increase in the 

advance ratiO, changes the value ot ~ such that it approaches 

the value ot ~L' and at IJ.. 0.4 they are practically the same. 

The other interesting point is th~t at IJ.. 0.4 only the tour-mode 

solution exhibits splitting ot the characteristic exponents (real 

part) associated with the tirst tlap mode. The tvo-mode solution 

does not capture this effect. 

Results presented in Figures 34 and 35 indicate that for both 

response and stability it is important to retain four modes in the 

a.nalys1s. Recall, that in the hover caae the second predClll1n&nt lag 

mode itself waa the cause for syatem instability at certain values of 

the lag frequency w'{ J.; see Figure 15. In the forward night case 
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such an instability vu not observed; however, the presence of the 

second lag and flap mode did change the response and, in certain 

cases, the stability behavior associated with the predominant first 

flap mode. Although thia change did not result in a critical condi-

tioo, it certainly wUl. have an ettect on blade bending moments and 

v1bration levels. ThiR , in turn, ettects the fatigue life of the 

blades and the v1bration J ~vela in the tuael.age. 

'!be effect of the elastic coupling parameter R an the stab-
c 

ili ty of the first aJ ' second predaninant lag mode is' sholtll in 

Figures 36 and 37, respectivel¥, far the sott in-plane blade. The 

stability margin of th~ first lbg mode (Figure 36) increues propor-

tiODAl.l.y with the value of R c throughout the entire range of advance 

ratios. The least stable configuration is obtained far zero elastj.c 

coupl.ing, at 10lf advancP. ratios (~- 0.1 - 0.2 ). The behaviar of the 

second lag mode, (Figure 37), is quite different. The variation of 

damping versus the advance ratio dependD strongly on the value of 

R. Lastly, it should be mentioned that the predc:ainant nap modes c 

are very stable and the damping associated with them remained almost 

constant when the elastic coupling was changed. The same observation 

was made far the hover case; see Figures 17 and 18. 

A c('1Dpe.rison of stabllity results far two values of' the weight 

coetticient is presented in Figures 38. The damping associated with 

the second lag and flap mode is practically unattected by the value of 

CWo For the first flap mode the higher value of CV reduces damping 
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increasingly with the advance ratio. Also note that at ~. 0.4 the 

blade subjected to higher loads (Cw - 0.01) exhibits flplitting ot 

the real parts of the characteristic exponents for ~lF' DampiQg 

values for the first lag mode show a reversed trend. The lower va.l.ue 

of Cw· 0.005 decreases ~LL considerably, in particular, at higb 

advance ratios. Additional results (not presented here) for a still 

lower value of the weight coefficient, Cw· 0.ace5, shoved that the 

small stability margin of the predominant first lag mode at ~. 0.1 

was reduced even t'urther. This is consistent '" 1 th the phys icu be-

bavior of the flap-lag instability in hover, since lower values of 

<=w at low advance ratios result in reduction of the aerodynamic 

damping available in the lag degree of freedom. 

The results presented so far were based on the uniform inflow 

model, given by Equation (5.2). Fi8ure 39 illustrates that the in­

fluence of the nonuniform 1.n!low, Equation (5. 3), OIl the stability 

results is minor. A small ditterence tor the lag stability results 

can be observed only at ~. 0.1. The flap stability results (not 

shawn) were unaffected at all. These results suggest that either the 

configuration considered in F).gure 39 1s not sensitiv-e to the intlow 

model, or the inflow representation muat be more sophisticated than 

Equation (5.3) in order to have any effect on system stability. 

F1nally, it should be pointed out that all torward tlight 

r esults pre4ft:nted in this study were obtained by using the linear 

equilibirum pOSition as an initial guell8 in the qua.silinearizat1on 

procedure. For a test case, system response and stability were 
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cO':Ilputed, incrementing Il in four equal. step' from Il· 0.0 to 

Il • 0.4. The linear response at the current v&l.ue of Il, aa we 11 &1 

the converged nonlinear response from the previou.&J lower value of Il, 

were uaed as the initial guess for the nonlinear response .olution. 

Both, the nonlinear respc:nae and the stabUity values of the l1near-

ized system, converged to the same solution for all values of Il, 

rega.rdleSi of which type of initial gue .. YU employed. Since uaing 

the linear initial. guess was cOIIIPUtation.ally cheaper, this option wu 

chosen . It at.!lo has the additional advantage that results can be 

computed for any arbitrary value of advance ratio, without having to 

IWeep the entire r&~ ot Il's, starting from zero up to the desired 

value of the advance ratio. 

The relults presented in this section for the nap-lag problem 

in forward flight indicate that this is buical.ly a stable conti8ura-

tion. Figure 35a illustrates that the econd lag mode instabUity 

encountered in the hover problem (Section 5.2) does not peraist in 

the fonard night region. hem results in Reference [2] it become. 

clear that inclusion of the tor1son&l degree of freedom introduces 

1natabUity, usu&1.ly associated with the lag motion. However, only 

for torsiona.lly sot't blades does this instabUity manifest itsel..t' in 

the range of advance ratios considered in the present study. 

The computational times required for the flAp-lag problem in 

forward night are quite significant. They depend on a number ot 

parameters, such as the number of e~_ments and modes, number of 



azimuthal steps, nLtlllbel: ot quuilinearbation itf!ratIona ~ and 1'l\l1Dber 

ot revolutiona integrated. Furthermore, the configuration parameters 

also playa role, in as much aa they determine the degree ot nonl.in­

earity ot the system. To tind the converged, nonlinear periodic 

response and linearized stability tor one V1Llue ot advance ratiO, 

approximately 30 CRJ seconda were needed in the three-element two­

mode cue. When ws1ng tour elements, 40 CRJ seconds were required. 

In the case ot tour elements and tour modes, this value increased to 

approximately 100 CRJ seconds. The canputation ot the element 

matrices ot aerodynamic ori8in, which IIlUIt be pertormed tor each value 

ot azimuth angle, takes up roughly 50 percent ot these CRJ times. 

A direct cClllp&rison with computing times necessary tor the global 

Galerldn method waa not possible since those results were generated 

wsing the harmonic bal..ance method to compute ,the equ1l1brlum posItion. 

All torward. night results were generated on an ~ 3033 ccmputer. 

Lastly, it should be mentioned that the iterative trim­

&eroelastic analySis, as discussed in Section 4.3.3 and indicated by 

Steps 7 and 8 in Figure 8, waa not wsed to generate results to the 

present study. It would have increased the Cc::IIIplting timea 

considerably, without contributing to the buic objectin ot thIs 

• '\ldy wbich is pr1m&r1..ly aimed at the application ot the tinite ele­

ment method to rotary-wing aeroeluticity. 
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SECTION 6 

CONCLUSICIfS 

Thi. study pre.ents the formulatioo of a Galerkin-type finite 

el.ement method for nanael.f&d.j oint, nonlinear Mroel.utic rotary-v1.ng 

problema. hem the numerical. re_ultl pre.ented far the aeroelaatic 

stabW ty aud responae of hingel~ .. helicopter rotor blade., the 

following conclusions can be drawn: 

1. The Ge.lerkin finite el.ement method 14 a practical. tool for 

fOrmul.ating and .ol.v1ng rotary-V'in8 aeroelaatic problema. 

Since spatial. disrretization is applied directly to the 

partial differentia.l. equationa, algebraic manipulative 

labor 11 reduced s18n1flcantly when caupared to the appl.i-

cation ot the global Galerldn method to s1m1.lar problema. 

However, more ccaputer time is spent in calculations. 

2. Four o~ five elements are suf~lcient to capture the bending 

dynamics of the blade vito the same accuracy a. the globa.l. 

Ge.lerldn method. 

3. Nonu.l mode tranafonaation, cC1l1bined with the G&lerkin 

finite element formulation, reduces the rrumber of noda.l. 

degrees of freedaa sign1ficantly ~ enable. OIl.e to deal 

effici~ntly vtth camP,lex probl.ellll. 

4. Far the flap-lag pr\)blem in hover it is euential to use 
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two modes tor each elAaUc degree or t'reedOlll., since the 

second lag mode determine •• yetem stabUity for certain ". 
value. of elutic coupling. 

s. The fi&p.lAg problem in forward tlight is buically stable. 

The lowest stabUity lD&l"gina are usoc1ated vith the la& 

degree of freedom at moderate advance ratios and low rotor 

loading. Inclu.icm of two modes tor each el..utic degree 

ot freedom is necessary to determine blade response 

accurately. 

6. Nonlinear ettects are impOrtant for both stability and 

responae, in particular, at high advance r~tioa. 

7. Higher harmonic contributions to the periodic blade moticm 

are sign1ticant, especia.l.ly tor nap stability and 

responae. 

At this point it should be mentioned that a portion of the 

research presented 10 this dissertation haL already been published 

r 69] and wu presented at the Fourth European Rotorcrafi and 

Powered L1t't Aircraft Forum. 

Baaed on the experience gained t"'rc.cD the flap-lag prOblem, the 

Galerkin finite elemen'l. formulation tor the coupled nap-lag-toraion 

problem, presented in Section 4, can be implemented directly. It 11 

expected that toox or five elements a-re &l.a:> adequate to model the 

coupled bending-torsional dynamics ot the blAde. 



Finall¥, 1 t should be noted that the Ga.lerlt1n fin1 te element 

method, &8 formulated in this study, provides a natural tool for 

de&J.1ng with the cOluplex structural configurations encountered in 

modern bearingles8 t'lexbeam-type main rotors and tail rotors. 
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TABLE 1 

COMPARIS(){ OF GLOBAL GALERKIN AND FINITE ELEMENT GALERKIN METHODS 

a - 0.05; 'Y = 5.0;" wFlNR - 0.4; wLlNR ... 1.1; R ... 1.0 
c 

Finite element results based on three elements and one mode per 
degree ot freedom; Global Galerkin results based on one mode per 
degree ot freedom. 

Global Galerkln GFEM Global Galarkin GFEM 

9 -0.20 9 - 0.20 9 K 0.45 W - 0.45 

(9 cO) 1.179967 1.18026 1.179967 1.18026 

(9 -0) 1.1~90 1.14150 1.140290 1.14150 

0.016719 0.016484 (-1.4~) 0.087953 0.086768 (-1. 3~) 

0.07~89 0.066521 (-5.4~) 0.187816 0.177959 (-5 .G~) 

-0.~6198 -0.~6168 (-.ll~) -0.066079 -0.065838 (-.36~) 

-0.307892 -0.308048 (.05i) -0.281260 -0.281628 (.13~) 

I:l~ ::a 
GFEM - Global Ga1erkin 100 

Global Ga1erkln 
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* 

~ 
)..0 

0.0 .07071 

0.1 .04577 

0.2 .00850 

0.3 .~880 

0.4 .03939 

TABLE 2 

* PRORJLS IVE TRIM VAWEB 

~ Q
O 'is 

.0000 .2970 -.0000 

.0031 .2652 -.0605· 

.0187 .2559 -.1178 

.04~ .2874 -.1878 

.06il .3577 -.2853 

Q1c 

.0000 

.0038 

.0072 

.0113 

.01.66 

Based on Cw ~ 0.01; taken trom results ot Ret. [2]. Used 

tar contiguraticms where data in Table 5.2 was employed. 



* 

Il AO 

0.0 .05000 

0.1 .02518 

0.2 .02057 

0., .0'46, 

0.4 .05653 

TABLE 3 

* PROruLS IVE TRIM VALUES 

~ Q
O Qls 

.0000 .14}2 -.000' 

.0094 .1084 -.0247 

.0406 .1086 -.0487 

.0875 .1454 -.0867 

.1250 .2110 -.1501 

Q1c 

.~ 

.0078 

.0151 

.0248 

.0382 

Baaed on data in Table 5.'; Cw - 0.005, uniform inflow. 

Calculated with trim program tran Ret. (6,). 
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TABLE 5 

* STEADY-STATE RES~E AT FIRST THREE CCJ.!PLETE BLADE REVOLUTlOOS 

* 

, "h1(' ) 81(') h1(,) gl(') 

0 • 13852 - .04481 -.09814 .07095 

2lT .13830 -.04874 -.09685 .Q7137 

411" .1"3822 -.04&1 -.09740 .07072 

6rr .13849 -.04858 -.09724 .071~ 

Firlt-order state variable vector at ,- n ' ·27r, 
n - 0,1, ••• ,3. Results pertain to response 
plotted in Figs. 25. 
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APPENDIX A 

COORDINATE TRANSFORMATIONS 

The transtormation. between tbe varioua coordinate systems are 

given below. Note that tor rotations ot order O{E
D
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U.~iOD 11 uaed. 

i cos -
~ • - sin 

k 0 -

.... 
1 e 

x 
.... 

0 e = y 
.... 
e

z - ~ p 

1 

-(v "' ~w) 
I X IX 

.. 
- (w - ~v ) 

,X ,X 

180 

~- --=-- - -- --- - -

... sin , 0 

, cos , 0 

0 1 

0 ~p 

1 

0 1 

1 

- ( ~+v w) 
IX I X 

A 

X 

... 
y 

A 

Z 

i -
i 
k -

} 

" e 
y 

.... 
e z 

- --.--~ - - - - -



APP!NDIX B 

INTEGRALS AND COEFFICIENTS 
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APFEKDIX C 

ELEMENT INTERPOLATIOB 
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APFENDIX D 

MATRICES FOR HOVER 

The various matrix operators and element matrices required for 

the treatment of the flap-lag problem in hover are presented below. 

(-\] 
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- 2 1 Wp + 
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m R rr: ( -2 t ).t3 p + Qt3 pXa ) 0 -
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0 di e 
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APPENDIX E 

SOLUTION OF THE NONLINEAR EQUn.IBRIUM EQUATIONS 

IN HOVER 

The f1n&l. nonlinear static equUibrium position equations 

are given as 

(f} • :a 0 , 

see Eq. (3.18). The solution to this system is obtained by applying 

the iterative Nevton-RaphBon technique [47]. The solution increment 

during iteration step n can be expressed as 

where the Jacobian matrix [J) is given by 

[J) 
~i 

• - a 

~O 
j 

(E.2 ) 

(E.3 ) 

In order to illustrate the evaluation of the nonlinear term and 

its derivative, it is help:f\1l to use indici&l notation 33]. In 

the following lower/upper case subscripts will be used for the 

element/system nodal parameters, while Greek subscripts will be used 

for the generalized modal coordinates. 
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On the element level the nonlinear term is, see Eq,. (3.14 ), 

(E. ) 

or, in indici&l notation, 

Using Eq. (3.16) to express ~o in terms of its modal. representation, 

(I. 5) beccmes 

or 

Here, (~A) is a new third-order tensor. This tensor is now 

assembled to yield an expression for the system, namely, 

(E.6 ) 

(1.7) 

( E. 8 ) 

Now, the modal reduction is completed as indicated by Eq . (3 .20) , i.e., 



o 
~ 

o 
~ (E.9 ) 

or 

o 
~. (E .10) 

Note that expression CE .10) can be written in matrix form which will 

yield the final expression for the nonlinear term &s it is presented 

in Eq. (1.1). 

The derivative of (SNI)~ 1s simply taken according to the 

chain rule 

(E.ll) 

, 



APPENDIX F 

ELEMENT MATRICES roR FORWARD FLIGHT 

The element matricel for the coupled fl&p-lag-torlian problem 

in forward flight, see Equation (4.20), are defined belovo Each 

coupled element matrix can be written in a partitioned torm, e.g.: 

Since scme ot the element matrices are rather lengthy expreaaiaa., 

they w1ll be detined in terma ot the sub-matricel. Sub-matrices which 

are not liated below are identically zero. 
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APPDDIX G 

LINEARIZATION OF FORWARD FLIGHT EQUATIONS 

The nonlinear tlap-la8-tor.ion eqUAtiOl18 ot motion, EquatiCll 

(4.22 ), 

G • (1Il(~)] ( q 1 + [d(!i' ~)] (q1 + [k(~)] (q) + (tl • 0 (G.l) 

are linearized uaing a Taylor series expanaion. '!'be nonlinear mu., 

dampiDg, and stifi'nesa matrices and the forciDg vector are de tined 

belov in 1ndicial notation. The range ot the 1nd.1ce. 11 1 through 

M, wbere M is the total. number ot lIlodea used in the ana.lysis. 

(G.2 ) 

[d(~, ~)] - c1ij + ~1j + d1ij 

+ (c2 ijk + t 2ijk - cAxijk + ~ ijk + d3ijkl· Cl l )qk 

(k(~)] • bUj + t lij + ~ij + alij 

+ (b2ijk + ~1jk + ~1jk + a31jkl . Cl1)qk (G . 4 ) 

(G . 5 ) 
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- ,~ - - - . 

- - , - ~-- , 

where 

T S 
~ ijk qlt • (A] [Iz ] [A] 

All other quantities in Equations (G.2) - (G.5) are obtained directly 

from the corresponding (upper case) system matrices I 1. e., 

etc. 

The derivatives of ~, Equation (4.24) a.nd Equation (4.34 ), 

&re then def1.ned &s follows: 
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