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SUMMARY

A finite element method for the spatial discretization of the dynamic equa-
tions of equilibrium governing rotary-wing aeroelastic problems is presented.
The equations of motion are nonself-adjoint, nonlinear, and in partial differen-
tial form. For this class of problems, variational principles are not avail-
able, 7h.s, formulation of the finite element equations is based on weighted
Galer) in residuals. This Galerkin finite element method reduces algebraic manip-
ulative labor significantly, when compared to the application of the global
Galerkin method to similar problems. However, more computer time is spent on the
numerical calculations.

To illustrate the application of the Galerkin finite element method, the
coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor
blades in hover are calculated. The finite element method is used to remove the
spatial dependence from the equations. The ensuing set of nonlinear, ordinary
differential equations is linearized about an appropriate nonlinear static equi-
librium position. The number of nodal degrees of freedom in the discretized sys-
tem is reduced significantly through a normal mode transformation. The nonlinear
static equations, determiring the equilibrium position, are solved iteratively
using the Newton-Raphson method. The linearized dynamic equations are reduced to
the standard eigenvalue problem from which the aeroelastic stability boundaries
are obtained.

The convergence properties of the Galerkin finite element method are studied
numerically by refining the discretization process. Results indicate that four
or five elements suffice to capture the dynamics of the blade with the same accu-
racy as the global Galerkin method. However, for a reliable analysis, two modes
for each elastic degree of freedom are required, since the second lag mode deter-
mines system stability for certain values of elastic coupling.

Next, the method is applied to the more practical couplea flap-lag-torsion
aeroelastic stability and response problem of hingeless helicopter rotor blades
in trimmed forward flight. Emphasis is placed on consistent discretization of
the torsional degree of freedom.

No previous finite element solutions for the stability and response of non-
linear, nonconservative systems with periodic coefficients are available. There-
fore, the general formulation is specialized to the coupled flap-lag problem in
forward flight which is used to establish the computational feasiblity of the
Galerkin finite element method in the forward flight regime.

The nonlinear, periodic coefficient, finite element equations are linearized
about a nonlinear time dependent equilibrium position, namely, the steady-state
response of the system. This response is obtained iteratively using quasilinear-
ization. Aeroelastic stability is determined from the linearized perturbation
equations using Floquet theory.
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SECTION 1

INTRODUCTION AND REVIEW CF

PERTINENT LITERATURE

1.2 Introduction

Rotary-wing alrcraft are widely used today in Loth civilian and
miliiary versions. However, performance characteristics must be
improved to meet requirements on improved speed, range, peyload,
maneuverabllity, maintenance «nd comfort. Of the many components
governing the performance of rotary-wing aircraft, the rotor is of
outstanding importance. Consequently, cne of the mcst actlive research

areas in aerocelasticity today is rotary-wing aeroelasticity.

The coupled flap (bending out-of-plane of rotation), lag (bending
in-plane of rotation), and torsional aerocelastic behavior of an iso-
lated rotor blade is the basic building block from which a more caom-
plete syestem analysis can be developed. A clear understanding of the
single blade behavior, governed by the complex interaction of struc-
tural, inertia, and aerodynamic forces, is therefore imperative. BEoth,
stability and response, must be well understood. Terminology and con-
figuration parameters assoclated with hingeless rotor blades which

have become an 1ncreasingly attractive concept are given in Figs. 1.,2.

Several studies have derived eguations capable of simuiating the
motion of this configuration with varying degrees of sopnistication.

A comprehensive review of recent developmencs ‘n this area is given by



Friedmenn (1]. The most significant conclusion from previous research
is the fact that the rotary-wing aeroelastic stability problem is
interently nonlinear. As a consequence, the correct treatment of this
aeroelastic stability problem requires the derivation of the dynamic
equations of equilibrium in a careful and consistent manner such that
moderate deflections; based upon the assumption of small atrains and
finite slopes, are properly incorporated in the mathematical model (1],
(2]. When the equations of motion are formulated in this manner, non-
linear terms can appear in the structural, inertia and aerodynamic
operators asgsociated with tlis aercelastic problem and the final
equations of motion will hs~ e a partial differential nonlinear form

{11, [2].

In rotary-wing aeroelasticity the nonlinear equations of motion
in partial differential form are usually solved by applying Galerkin's
method to eliminate the spatial dependence of the problem (1] - [3].
This procedure yields a set of coupled nonlinear ordinary differential
eguations for the dynamics of the blade. It is common practice, (1]~
(3], to obtain actual aeroelastic stability boundaries by linearizing
the equations of motion about an appropriate equilibrium position and
extracting stability information from the eigendata associated with

the linearized systen.

Typical studies, [1] - [3], dealing with practical blade configura-
tions in hover, or in forward flight, are representative of the alge-
braic complexity encountered when applying Galerkin's method to

rotary-wing aeroelastic problems. From the inspection of these and



similar studies it is clear that methods of solution based upon the
modal Galerkin method lead to extremely cumbersome algebraic manipula-
tions, which have to be carried cut manually or by alternative means

. such as algebraic manipulative systems. In some cases, the amount of
algebraic manipulations associated with the gloval Gelerkin method is
22 excessive as to prohibit treatment of complicated blade configura-
tions in a resalistic manner. Therefore, in this study the spatial
dependence will be eliminated using a Galerkin type finite element
method. This essentially local Galerkin method enables one to dis-
cretize the partial differential equations of motion directly. Conse-
quently, & significant reduction in the algebraic manipulative labor

required for the solution of the problem 18 accomplished.

During the past fiftezen years, the finite element method has
undergone explosive growth and, at the present; it has evolved from a
structural analysis tool to a general mathematical method for solving
partial differential equations, which is competitive with finite dif-
ferences, for general applications, and superior to finite differences
in structural dynamics applications (4] - {8]. For conservative self-
adjoint, linear problems, the finite element model for the system can
be conveniently generated by applying appropriate variational princi-
ples. Existence of these variational principles will also, in most
cases, guarantee the coi:vv.gence of the method. For nonself-adjoint,
nonconservative problems, such as the flutter or aercelastic problenm,
variatiocnal principles are not available. Thus, generation of the

finite element model for aercelastic, nonconservative systems 1is more



complicated and convergence of the method is not guaranteed {9].

The rotary-wing aeroelastic problem is nonself-adjoint, noncon-
servative and nonlinear, thus, formulation of a finite element method
for this problem i3 by no means straightforward. Iliowever, finite
elemen. discretization of these equations of motion will essentially
eliminate the cumbersome algebraic manipulations associated with the

global Galerkin method.

The purpose of the present study is to develop a local Gelerkin
method of weighted residuals (5] - (8], (10}, {11], which is used to
discretize the spatial dependence of the equations resulting in a
finite element formulation of the rotary-w+ing aeroelastic problem.
This method is applied directly to the equations of motion in partial
differential form and leads to a finite element formulation of the
rotary-wing aeroelastic problem, avoiding the excessive algebraic man-
ipulatione required by the application of Gelerkin's method when using

global modes (i.e., conventional method).

To illustrate the method and establish its convergence propertles,
the method is applied to some typical rotating blade free vibration
problems and to the coupled flap-lag aercelastic stability calculation
of a hingeless heliccpter rotor bvlade in hover. Cowmparison of the
solutions obtained, by using the finite element method, with previously
published results is used to establish the convergence properties of
the method. It 18 concluded that this farmulation has the potential of
becoming a powerful and practical tool for salving rotary~wing aero-

elastic stability or response problems.



Next, the Galerkin finite element method is extended to dis-
cretize the coupled flap-lag-torsion aercelastic stability and
response problem of hingeless helicopter rotor blades in forward
f£light. In tols case, the equations of motion contain periodic time-
varying coefficients. For simple blade configurations; finite element
solutions for the flap-lag case are ccmpared with previously published
results. In addition, more complicated blade configurations can be
treated efficiently. Here, the full potential of the new method
becomés evident, as it enables ocne to model the blade more realistic-

ally to a degree which has not been achieved previously.

1.2 Review of Discretization Procedures Used in Rotary-Wing

Dynamics and Aerocelasticity

The rotary~wing aeroelastic problem is governed by partial dif-
ferential equations. The first step in sclving these equations is to
discretize the spatiel dependence of the dependent variavles such
that a set of ordinary differential equaticns is obtained. Analysis

of these equations will yield the dynamic sys+tem behavior.

Typically, Galerkin's method of weighted residuals is used for
the discretization procedure [1] - {3]. Thus, each elastic degree of
freedom is represented as a finite sum of mode shapes. These modes
are taken as the coupled {3] or uncoupled [2] free vibraticn modes of
a rotating blade. They ar< generated from the uncoupled free vibra-
tion mode shapes of a nonrotating blade, for which exact expressicms

are avallable. Most studles, in particular those considering the



forward flight case, use only one mode for each elastic degree of
freedom. When more than one mode is used, the complexity of the
problem leads to extremely cumbersome algebraic manipulations which,
in some cases, are so excessive as to prohibit realistic treatment of

complicated blade configurations.

Thus, it becomes compulsory to look for alternative discretiza-
tion procedures. Two such methods, the integrating matrix method and
the finite element method, will be introduced in this section. There
are, of course, other methods. However, these two have been applied
meore widely to rotating beam problems and seem to have greater promise

with respect to treatment «f aeroelastic problems.

The integrating matrix method (M) provides a means to eliminate

the spatial dependence in rotating beam vibration problems. Vakhitov
developed the method and-used it to solve for st«tic deflections of
beams [12] and for coupled bending-torsion vibrations of a rotating
blade {13]. However, only few mumerical results were presented.
Hunter [14] extended the numerical scope of the method and investigat-
ed coupled bending-bending vibrations of a rotating propeller vlade.
Subsequently, several researchers applied the IMM to a variety of
rotating beam vibration problems. White [15] formulated the coupled
bending-tor-ion problem. Murthy (16] investigated flapwise bending
and coupied flap-torsion vibrations. White and Malatino (18] solved
the flap-lag and the nonlinear torsicn problem for the same propeller
blade as considered by Hunter {l4]}. Finally, Kvaternik, White, and

Kaza [19] used the Il to sclve nonlinear flap-lag and axial vibration
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problems. They also indicated the possibility of applying the IMM in
aeroelastic stability analyses of nelicopter rotor blades. In what
follows, a brief description of the I, its basic properties and
numerical performance when applied to rotating beam problems, is

given.

The IMM is based on direct numerical integration. The integrating
matrix may be viewed as a matrix operator which by premultiplying a
vector, containing as elements the values of a function at discrete
stations along the blade, transforms it into another vector having the
integrals of the function (from one end of the blede to each station)
as elements. To account for the boundary condition, a constant
vector has to be added. In order to apply ‘he IMM towards the solu-
tion of a differqptial equation, it is necessary to write the differ-
ential equation, or an integrated form of it, at a number of stations
along the blade. The resulting set of equations hes to be cast in
matrix form. The integrating watrix can then be used to express the
equations in terms of one set of unknowns, either the displacements or
the fundamental derivatives (second-order for bending, firsi-order for
torsion) at each station. Thus, discretization is achieved and the
vibration problem is now posed in the form of a matrix eigenvalue

Troblem.

Derivation of the integrating matrix is basedi on piecewise poly-
nomial interpolation. If, for convenience, equally spaced collocation
points are chosen, Newton's forward-difference interpolation formula

can be used to express the polyromial coefficients in terms of the



function values at the appropriate collocation points. Integration
of the polynomial expressions yields the elements of the integrating

matrix.

The IMM always leads to nonsymmetric system matrices, even when
considering a self-adjoint problem. Furthermore, the matrices are not
banded. The eigenvectors are not orthogonal with respect to the sys-~
ten matrices. Further, the IMM does not yield upper bound soclutions.
Last, the dynamic matrix is degenerate;, leading to zero eigenvalues

which correspond to infinite frequencies.

The inputs for the matrix equations are simply the values of the
cross-sectional properties at the discrete stations. HNonuniform
properties are therefore easily incorporated. Boundary conditions are
readily applied when considering the c¢lamped-freecasc. For other
cases, modification of the method is necessary {12] and some of its

appealing simplicity is lost.

The IMM hag been applied to & number of static, vibration, and
buckling problems of beams. Results were compared srith exact and
other approximate solutions, employing the finite difference, transfer
matrix, and Rayleigh-Ritz methods, and with experimental results.
Extensive convergence studies were performed by Hunter [14] for bend-
ing free vibrations of a cantilever beam. Overall, accuracy increases
with the number of stations and the degree of the interpolating pocly-
nomials. In general, higher degree poiynomial representation gives
higher accuracy when using a fixed number of stations. However, the

nunber of stations employed should always oe considerably larger



(about twice as much) as the degree of the interpolating polynomials,
especially when higher frequencies are desired. A convergence study
for more complex s8ystems, which for instance display dynamic in-
stability, was not performed. Results for nonlinear problems are

indicative of trends only.

The IMM has been established ag a very useful tool to solve free
vibration problems of rotating beams. The method is very accurate and
converges well. This 1is not surprising as it is solely based on
numerical integration. The DM has the potential of being appiied to
rotary-wing aerocelastic problems. However, more information on itg
rerformance, when solving nonlinear and nonconservative problems,
needs to be obtained. One particular disadvantage of the methed is,
that it does not yield orthogonal mode shapes. Thus, 1t becomes
questionable ‘whether modes from the IMM could be used to reduce the
number of degrees of freedom, which is essential for calculating aero-

elastic stability boundaries.

The finite element method (FEM) has been used extensively and

with great success for the solution of bean vibration problems. 1In
particular, it has been applied in the analysis of rotating blades.
Solutions for the flapwise free vibrations of a pinned-free rotating
beam using a Gelerkin-type finite element method were Presented by
VNhgaraJ and Shantakumer [20]. Their treatment was based on a bending
element with four degrees of freedom per node, satisfying all boundary
conditions. Comparison with results obtained by using the global

Galer¥in method showed good agreement. A conventional finite element



model for the natural vibrations of tapered and pretwisted canti-
levered rotor blades was formulated in Keference {21]. The equations
were developed for coupled flap-lag-torsion motion. A simple finite
element, having ten degrees of freedom, was employed. However, numer-
ical results were restricted to flapwise bending of a rotating tapered
bteam and & nonrotating pretwisted beam. The results displayed satis-

factory convergence trends and agreed well with previous sclutions.

Application of the FEM to nonlinear problems is, by now,
standard. Many solution algorithms are available, and their numerical
performance is well documented. 1In addition, the FEM has been used
for the analysis of a large variety of nonconservative systems. Here,
the Galerkin finite element method has found its most prominent area

of application.

The FEM, in contrest to the IMM, can always be formulated such
that it yields symmetric matrices for self-adjoint problems. This,
tcgether with the banded nature of the matrices represents an advan-
tage for certain solution algorithms. Another advantage of the FEM is
the handling of boundary conditions of any type without any modifica-
tions. On the other hand, formulation of nonlinear terms and, in
particular, integral terms, as they appear in rotor blede equations,
is quite straightforward when using the IMM. Finally, the FEM leads
to orthogonal eigenvectors. OSuch eigenvectors have been successfully
employed in coordinate transformations to reduce the number of degrees
of freedom used to model a dynamic system. Such a reduction is of

great importance, since the aeroelastic probtlem at hand requires &
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large number of eigenproblem solutions; This last point and the
large amount of information available on application of the FEM to
nonlinear and nonconservative systems, represent the wain advantages
of the FEM over the IMM. It also should be noted that the DM is
purely a numerical integration procedure, while the FEM retains a re-

lation to the physical properties of the system under congideration.

A thorough examination of the relevant FEM literature will fol-
low in the next section. From this, it becomes clear that the Galer-
kin finite element method is extremely well suited for dealing with
rotary-wing aeroelasticity. A further advantage in using a Galerkin-
type finite element approach consists of the considerable amount of
research done by applied mathematicians and engineers to establish the
numerical properties of this method. This vigorou;, ongoing research
activity provides the aerocelastician with more informatiorn on the num-
erical aspects, and particularly, convergence properties of the method

than is available on the integrating matrix method.

1.3 Review of Pertinent Literature on Finite Elements

From previous remarks, it is clear that two aspects of the finite
element method are of particular concern here. Namely, application to
problems whick do not allow & variational formulztlon and nonlinear
problems. Accordingly, the following literature review will emphasize

these special features.

The finite element method (FEM) originated in the area of



’
structural analysis. Its formulation was based on elementary concepts

such as thé principle of virtual work or Castigliano's theoren.
Recognizing that the FEM can be viewed as an application of the princi-
ple of stationary potential emergy soon led to its use in other areas.
In general, all problems for which a variational princinle existed
could be solved. This variational formulation also, in most cases,
guarantees the convergence of the method with mesh refinement. How=~
ever, there is a large number of problems for which no variational

principle exists.

Olson {22)] sclved the noaself-adjoint panel flutter problem. He
used the principle of virtual work to derive consistent aerodynamic
load matrices. The eigenvalues did converge when the number of ele-
ments was increased. However, this convergence was not monotonic.
Barsoum (23] used the extended Hamilton's principle to solve the dyna~-
mic stability of thin-walled beams subjected to nonconservative
loading. The nonself-adjoint character or the system was reflected in
the nonsymmetric load matrix. The same problem was treated by
Xikuchi [9]. It is interesting to note that convergence of the re-
sults wag best when the system was ccnservative, but became worse as

the degree of nonconservativeness became dominant.

A much more general approach was first developed by Szabo and Lee
(24]. They combined the method of weighted residuals, using Galer-
kin's weighting criteria, with the FEM to calculate stiffness matrices
for probleme in plane elasticity. This procedure requires only xnow-

ledge of the differential equations and boundary conditions in a given



domain’ and boundary. No variational concepts are involved. In Refer-
ence [24] the weighted residual of the governing differential equa-
tions was evaluated over the element (local domain). Integration by
parts led to a formlation which yields the same element matrices as
the conventional FEM. This also iatroduced element boundary terms,
which would vanish in the element assembly process if (and only if)
both the approximate displacement and stress fields were continuous.
This is, in general . not the case. Therefore, inter-element boundary
contributions were neglected while, for externsal boundaries, the act-

ual boundary conditions were substituted.

Ziepkiewicz and Parekh {25] applied the Galerkin weighted resid-
ual finite element method (GFEM) to transient field problems. In
contrast to Reference {24], the residual was formulated for the system
(global domain). Green's thecrem was used to remove highef order con-
timuity conditions between elements. Formally, no inter-element
boundary terms appeared because the integration was carried out over

the global domain.

A more rigorous treatment of the GFEM was presented by Hutton and
Anderson (11]. They used approximating functions over the global do-
main which were nonzerc only within the local damain. This made it
possible to apply convergence results from the global Galerkin method.
Further, it was clearly stated which of tke boundary conditions have
to be satisfied and what the inter-element continuity requirements
are. DBoth 1lssues are closely related to the imtegration by parts. It

was also shown that inter-element boundary residuals need to be
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introduced when deriving the equations cn the element level. Finally,
it was established that all those problems that can be solved using a
variational approach are a subclass of those amenable to the GFEM.

If a variational principle is available, both methods lead to the

same results. Last, deriving the equations on the basis of virtual
work is equivalent to using Galerkin's method as long as the geometric

boundary conditions are homogeneous.

Aral, Mayer and Smith (26) discussed the relation between Galer-
xin's approach and true- , quasi-, and restricted variational princi-
ples. If available, they all lead to the same results. The approxi-
mating equations, using the GFEM, were derived on the element level.
Consequently, inter-element boundary residuals were introduced to can-
cel identical terms arising from integration by parts cver each

element.

Use of the GFEM without performing integration by parts was il-
lustrated in References [27] - (29]. Prasad and Murty (27] solved
flexurel beam vibration problems. They used seventh-order interpolat-
ing polynomials as shape functions to satisfy continuity requirements
on the higher derivatives. Comparison with the conventional FEM (cub-
ic interpolating polynomials) proved the GFEM, in this form, to be
very accurate. In Reference {28] the stability of nonconservative
systems was analyzed. Results were more accurate than those of
Kikuchi {9]. This improved accuracy has to be attributed to the stip-
ulation of higher-order continuity, see Barsoum (23]. A disadvantage

of this particular implementation of the GFE!M becomes apparent when
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considering problems with mixed boundary conditions. Then it is

necessary to perform a congruent coordinate transformation such that
these boundary conditions can be satisfled (28], [29]. Furthermore,
matrices which would be symmetric when applying integration by parts

row become unsymmetric.

A comparative study of several finite element models applied to
vibrations of beams was presented in Reference [30]. The basic fea-
tures of the conventional-, hybrid-, least-square-, collocation~- ,
and GFEM were discussed. The possibility of using the GFEM in non-
linear analyses was pointed out. Further material on several approx-
imation procedures, used in conjunction with the FEM, can be found in

Reference [8].

Application of the FEM to nonlinear structural problems has re-
ceived considerable attention and a large nuzber of publications on
this subject are available. A comprehensive review of solution »ro-
cedures applied in static analyses of structures, displaying both
geumetric and/or material nonlinearities, was presented by Tillerson,
Stricklin and Haisler [31]. Selection of a solution procedure was
shown to be governed by interaction of several factors, such as type
of analysis, ease of implementation, storage space, problem size,
desired accuracy, degree of nonlinearity, computational eccnowy, and
user experience. Anocther review by Gallagher (2] dealt with geometri-
cally nonlinear problems. Construction of finite element equations
and soluticn algorithms were _~sated. It was shown that tensor nota-

tion [33], rather than matrix notation, permits a greater simplicity
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and efficiency in formulating the equations. it was also pointed out
that some advantage might be gained by using inconsistent formula-

tions, in which simplified interpclation polynomials are used for com-
putation of the nonlinear terms. Such an approach was used by Bergan
and Clough (34]. A more detailed investigation of inconsistent formu-
lations can be found in Reference (35]. Finally, Gellagher (3] sug-
gested use of ccndensation techniques to reduce the number of degrees
of freedom, prior to performing the nonlinear analysis computations.

This could lead to significant savings in computational expense. The

normal mode concept was applied for this purpose by Kavanagh [36].

The FEM has aiso been used successfully in problems of nonlinear
structural dynamics. However, applications were mainly restricted to
the transient response under impulsive loadings, such as impact,
aeismic, or blast loads, wherein the time history was found by numeri-

cal integration {37]) - (39].

The first attempt to solve large amplitude natural vibrations of
beams and plates was made by Mei [40], [41]. HLe calculated the non-
linear terms from the linear mode shape, multiplied by an amplitude
factor, and then extracted the eigendata from the linearized system.
Comparison with other analytical solutions and experimental data
showed the FEM to match the experiments more closely. Convergence 1is
meoSonic with increasing mesh refinement. lMei, later on, included an
{ierative solution technique, where the ronlinear terms were calcu-
lated from the vibraticn mode shape of the previmus iteration cycle

{uc], [43). The iteration led to lower frequencies. The mumber of
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iteration steps to achieve a certain accuracy was larger for higher
values of the prescribed amplivude, i.e., it increased with the degree
of nonlinearity. Convergence was not monotonic during the iteration.
The same problems were solved in References [Li] and {45] using the
same iterative procedure. However, the nonlinear terms were modeled
in a different manner, without making some of the simplifying acsump-
tions used by Mei. Comparison of the period for the fundamental mode
of a simply supported square plate showed results of Reference (45] to
be more accurate than those of Reference {Ll]}. This {llustrates the

importance of modeling the nonlinea. terms adequately.

Of particuler interest is Mei's finite element approach to uon-
linear panel flutter '46] which represents a typical nomself-adjoint
nonlinear aeroelastic problem. Develomment of the aerodynamic matrices
was based on Olson's work (22]. Modeling of the nvmlinear terms, the
iterative solution procedure and equivalent linearization technique
were taken from References [41] and {42]. For large deflections, the
nonlinear effects, mainly due to membrane stresses, restrain the panel
motion to bounded limit cycle oscillations with increasing amplitude
as the dynamic pressure increases. In general, three to six iteration
cycles were sufficient for convergence. Convergence with respect to
the number of elements used was not studied for the nonlinear case.
The FEM described the panel behavior correctly. However, a numerical
comparison with previous nonlinear panel flutter salutions was not
given. Thus, the accuracy of the nonlinear finite element solution

cannot be assessed.



Finally, it is worthwhile to mention that the GFEM 1s very weli
suited for application to nonlinear problems. Oden (47] characterized
it &8 "... perhaps the most powerful technique for generating accept-
able finite element models of nonlinear equations.” Rao and Raju (48]
applied it to the post buckling analysis of uniform cantilever columna.
Agreemeat of results with those found by using elliptic integrals was
very good, even for a small number of elements. The GFEM was also
used in nonlinear reactor dynamics (4G] and nonlinear toundary layer

flows [50]. This i{llustrates, again, the versatility of the GFEM.

l.4 Objectives of the Present Study

The objectives of the present study are sumarized telow:

1. Development of a local method of weighted residuals, using
Galeriin'n veighting criteria. This results in a finite
element formulation which can be used to discretize nonself-
adjoint and norlinear partial differential equatiocns

encountered in rotary-wing aeroelasticity.

2. Application of this Galerkin finite element method (GFEM) to
coupled flap-lag aerocelastic stability calculati. ..~ of hinge-
less helicopter rotor bledes in hover. The GFEM 1is used to
transform the nonself-adjoint, nonlinear partial differential
equations of motion into a set of ordinary nonlinear differ-
ential equations. The =quations are then linearized about

an appropriate nonlinear static equilirrium position. The
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rmmber of unimowns modeling the discretized system is re-
duced significantly through modal analysis. The nonlinear
static equations are solved iteratively, using the Newton-
Raphson method. The linearized dynamic equations yield a
asascard eigenvalue problem from which the aeroelastic
stanility boundaries are obtained. The convergence proper-
ties of the GFEM are studied mumerically ty refining the
disc: > .zatlon rrocedure. Results will also be compared
with previcus analyses where the global Gelerkin method was
employed. It should be stressed here that the major inter-
est is the spacewise discretization of a typical rotary-

wing aercelastic problem via the GFEM.

The Galerkin finite element method is used to discretize

the coupled flap-leg-torsion aeroelastic stability and re-
sponse problem of hingeless helicopter blades in trimmed
forward flight. Emphasis is placed on consistent discreti-
zation of the torsional degree of freedom. The blade is
assumed to have built-in twist, cross-sectional offsets bve-
tween the aercelastic center, center of gravity, and elastic
center, and nonuniform mass and stiffness properties. Root-
torsional spring stiffness and nonuniform cyclic inflow are
also included in the model. When solving the discretized
dynamic equations, a major complication arises due to the
forward flight condition which introduces periodic time-

varying coefficients in the equations of motion, as well as
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& large number of additional aercdynamic loading terms.

Due to the complexity of this problem it was decided,
at this stage, to specialize the general formulation to the
coupled flap-lag problem in trimmed forward flight. This
Problem, which is computationally less expensive, is used to
establish the computational feasibility of the Galerkin finite
element method for the aerocelastic problem in forward flight.
In this portion of the present study, the discretized, non-
linear ordinary differential equations of mution are linear-
ized about a nonlinear time-dependent equilibrium position,
namely. the steady-state response of the system. Aeroelastic

stability boundaries are sbtained from the linearized system.

For a mumber of samplé Problems, involving hingeless
rotor blades, the finite elemen® solutions are compared with
previously published results obt.iined by usirg the global
Galerkin method. The convergence properties of the Galerkin
finite element method are studied mmerically by varying the
number of elements and mode shapes, i.e., by refining the
discretization procedure. The sensitivity of the aerocelastic
steady-state response and stability to variations in the

parameters governing this problem is also considered.
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SECTION 2

GALERKIIN FINITE ELEMENT METHOD |

From the preceding literature review it is evident that the
Galerkin finite element method {(GFEM) has been used successfully in
treating a large number of nonself-adjoint and nonlinear problems. In
the next section a urief description of the method will be given.
Emphasis is mlaced on its application to nonself-adjoint systems. The
GFEM, being applied directly to the governing differential equations,
makes discretization of nonlinear terms straightforward. The ensuing
nonlinear equations can then be salved with any of the algorithms used
in the conventional finite element method. This aspect is treated in

Sections 3.3 and L.3.1.

2.1 Global Galerkin Method

The local Galerkin method, resulting in a finite element discre-
tization, can best be clarified by illustrating its application %o a

simple system. More details can be found in References {8)] and [11].

Consider the following differential equation

Qla) + P(q) = F (2.1)

which is defined in a domain D, where Q 1is a symmetric positive

definite differential operator of order 2r and P 1is a general

21




T e T

T T

operator of order r or less, representing the nonself-adjoint por-
tion of the equation. Both are operating on an unknown function gq
to yield a given function F. Furthermore, the function g has to
satisfy certain boundary conditions on the boundary S of the domain
D. For simplicity, q 1is chosen as a scalar function; however, the

subsequent development is equally applicable to vector functions.

Next, an approximate global solution having the form,

is assumed. The ﬂm are linearly independent shape functioas and the
bm are the undetermined parameters for this problem. When using the
extended Galerkin method, the ﬁn have to have contimuous deriva- ]
tives up to order (r-1), i.e., C.., continuity. Further, they
need to satisfy only the geometric boundary conditions, i.e., those
containing derivatives of order not higher than (r-1). This approx-
imate solution is then substituted into the differential equation and
the boundary conditions. The error is minimized by requiring ortho-
gonality with respect to a set of weighting functions. Thus, an
integral statement, equivalent to the differential equation and the

boundary conditions, is obtained.

In the extended Gelerkin method the original shape functions Qm
are chosen as welighting functions. It is then required tlat the sum

of the weighted residuals of both the differential equation and the
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natural boundary conditions, i.e., those containing derivatives of

order r and higher, be zero {10]}. Thus,

(‘ -
’mEdD + Js OmeBds=o, m=1,2,...,M, (2.3)

J

D

where
e = a®) + P(¢®) - F (2.4)

and EB is the residual associated with the natural boundary

conditions.

In mamy cases it is possirle to apply integration by parts to
Eq. (2.3). This reduces the order of differentiation in the symmetric
operator &, thus lowering requirement;s on the shape functiong ‘m
from CZr-l to Cr-l continuity. Furthermore, this algebraic step
also ylelds terms which cancel some of the boundary residual contri-
butions. As a matter of fact, formulation of the weighted boundary
residual and its combination with the differential equation residusl
are made in such a way that, when integrating the last one by parts,
identical terms of the boundary residusl are canceled [10). In the

case where the natural boundary conditions are homogeneous, all

boundary residual terms cancel out and Eq. (2.3) becomes

J e, E g E® - R - o .5)

where @ denctes the operator & after integration by parts.
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Application of the extended Galerkin method to beam bending can be

found in Reference [51].

2.2 Finite Element Approach

When formulating a finite element version of Galerkin's method
the domain’ D is subdivided into E subdomainsg d, which are

called elements. In each element an approximate solution of the form

q¢ = /) v al (2.6)

n=

is assumed, where as are the nodal parameters and Wﬁ are linearly
independent shape functions defined only in the subdomain associated
with the element d. This local approximation can be extended over

the whole domain D by defining

‘ Wi inside g
& = 2.7)

l O outside d

Using Eq. (2.7), the global approximation can be expressed as

E X
& = Z Ci az . (2.8)
e=l n=l1
2k




After imposing compatibility conditions on the nodal parameters
of adjacent elements (this is done during the process of assembly),

equations (2.2) and (2.8) are equivalent.

Equation (2.5) can be rewritten using Eq. (2.8) as

E N
) ) fD{mj,g)«» (¢ 2(ch)lat - gjv} -0, @9
i=l n=l

Jj=1,2,...,8, e =1,...,E

where & 1is obtoined from @ by means of the previously mentioned
integration by parts. In addition, it is implicitly assumed that no
inter-element discontinuities occur. Thus, the functions Qi aid

its derivatives of order less than r must be continuous such that
derivatives from order r up to (2r-1) are finite on element
interfaces. Equation (2.9) represents all weighted residuals for one
element and for the total assemblage of elements (i.e., N*E
weighted residuals), it represents an intermediate step and in reality

only Eq. (2.10) below is used.

As a consequence of the linear independence of the Qﬁ ‘functions,

Equation (2.9) can also be rewritten on the element level.

\ | "' e e e e e e -

ZJ Jd 1[Q(WJ,WD)+ W.j P(Wn)]an- WJ F} = 0 , (2.10)
n=l

,j‘-“l,Z,...,N, e=l,2,...,E .
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Equation (2.10) thus represents a set of N equations for each

elemeqt, from which the element matrices can be calculated.

Because of the unique choice of weighting functions in Galerkin's
method and because of the integration by parts, § yields symmetric
matrices. Further, when P 18 equal to zero, Eq. (2.10) is the
exact same expression as found when employing the variational formu-
lation of the finite element method. Operator P leads to unsym-
netric matrices. However, the banded nature of the system matrices is

still preserved.

Assembly of the system matrices and enforcement of the geometric

boundary conditions is handled as in the conventional finite element

method.

Finally, it should be pointed out that when Equation (2.3) is
solved directly, Lhe approximate solutlon has to have c2r-l contin-
uity and must satisfy all boundary conditions. The generation of
such finite elements 1s of course more difficult, in particular for
nonlinear terme, than generation of elements for the solution of
Equation (2.5). In addition, all matrices will be nonsymmetric. On
the other hand, due to the higher-order continuity, one might expect

more rapld convergence. Thus, it becomes cbvious that integration by

parts plays an important role.

2.3 Convergence Properties

The Galerkin finite element method is equivalent tc the
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conventional finite element method when considering self-adjoint
problems. It is well known that elements which are conforming and
are able to approximate constant strain will ensure convergence for
this class of problems. Some elements even display monctonic converg-
ence, thus allowing use of efficient extrapolation procedures and

glve an upper bound on the potential energy.

Based on Mikhlin's work [52], (53], Hutton and Anderson [11] and
Kikuchi (9] established convergence criteria for the Gelerkin finite
element method when applied to a wider class of problems than those
amenable to the variational FENM. However, numerical results show that
convergence is, in general, not monotonic {22] and becomes less rapid
when the nonself-adjoint character of the system under consideration

becomes more pronounced (9].

Convergence studies for the Galerkin finite element method, when
applied to nonlinear systems, are of numerical nature only [48].
Noor and Whiteman [54] derived an error bound for a certain class of
nonlinear problems, solvable by the GFEM. There are a number of
studies on convergence, accuracy, and stability of the FEM in ncn-
linear problems. They are, however, either tco general to be useful
for practical applications or restricted to certain special classes of
problems. On the other hand, a large number of nonlinear problems

have been solved using the FEM with great success.

The couments made in this section are basically to be understood
as an indication of the ongoing research effort. The rotary-wing

aeroelastic problem -- because of its complexity -- will hardly be
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accessable to any convergence proof. Thus, for the time being,
convergence can only be established numerically (55], i.e., by refin-

ing the discretization process.
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SECTION 3

APPLICATION OF THE METHOD TO THE
FLAP-LAG AERCELASTIC PROBLEM

IN HOVER

3.1 Brief Description of the Coupled Flap-Lag Equations

of Motion

The coupled flap-lag equations of motion used in this study
serve mainly as an illustrative example for the application of a
Galerkin-type finite element method to rotary-wing aerocelasticity.
The flap-lag equations for hover are obtained from the general equa-
tions which have been presented in.Reference (2], by an appropriate
elimination of the terms associated with forward flight and the

torsional degree of freedom.

The geometry of the problem is shown in Figures 3 and 4. A few
important assumptions made in the derivation of these equations are

briefly stated below:

1. The blade is assumed to have moderate deflection., which
implies small strains and finite rotations or slopes. These
elastic rotations are assumed to be of order €, (ED = 0.20)
80 that terms of O(ED)2 are negligible compared tov terms of
order one, O(l). The blade can bend in two mitually perpen-

dicular directions. Initially the blade is straight;



during deformation the Euler-Bernoulli assumption is used.
The structural operators resulting from these assumptions

have been presented in Reference [56].

2. The blade has only precone bp; it 1s cantilevered to the
hub and there is no built-in twist. Aerodynamic, tension,
mass, and elastic centers coincide, i.e., all cross-
sectional offsets are zero. Inertia and stiffness proper-

tles are agsumed t0 be uniform.

3. There is no coupling between blade and fuselage dynamics,
i.e., pitch, roll, and yew motions shown in Figure 1 are not

coupled with the dynamics of the blade.

L. Two-dimensional quasisteady aerodynamic loads are used;

apparent mass, stall, and compressibility are neglected.

5« An ordering scheme identical to the one in Reference (2] is
used and quantities bhaving the magnitude of the squares of
the blade slopes are neglected when compared to one, l.e.,

2y o
o(1) + ofel) = o(1) .

This ordering scheme is given in Section 4.1. Note, that in

Section 3, El = O(ED) is assumed.

Using these assumptions, the coupled flap-lag equations of motion

for hover can be written as follows.

Axial equilibrium:

' - s - (
T,x + (xo+ el) + 2v o) (3.1)



Flap equilibrium:

- "(_3 v’ -1333 w, + (w’x T)’x-ap(xo + el)-za v

P
(% (k. + 250 (3 + 2By 5 as. mem Ea
= vt Dlox,(x, + 2e )= (x, + &) A =Xy B+ (20, -5 M)V
- - - - - - -2 - - -
-(x0+ el)w-xovw,x+xo.r’xw’x-w} = 0 (3.2)
Lagz equilibrium:
r %0 .
B,V Ba.w  +(G 1) s | ¥ o+ ¥
B22 5 2000¢ BZ} 5 200XX X ThHx Ay JO s X ,xde

v=w=v’x=w’x=0 ’ (3.4

at .XO = 1;
v W = X )
B V,xxx * P'Z} w,x:o( 0 (3.5a)
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BZ} v,xxx * 333 Q,xxx =0 (3.50)

B,, ?r’xx + Bys i’xx 2 Q (3.5¢)

- - - A\

Bys Vox * Bss Y o (3.54)

and * =0, (3.5e)

3,2 Impleuentation of the Galerkin Finite Element Method

The Galerkin finite element method, as developed in Section 2,
i{s now appiied to Equations (3.2) end (3.3). To facilitate manipula-

tion of these equations they are rewritten in matrix operator form.

(1,008} - (G, (g, x)MMa + (6] + (D) (x;)]
+ (0 (g, @) + [05{q, %)@} - [Cpy (g, %,)1{4)

+ ([s5) - (80 (k)1 = (k)] + (A Gl

e laglg, %)M = (RGN (3.6)

£14

where (g} = { 2 } . Other quantities are defined in Appendix D. It
should be noted that th. tension T was eliminated using the axial

equation.

According to Bq. (2.2), an approximate global solution is given

by



o

—1

@ e | . v
(¥ - | J(bm} CRICRICRY

9 ! 1 Yewr

Upon subatitution into the differential equations and boundary condi-

tions, it ylelds the residuals {£} and {EB}. The weighted Galerkin

residuals become

1

T - T

‘./; [om] {EQ+ E-p “E}d"‘o+ Nm] E'Bl =0, (3.8)
Mx2 2 x1

where
%o = [8)1a%) - (o 1065 - (o 1068 + (1,348 - 1 110e)

= (3] 0}{a8} - b (7,1 (8} + [T (13068 - (x10e%) (3.9a)
£ = UG+ (8] + D]+ [p,)+ (D5 1{a5}+ a1+ (A,1)(®) (3.9n)

= (=131 (5] DP(e8) » o617 18] o (q6)

+ 1917 1% + (118 (3.9¢)
xo=l

1 =i
and D_ = ai/on.

Integrating the £y term by parts, Eq. (3.8) becomes



S es mite -nla
o ~Q,+ m'~p'E§d"‘o=g’ (3.10)

where
S0 = 2l0l" (81 (a8 + 1 (017 (1,108
* D00 1% I 1)+ (r]( o) - K18 . (3.a1)

Inside the element the displacements are given by

v

e
P
‘ l'ej n=l [o ﬂnJIgzj
g (5
= . ( ’ = [¥(g )G . (3.12)
R L &

In the present analysis, ordinary beam-type vending (5] - [7)
representation was chosen for modeling the flap-lag motion; the geo-
metry of the element 1s illustrated in Figure 3b, where gé and Ee
represent symbolically the four ncdal degrees of freedon associated
with flapwise and lagwise bending, respectively. Thus, W =4
7n = qn ere cubic Hermite interpolation polynomials, Appendix C, and

hz and g; represent nodal disilacements and slopes for lag
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(h:) and flap (g;), respectively. For convenience, the super-

script e 1is omitted from the shape function matrix [¥].

As has been indicated previously, stability boundaries in
rotary-wing aerocelasticity can be obtained by linearizing the equa-
tions of motion about an appropriate equilibrium position. For the
case of coupled flap-lag in hover, the equilibrium position is taken
as the static nonlinear equilibrium position and the dynanic equa-

tions of motion are perturbed about this equilibrium position, i.e.,
e eC e
a"(¥)} = {81+ (a2} . (3.13)
Equation (3.12) is now extended over the global domain, in the
sense of Eq. (2.7) and substituted, together with Eq. (3.13), into
Eq. (3.10). This yields the nonlinear static equilibrium position

((B°) + (1]) - (<€) + (AT] + (451)(a%) = (7%) (3.14)

where it should be noted that [AS] also depends on (aeo} and thus

‘Eq. (3.14) is nonlinear.

Similarly, the linearized dynamic equilibrium equations are

given by
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(131{88%) + ((c®) + (DT + (057« (03))¢a4® (7] (24

E
DA STV [cy, ] {4
et

1=e+]
&=l
- 121 [cji]{aai} + ([8%] + (7] - (K]

tlagl e (D)) = o), L2, 0E . (3.5)

Equations (3.14) and (3.15) ape €quations written at the element
level, thus [Be],[Ii],..., etc., represent element matrices which
are defined in Appendix D. Fop the cubic shape functions which have
been selected, six-point Gaussian qQuadrature yields the exact elemeng
matrices. Evaluation of the conataut term {F®} ana the linear terms
[3%], [T;], [ Kf ] and [A;] in the statie equilibrium equations,
Eq. (3.14), 1is straightforvard. The quadratic term [AS] depends on
the static equilibrium position itself. Since the nonlinear equili.
brium position equation will be sol.ved by iteration, [A?] could be
evaluated using the value of {&eo} Trom the previous iterative step.
Here, a different approach is taken. Rather thap calculating [Agl,
the nonlinear system matrix, Eq. (3.18), is calculated directly; see
Appendix E. All the terms in the dynamic equation, Eq. (3.15), are
linear. However, the matricesg (D:], [Dg], [@?], [Qsi], fczx],

[Cei

Ayl and (A7) depend on the static equilibrium position, which is



& known gquentity after the static problem has been solved. Thus,
after numerically integrating the triple (quadruple, for [Dg])
products of the shape functions, again using six-point Gaussian quad-
rature, the known values of {aeo} are used to evaluate those

element matrices.

The assembly of the element matrices into the complete system
matrices is the same as in the conventional finite element method.
It should be noted, however, that bandedness of the veloclty propor-

tional matrix is destroyed due to terms of type

I -
z (r$h108Yy  ana y (5l faaty
i=etl 121

which are a consequence of the inner integrals over the global domain

in the operators [CTZ] and [CAx]'

Here, it should be mentioned that the nonlinear terms were
modeled completely consistent with the iinear terms. No simplifying
assumptions were involved. This, of course, implies added computer

time and storage.

Equations (3.14) and (3.15) can now formally be written on the
system level. Thus, the partial differential equations, Egs. (3.2)
and (3.3), are reduced to a system of ordinary differential equations

by using the Galerkin finite element method.
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3.3 Method of Solution

Before actually solving the finite element equations, the con-
siderable number of unknowns representing the nodal degrees of freedom
will be reduced by applying modal analysis. The basic assumption is
that the nodal displacement vector can be expressed in terms of a
small number of mode shapes which approximate the free vibration

mode shapes of the system. Thus,

2’} = [Al{a") 1
2 (5-16)
(a) = [A){AG) $

where [A] 13 the modal transformation matrix containing as colums
the first M approximate free vibration mode shapes of a rotating
blade. In the present study, unless otherwise noted, the MF lowest
uncoupled tlap modes and the M.L lowest uncoupled lag modes are uced,
l.e., M= ML + MF' These mode shapes are also determined by using
the finite element approach as applied to the rotating beam free
vibration problem. Since the free vibration equations are self-
adjoint, the Galerkin finite element method for this case is identical
to a conventional finite element method. Furthermore, {qo} and

{6q] are the reduced vectors of generalized coordinates. For the

static equilibrium position

{qO} = {hg)_lhgl”')b;)&"gg}&g}"'18;_)1F}T ) (3.17)
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and similarly, {Aq} 1s the reduced perturbation vector of the gen-
eralized coordinates. The hg,hg,..., etc., can be interpreted as
amplitudes of the corresponding mode shapes. They constitute the new
unknowns of the problem. As & general rule, use of 1 assumed modes
will yield M/2 actual mode shapes and frequencies with good

accuracy.

Clearly, modal analysis provides an effective reduction in the
size of the eigenvalue problem required for the soluticn of the
dynamic system equations. This is & considerable advantage since
determination of stability boundaries requires repeated solutions of
the eigenvalue problem. Furthermore, due to this approach, the band-
edness of the finite element system matrices becomes irrelevant since
the reduced system matrices are fully populated anyway. Also, the
geométric boundary conditions can be enforced implicitly through the
free vibration mode shapes. Finally, it is important to realize that
modal analysis facilitates the solution of the nonlinear static equi-
librium equations. Thus, the reduced mumber of unknowns allows one
to calculate the derivatives of the nonlinear terms conveniently and
& reiatively efficient solution algorithm, based on the Newton-Raphson

technijue can be used; see Appendix E.

The final equations, after modal reduction, for static equili~

Hiium are

(81107} + (5,7 (@)11¢%) = {e} (3.18)
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and for dynamic equilibrium

(m]fag} + [a){aq) + (k]1(Aq) =0 (3.19)

vhere, for example

m] = [(a)7T [Il]s (A] . (3.20)

A1l matrices are defined in Appendix A.

Soluticn of the aeroelastic problem, Eqs. (3.18) and (3.19), is
accomplished in two stages. First; the nonlinear equations for the
static equilibrium position, Eq. (3.18), are solved using a Newton-
Raphson scheme, described in Appendix E. This method has vroven it-
self as one of the best solution techniques available in geometric-
ally nonlinear analyses [31]. It is extremely accurate and possesses
second-order convergence. Furthermore, the completely numerical
formulation of the FEM, together with the small number of modal co-
ordinates, reduces the cost of forming and inverting the Jecobian
matrix, Eq. (E.3) 4n the appendixr. This cost usually would have to
be accounted for as one of the major drawbacks of the Newton-Raphson
method. Another drawback is its sensitivity to the choice of the

initial solution wvector.

In the present case, the nonlinear solution from the previous
value of pitch setting, ©, 1is taken as the initial guess. For the

first value of © the linear solution is chosen as the initial




guess. The iteration is considered to have converged when the abso-

lute change of each generalized coordinate during an iteration cycle
-4

is less than 10 . If the method fails to converge, the system

usually can be considered asg being statically unstable (57). Such a

situation was not encountered for the flap-lag problem in hover.

Next, the dynemic equations, Eq. (3.19), are formed and converted

into first-order state variable form,

Ag -[m]-l[d] : -[m]-l[k] A4
el ST (S - - ——= 0 . (3.21)
A4 (11 | [0)] J %
Assuming solutions of the form
()
= {y} (3.22)
Y
results in a standard eigenvalue problem
(Al{y} = Ay} (3.23)

vhere (A] is a constant nonsymmetric matrix. Equation (3.23) is
easily solved using one of the available eigenvalue solvers. The

eigenvalues appear in complex conjugate pairs
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D T

N T L ¢ o, . (3.24)

Thus, the perturted motion about the static equilirrium position is
stable when all Qk < O. The stability boundary is obtained by
systematically varying the pitch setting © until one of the Qk is

zero. More details can be found in Section 5.1,




SECTION 4

APPLICATION OF THE METHOD
70 THE FLAP-LAG-TORSION AEROELASTIC PROBLEM

IN FORWARD FLIGHT

In this section the Galerkin finite element method (GFEM)
is applied to a more practical problem, namely, the coupled flap-lag-
torsion aercelastic stability and response calculation of hingeless

rotor blades in forward flight. The torsicvnal degree of freedom

generates an additicnal equation of motion, associcted with this added
degree of freedom. The torsicnal degree of freedom also yields a
number of nonlinear bending-torsion coupling terms in the structural
operator. GSince the torsional equation of motion is of second order
with respect to the spatial variable, as compared to fourth order for
bending, special care has to be exercised when discretizing the
equations via the Galerkin finite element method. When solving the
discretized dynamic equations, a major complication arises due to the
forward flight condition which introduces periodic time varying
coefficients in the equations of motion. Due to this flight condition
a large number of additional aerodynamic loading terms appear in the

equations of motion.

4.1 3Brief Description of the Eguations of Motion

The equations of motion for the flap-lag-torsion problem in
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forward flight are coupled nonlinear, nonconservative, partial differ-

ential equations with periodic coefficients. Trhe structural operator

is taken from Reference (56]. The inertia and aerodynsmic loads are
taken from Reference [2].

The geometry of the problem 1s described in Figures 2 and

o~

b, 1In addition to the &ssumptions made in Section 3.1 for the hover

problem, the following assumptions are made:

1. The blade has an angle of built-in twist oB(iO),
occurring about the undeformed elastic axis. Recall
that the undeformed elastic axis i1s assumed to be
straight and coincident with the feathering axis.

2. The blade croas-sectional aerodynamic center, center

cf gravity, and elestic center are distinct points.

The tension center coincides with the elastic center,

i.e., x = O.

II
3. The elastic torsional deformations of the blade occur
about the deformed elastic axis. Root torsiocnal

deformation, due to pitch 1link or control system {lex-
{oility, 1is assumed to occur ebout the feathering
axis.

b, Cross-sectional stiffness and inertia properties, off-
sets, and sirfoil chord vary along the blade.

5. Structural or mechanical demping of viscous type is
included.
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6. Aerodynamic effects associated with forward flight
introduce cyclic pitch variations, thus, the pitch

angle is given by

or(v) =0+ 6, sin ¥+ G1c co8 ¥, (4.1)
and the total geometric pitch angle is

oG(io s V) = 9o (%) + o (¥) . (4.2)

7+ The inflow is represented by the following general
functional form

AMx, ¥) = Ay xl(i) * A kz(i) sin ¥

+ k3(i) cos ¥ . (k.3)

8. The effect of reversed flow is included in an exact

mAanner.

It should be pointed out that the influence of axial forces
on the torsional rigidity of the rotor blade and the effect of cross-
sectional warping due to torsion 1s neglected in Reference [5€].
Furthermore, the effects of stall and compressibility are not included
i the aserodynamic loads of Reference [2]. Although the above effecis
way be important for certain rotor blades and certain flight condi-
ticns, no attempt is made to include them in the present study, since

its primary objective 18 the application of the Galerkin finite
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element method.

In applying the ordering scheme, according to Assumption 5
in Section 3.1, the following orders of magnitude are assigned to the

various paramrters in this study:

LA A '
T 2 ¢ O(ED) !
X e
4 0 1
'ﬁ ’ 7 r 7 ? ? = O(l) ’
) )
# , sin¥ , cosvV , — , w - o(1) ,
X
(0]
1/2
00 » le b} Ol O(ED ) 2
® o) ) A A = 0(E)
R ] p J \O ? S ? D b4
u 1 T2 m3 S0 . ey
1 ’ R » 12 F) [2 ’ a A .
o) )

Using these assumptions, the coupled equations of motion
for forward flight are presented below. Note that the equations are
written in the reference frame & ; which represents the undeformed

blade.

Axia) equilibrium:

T:x+pxl =0 . (hot)




Lag equilibrium:

- (Mj:x ¥ Gjé:x w:xx B vsx T):x
- q§I’x + pyI + pyA + pyD = Q0 . (k.5)
Flap equilibrium:
(B%,x ) GJé,x v,xx * Yx T),x
+qZI,x+sz+PzA+pZD = 0 . (4.6)
Torsion equilibrium:
Mgt Ut aptay =0 - (5.7)

The corresyponding boundery conditions are:

at x, =0
v=w=v’x=w,x=O s (4.8s)
LR , (4.80)
at x5 =1

= 0 , (4.9a)
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Mé,x * éJ&,x G, * G,x e q21,x =0, (k.90)
5 = M =M= 0 , (k.9¢)

P = ¢ . (4.94)

The boundsry conditions at the free ena, iO =1, are natural bound-
ary conditions, expressing the fact that the shears, moments, and
tension at the blade tip are zero. At the blade root, io = 0, the
boundary conditions for bending involve only geometric quantities,
i.e., the bending displacements and slopes. The mixed boundary condi-
tion for torsiom, Equaticn (k.8b), is a result of the root torsional
spring.

Equations (4.4) - (4.9) are written in a general form which is
most suitable when using the Galerkin finite element method to dis-
cretize the spatial dependence. All quantities appearing in these

equations are defined below.

The elastic moments are given by:
_ 2 = 2 - = <
My = (EL, cos R, G, + 315 sin” R, QG)",xx + (Eiz -313)
1- - -
- I3 w‘n-év,n)smch %t &w)n cos 2R, @] 5 (4.10a)
= _ (37 _= 1l- - -
M, = - (EL -I:':ii)f(2 Vet d’w,xx> sin 2R, @, + év,xx cos 2R Q.]

== 2 = 2 -
- (:.;2 sin” R, + 313 cos” R, °G>"’,xx , (4.10v)




1 -2 -2 - -
{ 7 Vo " w,xx) sin 2R, O, - Vo ¥, xx 08 2R, CG] , (4.10e)
Moo= Gv.T(cis'x t Ve w’x) . (B.20d)

The distributed force and moment vectors, per unit length of

the undeformed elastic axis, are expressed as:

R = Pee+tp e *tp e, (k.11a)
q = ex+qyey+ qzez . (4.11b)

In general, these loads contain inertias, serodynamic, and structural
damping contributions, denoted by the subscripts I, A and D,
respectively. In writing the equations of motion, (hek) - (4.7), the
final form of the loads, Reference [2], has been used. Note, however,
that due to a more consistent application of the ordering scheme, the

torsional inertia lcoad, Equetion (h.lic), differs in some higher-order

terms.

Inertia loads:
PXI = m(el + xo + 2\') » ()'*012&)
Py * (v - v + pr W - 2u+ x; cos O, + X, O, sin OG) , (h.22v)
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p,r = u( -ﬁp(e:L + xo) - W - 25p V- X Q. cos OG) . (bo22¢)

95p = - m x; cos OG(el *xy) + éG(imZ - Imi) sin 29,
9 »(ko1%a)
. == - - : 2 . 2
%y = DX sin °G(°1 + xg) - ZOG(.’fm2 sin” @, + I3 cos” o)
4 =B )':I[sin OG(;' - v+ \'r’x(él + io))
+ cos GG( - (bp + w,x)(el + xo) -W - Zﬂp v

R PR T R 2 ) - (G, v 1)

‘ mG +1+ a,x ;:',x) - (imZ - imi)

; t leos 2068 -8 ¥+ 2 v v amag(Ee i )

2

s .2 N I :
- (Imz sin 9o, + I3 cos OG) uw,x(l + v’x)

l = V,x qu * w)x qu * qxI :(1*0150)

Aerodynamic loads:

, . Cdo FZ -
PyA = -LL(OG Fl-F2+ oG Fh)Fz o 1t pp(oG F, - 2F2)v

1
a0 - ‘ ) )

+ (oG F,+2 - FJ_)F3 v’x + (eG Fl-2F2+ oG Fu)F5 o

* FF, b+ (0, F, -2F, -28 Fy )% R CH o+ FF, )v’x v -

5 X
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S F W Wt (bp Fy v+ F,Fy Vet F1F5 w’x)cb
v (-2ve " v,x)FB Yax¥x (Fl v F% v,x)w,x ¢
cdo ; [ .: *
+ (oG F, +2 — Fl)v+ (oG F, - 2F, + 9, Fh)w + F,F, ¢
+ (oG Fy vt F, v + (oG Fy Vo sz v - 2F, Vet Fy b
+ F5F), Vox ¢ + F3 ¢ LA (-2v Vet F. VeVt Fy ¢ v,x)w
+OG§§'-§§+Fh§cb+é§\-r] , (b.14a)
= ‘.I\ - - * - - - -
P [( 8, Fy + F, - o, Fu)Fl-f pp F, v+ (7, 26, }5‘1)5‘5 v
- 2 - - - -
* FlFB Vx°© f ¢+ P ¥ ox * (F% - Fi)v,x Vx
- 21.~*le> v x ¢+ (F2 - 26, Fl)v +F W -FF, é
+ (LE‘3 V" 2F, $)v + F} V¥tV wl o, (4.14p)
2 K . s
2.7 %% X (0.5 - X% - %
S b 7 (0.5 xA)(l xA)(oG+ ¢)Fl
- R - - -
-.rg & -
5 3 xA[(FZ o8 Fl)Fl + ap FL v+ (F2 26, Fl)F3 Vo
- - - ,_2\- -
+ F1F3 w,x Fi é + Fl v ¥ + (F‘?5 - ‘El)v,x w,x
- 21?113‘3 ¥ $+ (F, - 20, Fl)v +F W
F3 WV 2F, ¢ v+ F5 v x w+ vwl , (b.lise)
where
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F =é+i+ul—;sm* s (b.14a)

1l 1 0
R
Fé a k.7'+ u'% ﬂp cos ¥ R (k.1ke)
= u 2 cos ¥ s (k.24r)
F3 7
F, = 52 (2.5 -%) (4.14g)
LL ‘ ] - xA ’ . 8,
ro- 2 E (0.5 - X, )(1 - %, ) (4.14n)
5 tz - - xA - XA . .
Damping loads:
pyD = - gSL v (h’olsa)
P,p = - 8p W (4.150)
qu = = ésmé . (u-IEC)

The coupled flap-leg-torsion problem is thus defined by Equa-
tions (k.5) - (4.7), together with the elastic moments, Equations
(k.10), and the loads, Equations (4.12) - (4.15). Note, that the
tension T will be eliminated using the axial equstion and correspond-
ing boundary condition, Equations (4.4) and (4.94). The axial dis-
placement, u, will be replaced using the assumption that the blade
is inextensional in the axial direction, an assumption which is cemmonly

made in rotary-wing seroelasticity.
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L.2 Discretization of the Equations of Motion Using the

Galerkin Finite Element Method

The first step in solving the equations of motion, presented
in the previcus section, is the discretization of the spatial depend-
ence. This is accomplished through application of the Galerkin finite
element method. Subsequently, modal anelysis is used to reduce the

number of discrete unknowns describing the problem.

The procedure followed here is similar to that described in
Section 3.2, for the hover problem. Therefore, only the major stcps
will ve outlined. However, special emphasis i3 placed on the appropri=

ate modeling of the torsional degree of freedom.

The approximate global solution given by Equation (3.7) is

extended to include the torsional deformation:

s |
@ = § ¥ L = (0]} . (4.16)

g
¢ j IxM Mx1

This solution is now substituted into the flapelag-torsion equations
of motion, Equations (4.5) - (4.7), and the corresponding boundary
conditions. Recall, that in the extended Galerkin method the shape
functions @m need to satisfy only the geometric boundary conditions.
Therefore, both the natural boundary conditions at the blade tip,

Equations (4.9a - c), and the mixed boundary condition, due to the root-
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torsional spring, Equation (4.8b ), contribute to the boundary residual.

The weighted Galerkin residual, obtained through appropriate
ccmbination of the weighted differential equation and boundary condi-

tion residuals is glven below.

g
'(M3,x ,x Voax © Vx T),x. T Q37 4
[l T - - -
Jo [om] (MZ,J: + G'%,x v,x:x * w,x m,x * q‘ZI,x
M
X, X

g
pyI+pyA+pD

&

Par * P *

Mrarra,ta,

'(Mz,x ,x ‘;,xx * ;',x T+ q21)+M2

- M
X -
xo=l

=0 . (4.17)

(MS,x ,x Yoxx T ;,x L qBI)'M}
T
(% (1)]



Integrating by parts and cancelling the boundary terms, the

final expression, corresponding to Equation (3.10), i

J» 1s obtained as:
/ ’
-1
J CRN
0

g
- ‘b,x w,xx+ V,xT-QBI
+ 0]" v _+w_ e+
m,X X ,ix X qEI
M
x
g

T -
- [om] sz * pzA * pzD de
MYt aut Y
g
Q
+ [0, % 0 = 0 . (4.18)
m(0) = .
R$ $
xO=O

In the interior of the element the displacements are given by:
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¥ ¥ o o | (
@ = §¥F( =] o 1 2 g
6 o o ¢ £

= [¥(x)]1{a%(¥)} . (+.19)

For bending, the same cubic Hermite interpolation polynomials
as in the hover case are used, see Apvendix C. The nodal parameters
are the lag and flap displacements and slopes at the element boundar-
ies, see Figure 3b . This element satisfies the requirement of Cl
contimuity of the global solution, since it provides interelement
contimiity for bending displecements and slopes. Bending strains vary
linearly within the element which goes beyond the minimum requirement

of constant strain within the element.

The torsion equation of motion is of second order with respect
to the spatial variable. Thus, a linear interpolation will achieve

the required C,. continuity and constant strain. However, in the

0
coupled bending-torsion analysis, it is desirable to use a torsion
element which provides the same accuracy as the bending element. This

allows discretization of the torsional variable with the same number

of elements as needed for the adequate modeling of bending.

In the present analysis, an improved torslon element, providing
linear variation of torsional strain, is obtained by using the torsion

deformation at the element mid-point as additional nodel parameter, see
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Figure 5. Thus, N =3, aund the &n are quadratic interpolation

polynomials (58], given in Appendix C.

In general, refined rinite elements can be obtained using any
mumber of internal nodes. An alternative approach is the use of higher
order derivatives (second for bending and first for torsion, or higher)
as nodal parameters. These higher-order elements, however, experience
difficulties in modeling concentrated loads. Furthermore, the bound-
ary conditions involving the higher-order derivatives must be satis-
fied. Therefore, such elements were not considered. Results for free
vibrations of beams, using elements with internal nodes or higher-

order contimity can be found in References (59] and (60].

In conclusion, it can be stated that the elements selected in
the present study are the most basic (or simple) elements which yield
a consistent formulation for coupled bending and torsion. This takes on
an additional significance in light of the large number of nonlinear
terms which have to be modeled. The exact form of the element inter-

polation polynomials 7Y, 1, and i is given in Appendix C.

The element displacements, Equation (k.l9), are now extended
over the global domain in the sense of Equation (2.7) and then sub-
stituted into the integrated Galerkin residual, given by Equation

(4,18). This yields the nonlinesr, periodic element equations.

(23] + (1)) =)

(11 51+ 18]+ [cS(a™) + (15(a%)] -

~
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- (G (a%)] + [D3(a")) + [D5(a®)] + [c5, (4%)] + 102, (5%))

+ (D58, 4701 ) 14%)

E -1

1 1,1 .4

+ < Z (5°(a)] - 1 [} (a™)] ){a}
{=e+t] i=1

(1B () e D1+ (3] + (a0 + ()]

+ (A (e%)) + (45N ) (e} 4 (FD)+ (75 + (8100 2.,

= 0 for e =1,2,...,E . (4.20)

All element matrices in Equation (4.20), indicated by the
superscript e, are defined in Appendix F. The structural operator

is associated with the matrices (Bi] and [B,E]. The axial tension

results in the contributions represented by ['I‘;], [T;] and [’I‘zei].

e

The inertia loads are included in [Li], (1, [c;], (c;1, [x;],

[Kg], {F;}, [C:x] and [CZ;], where the last two matrices are due

to the axial shortening effect. The aerodynamic loads are contained

e
1

{FX} matrices. The structural damping effect is represented by

in the (0], (03], (0,1, (03], (05,1, (51, (a%), (43) and

[Dg]. Finally, the [Bi] matrix accounts for the root torsional

condition, where the Xronecker delta, bel ;  indicates that this tera
is only present in the first element, i.e., the element at the root of

the blade.
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The functional dependence of the element matrices on the nodal
displacements is as indicated in Equation (4.20). Note, that the
matrices in Equation (4.20) have both single and double numerical sub~-
scripts. The first subscript is an identifier of nonlinear terms. A
first subscript having a value of 2 or 3 4s indicative of quad-
ratic or cubic terms, respectively. A second subscript is attacked to
all velocity-dependent element matrices. All element matrices are
evaluated using six-point Gaussian quadrature. The nonuniform element

properties are included in the numerical integration.

Next, the element matrices are assembled into the complete
system matrices. The nodal parameters within the nonlinear element

matrices are replaced by their modal representation,

{a} = [A] {q} , (k.21)

using ML lag, MF flap, and MT torsion free vibration meode
shapes of the rotating blade. Subsequently, the modal reduction
process is completed by pre- and post-multiplying the system matrices
with the modal transformation matrix, {A}], and its transpose. For
more details regarding the treatment of nonlirear terms, see Appendix

E.

The final equations of motion, in terms of the reduced set of

M modai degrees of freedom, can be written symbolically as:

¢ =l(a(g){q)+ lalg,Pl{al+ [k(g{a}+{r)=0.
~ (b.22)
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All matrices in Equation (4.22) are defined in Appendix G. Note, that
the inertia, damping, and stiffness terms have both linear and nonlinear
contributions. Also recall, that for forward flight, most matrices

have periodic coefficients, i.e.,
Q(q;d,i,") = (’;(QsQ:a:**‘ 2r) ’

with the common period being 27, which corresponds to one blade

revolution.

For convenient numerical treatment, Equation (4.22) is re-

written in first-order state variable form.

-(a(@)1™ (la(g, §)1{4) + (x(g))la) + (£}
{y} = j ,  (4.23)

. (4.23a)

It should be understood that

€0



is a periodic function depending nonlinearly on {y}.

4.3 Method of Solution

As indicated before, Equations (4.22), governing the aero-
elastic behavior of an isolated blade, are a set of coupled, nonlinear
ordinary differential equations with periodic coefficients. It has
been shown in previous research, References [1] aad [61], that in
forward flight the aercelastic stability and response problem of an
isolated blade is strongly coupled with the overall equilibrium of
the helicopter. The overall equilibrium of the helicopter in forward
flight is normally obtained by enforcing the overali force and moment
equilibrium of the complete helicopter. Such an anelysis is called
trim analysis. The results of this trim anelysis are used as input
to the aeroelastic analysis of the blade. Details of the trim proced-
ures and the mutual interaction between the trim analysis and the

aeroelastic analysis are presented in Section 4.3.3.

A solution to Equation (4.22) will provide both stability
and response information. A response solution of Equation (h.Z}),
subject, to known initial conditions, can be obtained by numerical
integration. However, this approach can become expensive in terms of
computer time, since the transient response might be significant for
a large number of rotor revolutions. Furthermore, numerical integra-
tion has proved itself to be a somewhat unreliable tool when dealing
with pericdic systems, unless it 13 complemented Ly expiicit stability

information. Therefore, in this study, the desired information about
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the aercelastic stability of the blade is obtained from the eigendata
extracted from a linearized system. The linearized equations are
obtained by linearizing the nonlinear equations, Equation (k.23),
about a suitable equilibrium position. An equilibrium position .is
considered to be suitable if perturbations about it are sufficiently
small, such tLat terms containing nonlinear products of the perturba-
tion quantities can be neglected. For the case of forward flight,

the primary source of excivation is periodic. Thus, the approximste
ncnlinear steady-state Tesponse of the blade is used as an =quilibrium
position about which the equations are linearized. Subsequently, the
stability analysis of the linearized perturbation equations is explic-

itly considered.

4.3,1 Nonlipear Steady-State Response of Periodic

ngtems

Frevious analyses, see References (2] and (61], have used 8
simple barmonic balance technique to calculate the time dependent
equilibrium position. This approach is algebraically very tedious,
Furthermore, since terms above the first harmonic wers not retained,
the accuracy of the resulting equilibrium position is somewhat
Questionable. Another shortcoming of the harmonic balance method is
its failure to provide sufficient information on the stability of the

response solution.

In the present study, the equilibrium position is obtained by

8pplylag an algorithm which has been developed in Reference [62] for



the steady-state reaponsé calculation of linear systems. In order to
apply this method to “he geroelastic problem in forward flight,
quasilinearization (63], [64] is used to transform the nonlinear eque-
tions (4.23) into a sequence of linear equaticns. The steady-state
response for the linearized system at each iteration step is then
obtained using the method of Referemce {62]. 1In the limit, the
sequence of linear problems converges to the solution of the original
nonlinear problem. Additional and general informaticn on quasi-

linearization can be found in Reference [64].

The method employed in this study has two key ingredients,
namely, quasilinearization and the linear periodic response solution.

These ingredients are described in detail below.

Quasilinearization, as formulated in Reference [631], employs

the first-order equaticns, i.e., Equation (4.23). However, when the
Galerkin finite element method is used for spatial discretization it
is more convenlent to start with the second-order system, Equation
(4.22). These equations are expended in a Taylor series about a
previous solution, keeping only linear terms. The linearized second-

order system is then transformed into first-order form.

During the Kth iteration step, the previous solution is
denoted by {qK°l(v)}. This solution has to satisfy the boundary

conditions exactly, i.e., it must be periodic,

@)y = (e any



and its derivatives with respect to ¥ must be known up to the
highest order appearing in the derivatives of 2 (see Equations
(4.25) velow). Furthermore, it is assumed that the derivatives of

G exist and that they are also periodic in v. Thus,

6§ 4+ eee

[ X X
eg-[wsgaw%ow

K-1

= 9‘ . ) (14.214»)

To write Equation (4.24) in a more compact fashion the following

quantities are defined; for additional details, see Appendix G.

[}
[}

9(ix"l s 9-; -1 s iK-l)

l

= (@Y . (k.258)

(7 = (g™, ¢yl

+ D@ AN v ey, (4.250)
K % K-l .Kel .K-1
[s7] = B @™, ¢, (k.25¢)
< X
(€] = = (gL, g5y , (k.25a)
%
x
) = ;; (@) = (%1 . (4.25¢)
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The variation, 8q., which is the difference between the current

and the previous solutiom, i.e.,
8 = R i (4.26)

{s now substituted, together with Equations (4.25), into Equation

(4.24), which is rewritten as:

15 + 1cF1d + 551N

B (e Tt TP o Ty TR - A - C X )

Equation (4.27) represents the linearized second-order system during

the Kth quasilinearization step. Using
K K-1
K ‘ ) K-1 j 2
{y?} = o ( and {y '} = it )
l 1 3 l Q-

Equation (4.27) is transformed into first-order from:

G = G, &L - ot e, (4.28)
where
o1 f ) -ft s
% = : , (L.28a)
(1} \ (0]
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The variation, &q. which is the difference between the current

and the previocus solution, 1i.e.,

g = (-1, (4.26)

is now substituted, together with Equations (h.ZS), into Equation

(4.24), which is rewritten as:

0y + ey + M1

B Tt W o T s S 8 B IR O -1 0

Equation (4.27) represents the linearized second-order system during

the Kﬁh quasilinearization step. Using

v = ¢ 1 and (1} = j e P
g ‘ l gt

Equation (4.27) is transformed into first-order from:

5 = a8, F oIt s ot vy, (4.28)

where

NS R o T R
: ; (4.288)

r
—
b red
c
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‘ L -1 Y - 515 - (7))
5y = . (4.28b)

l {0}

X} and [bx] are periodic in ¥ (with period 27) and

dependent on the previous solution, xx'l.

Both [A

The solution of Equation (4.28), i.e., the periodic response
[yK(V)}, is then used as the previcus solution for the next iteration
step. This process is continued until convergence is achieved, at
which step [yK(V)] represents the periodic steady-state response of
the nonlinear system, which is denoted as {y(¥)}. This solution is

used as the equilibrium position for the stability calculation.

For periodic systems of the %ype encountered in rotary-wing
aeroelasticity, quasilinearization is particularly attractive because
the numerical treatment required for the linear analysis of such
systems is available. Quasilinearization is a generalized Newton=-
Raphson method. It possesses second-order convergence (64]. Selec-
tion of the initial solution is crucial tc the success of the method.
Additional information on quasilinearization and its properties, as

applied to rotary-wing problems, can be found in Reference [63].

In the present study, two options for initiating the quasi-
linearization process vere implemented. Stability information in
forard flight is usually plotted as a function of the advance ratio

U. Therefore, at a given value of K, either the linear response



of the system (with all nonlinear terms deleted) was used as the
initial solution, or the nonlinear response for a previous lower

value of 4 was used as the initial solutiom.

The linear, periodic response solution of Equation (4.28) is

calculated using the algorithm developed in Reference (62] for linear
systems. Recall that Equation (4.28) is the K linear epproxina-
tion to the original nonlinear problem, Equation (4.23); therefore,
the method of [62] is applicable. The solution procedure is ocutlined
below, using the notation associated with the Kth quasilinearization

step.

Urabe [65] has shown that if the multipliers, Ak, k =

1,2,...,2M, of the homogeneous part of Equation (4.28),
9 = W (4.29)

are all different from one, then Equation (4.28) has one and only cne

periodic solution; of period 2%, given by
K K ‘ v -1 ,.K 4 I
o = fo ((a)1"L oK())as + Ty @ @)

with the initial condition
K -1 K remw K
(yX(0)} = ([1] - [8%(2m)] ) 2 (o%(2n)) Jo [65(s)1 (v%(s))as,
(4.31)
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where [°K(V)] is the fundamental matrix of Equation (L4.29), defined

by
[F(¥)] = (AR)IFW)) ane (95(0)] = (1] . (b.32)

It is important to note that [y .(0)] exists only if ([I] -
(0X(2r)]) 1is nonsingular. This is the case when the magnitudes of
all the characteristic multipliers of Equation (4.29) are different
from one, i.e., IAkl #1. If all Mxl <1, then the homogenous
system, Equation (4.29), is asymptotically stable, according to Floquet
theory [65], and {yx(v)] from Equation (4.30) is tuoe desired steady-
state solution. This response is then used as the previous solution
in the next iteration step. If any one llﬁ‘l > 1, then the homogen-
eous system is asymptotically unstable. In this case, although
Equation (4.30) is still mathematically valid, the periodic solution is

physically meaningless.

To find the periodic solution, first the initial conditionms,
Equation (k.31), are calculated. The transition matrix at the end of
one period is evaluated using Hsu's approximate, semianalytical method
(see Reference [67]). The periodic matrix ak(v)] s approximated
by a series of step functions. For each step, the matrix exponential
is approximated by a finite number of terms of its defining series.
The integral in Equation (4.31) is evaluated by taking a constant
value of the integrand in each step and performing an ordinary summa-

tion. Thus, both (%(27)] ana {yx(o)} are evaluated simultaneously



during a single pess over one period.

Provided that the system linearized about [y  L(¥)] is
stable, the linearized system, Equation (4.28), is integrated using
{(y°(0)}, 1i.e., Equation (k.31), as the initial condition. A fourth-
order Runge-Kutta integration scheme with Gill coefficients and con-
stant stepsize is used. This implies that Equation (4.30) is not used

at all in the computaticns.

Instead of storing the response {yK(V)} over one period (for
use in the next quasilinearization step), a Fourier analysis with a
finite number of terms is performed. The periodicity of the response
is checked by integrating over several periods (i.e., blade revolu-
tions) until the Fourier - ocefficients obtained in two subsequent

periods a.g:"ee within a desired accuracy.

The flow chart presented in Figure o summarizes the steady-
state response calculation of periodic, nonlinear systems, as formu-
lated in this section. The index K used in Figure € denotes the
quasilinearization iteration index which is set to zero or one, depend-
ing on whether a linear or nonlinear initial solution is used. The
integer NCONV indicates convergence of the response solution
{yK(V)}, as compared to the solution from the previous quasilineari-
zation step. At the beginning, NCONV is set to zerc. When the
response has converged it is set to one (see Step 10 in Figure 6). The
quantity € 1is a small prescribed number used in the convergence test
and in the periodicity check. The integer Km.x is the maximum

allowed number of quasilinearization iteration steps. Note that
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Figure 6 also includes the stability determination of the final linear-

ized system, which is described in the next section.

4L.,3.2 Stability of the Linearized Periodic System

Stability is determined by deriving linearized perturbation
equations about the equilibrium position, (y{(¥)}. Computation of this
time-dependent, nonlinear equilibrium position has been described in
the previous sectiom; thus, at the present stage, the vector (y(¥)}
is assumed to be known. Again, when using the finite element methed,
it is more convenient to deal initially with the second-order system.

Therefore, let

-

(@3 = {q} + (m) . (4.33)
The equations of motion, Equation (4.22), are now expanded in a Taylor

series about {q}. 3Since, by definition, the perturbations {2q} are

small, only lineer terme are retained. Thus,
%G
&3- §+ S%‘* q '2. (h.}h)

Recognizing that G(q,q,g,¥) =0, since g is the solution of

Equation (4.22), Equation (4.34) is rewritten in first-order form as:
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{y} =
A
- )7L (¢ ; - (M"Y [sj
- : (ay} , (k.35a)
L (1] I (0]
or
(@) = G, 5, Viay), (b.350)
where
[S] - (i; i) i) ’ (‘*-563)
1 = = @G,3 , (4.36b)

(M]

o8 | & 8 |, & o851 &

-~
YeY)
N

(b.36¢c)

The stability of the above homogeneous » linear, periodic system
is determined according to Floquet theory [66]. The transition matrix

of Equation (4.35b) 1s defined by

(4(¥)) = (A()1[0(¥)] ana (¢(0)] = (1] . (L.37)



The characteristic multipliers are denoted by

ETITI™ ko 1,2,.00,20 , (4.38)

where M 1is the total number of modes used in the analysis. Knowing

the l\‘ » the characteristic cxponents

)_k = ;kﬁ- iwk (b.39)

are determined from
1 2
% = 0y 1o > Ak;[) ’ (4.40a)

uk = o tan \ E ) . (h.kOb)

The linearized aeroelastic system is asymptotically stable if all
IAx|<1’ i.e., £ <O. If any one IA.‘|>1, ie., 4 >0,
the system is asymptotically unstable. Starility boundaries, repre-

senting neutral stability, are obtained when IAKI =1 or ;k = 0.

Comparing Equations (4.3C) with Equations (L.25c-e), it is
evident that the periodic metrix [A(y, é, v)] in the linearized
stability equations, Equsilon (4.35b), is identical to [AK] in the
response equations, Equation (4.28), when !K°l is repleced by i

This means that after a converged response solution i is ovtained,



calculation of the transition matrix and the characteristic exponents,
i.e., Steps 4 and 5 in Figure 6, is repeated cne imore time in order to
determine the atability of the linearized system governed by Equation
(4.35b). The 4ransition matrix at the end of one period is evaluated

using the semiznalytical numerical scheme presented in Reference [67].

L.,3.3 Trim Procedures

It has been shown in References (1] and [61] that, due to the
interently nonlinear nature of rotary-wing seroelasticity, the correct
treatment of the forward flight aeroelastic problem requires a coupled
treatment of the dyneamics of the blade and tne overall equilibrium of
the entire helicopter. In practice, overall equilibrium of & h«.i-
copter in forward flight is accomplished by pilot menipulation of the .
controls, such that the control variables yield a trimmed flight con-
dition. The mathematical procedure used to simulate the equilibrium

of a helicopter in forward flight is commonly denoted by the term

trim analysis.

A simplified trir analysis, suitable for aercelasti: eapplica-
tions, has been developed in Reference [fl]. The present study is
based upon somewhat improved trim procedures, which are presented in
Reference [63]. These trim procedures are suiteble primarily for
helicopters employing hingeless rotors. For the sake of completeness,
the main featuros and assumptions of the trim procedures, described in

detail in Heference [63], are summarized telow.

75



I
F

1. Blade elastic flap dynamics, based upon a single mode

representation are included.

2. Blade precone, bp, offset X,y and linear built-in

twist are accounted for.

3. Variable inflow, given by Equation (4.3), and reversed

flow effects are included.

Y. The helicopter is assumed to be in straight, steady flight

at constant speed, i.e., [ =0.

5. Rotor shaft dynamics, @ § O, and tail rotor effects

are not considered.
€. S+tall and compressibility effects are neglected.

7. The linear steedy-state flap response is evaluated

using the method described in Section 4.3.1.

Two different trim procedures are considered.

Propulsive Trim (see Figure 7 ), simulates actual forward

flight coniitions. The advance ratio K eand the weight coefficient
Cy (approximately equal to the thrust coefficient CT) are

specified and horizontal and verticel force equilibrium, as well as
r-11 and pitch moment equilibrium, are satisfied. The computed trim
outputs are the rotor angle of attack, QR’ the thrust coefficient
CT’ the pitch components QO‘ Ols' olc’ the inflcwy )\, and tbe

steady-state flap response.
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Momen: Trim (see Figure 7), simulates conditions under which
a rotor would be tested in a wind tunnel. Pitching and rolling
moments are maintained at zero. Force equilibrium is satisfied
implicitly, since the rotor is mounted on a supporting structure.

When using this trim procedure, K; © and GR are specified and

Ol

CT’ Ols’ °1c’ 7\, and the flap response are computed.

The control settings, OO ’ ols ’ Olc’
obtained from the trim analysis are then used as input in the aero-

and the inflow A

elastic (single blade) analysis.

The iterative process, combining trim and aeroelastic analysis
(see also, Figure 8), can now be described as follows: For a specific

blade and a given flight condition (Steps 1 and 3 in Figure 8),

a) a trim analysis is performed to compute the trim values
%’ %57 %1 and A. (During the first trim analysis -
Step 4 in Figure 8- a simplified elastic flap response is

calculated within trim.)

b) Using the trim velues from &), the aerocelastic analysis is
performed to calculate the stability and steady-state

response of the rotor tlade (Step 5 in Figure 8).

¢) The flap response from a) is compared with the more accur-
ate flap response obtained in b). If they agree within a
desired accuracy, the results obtained in b) are the solu-
tion of the aeroelastic problem and the computations are

terminated.



d) If the convergence test in c) is not met, the flap response
from b) is imposed on the trim analysis. Subsequently,
the trim values are recomputed (Step 7 in Figure 8). These
new, improved trim ve es are then used to reevaluate the
steady-state flap resi. .. from the aeroelastic analysis.
This process is continued, iteratively, until the converg-

ence test indicated in c) is passed.
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SECTION 5

RESULTS AND DISCUSSION

The numerical results presented in this section are intended
to 1llustrate the applicaetion of the Galerkin finite element method to
rotary-wing aeroelasticity. It should be noted that the main emphasis
is on the application of the method to hingeless rotored helicopters.
However, the method is equally applicable to other types of rotors,
such as teetering or articulated rotors. Furthermore, the method is
eminently suitable for analysis of modern bearingless flexbeam-type
rotors which have a complicated redundant structure. In the following
section, three separate groups of results will be presented: First,
results for some rotating beam-type free vibration problems will be
given in terms of free vibration frequencies and mode shapes. Next,
the coupled flap-lag aeroelastic stability boundaries in hover will be
evaluated. In this case, the critical collective pitch angle at which
instability occurs will be presented as a function of the inplane
frequency. Finally, results illustrating the aerocelastic stability
and response of the coupled flap-lag dynamics of a hingeless rotor
blade in forward flight are presented. For this case the governing
parameter is the advance ratio and the results will illustrate the
variations of system damping and response as a function of advance

ratio.



5.1 Some Computational Details

Due to the different nature of the hover and the forward flight
cases, two separate computer programs were written. This approach

rermitted a more efficient treatment of each problem.

In the hover case all matrices are time invariant. Thus, for
a uniform blade the basic parameters of the problem, i.e., the lag and
flap stiffness, the collective pitch angle and the inflow, could be
extracted from the element matrices. Hence, these quantities appear
explicitly as scalar factors in the finite element equations. There-
fore, after selecting the appropriate number of elements, the element
matrices need to be calculated and assembled intd the system matrices
only once. Next, for a particular value of lag and flap stiffness,
the uncoupled free vibration modes are calculated and the modal reduc-
tion is carried out. The reduced linear and nonlinear system matrices
are stored. For a particular value of pitch setting the reduced system
matrices are multiplied by the basic parameters and added up to give
the final equations, Equations (3.18) and (3.19). The iterative
Newton-Raphson solution to the nonlinear static equilibrium equationms,
Equation (3.18), is considered to have converged when the absolute

change of each generalized coordinate is less than 1o'h.

The search for the stability boundary is started from zero
pitch setting. The pitch setting is then increased in equal steps
until the system becomes urnstable. To obtain a more accurate estimate

of OC, bisection is used in the interval in which the system has
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become unstable. Subsequently, the pitch setting is incremented
further to determine whether the system remains unstable. This search

algorithm routine is a modified version of that uweed in Reference [57].

In forward flight most matrices contain periodic coefficients.
Thus, calculation of the element matrices, assembly of the system
matrices,and modal reduction has to be repeated at each value of the
dimensionless time ¥ . Efficient programming and use of efficient
methods to compute stability and response is, therefore, crucial for

the effective treatment of this problem.

The efficient numerical computation of transition matrices is
very important. Transition matrices are evaluated using the semi-
analytical scheme presented in Reference (67]. To find the transition
matrix at the end of one revolution (i.e., common period) and to
compute the integral in the initial conditions, the interval O to 2w
equal sectcrs. In each sector the required

- &
matrix exponential is approximated by the first five terms of its

is divided into K
ps

defining series expansion.

The periodic response of the Kth

linearized system is comput-
ed with a fourth-order Runge-Kutta scheme wita Gill coefficients. The
first-order system is integrated over several revolutions using a

step size of Zt/Nrki. During each revolution, N vhere Nre =

rev’ v

1 denotes the interval 0 to 2w, the response is Fourier analyzed,
keeping N, harmonics, i.e., (1+ ZNS) terms, for each generalized

coordinate. An absolute change of less than 10-3 for each Fourier



coefficient indicates the periodicity and the convergence of the non-
linear response; see Steps 8 and 9 in Figure 8. The Runge-Kutta
integration and Fourier analysis routines are improved versions cf

those used in Reference [62].

The trim results computed in this study are generated using
the trim program from Reference [63]. In order to perform the trim
and aeroelastic analyses iteratively, the trim prrogram had to be

linked to the finite element aerocelastic analysis program.

The eigenvalues of the dynamic system in hover, Equation
(3.23), and the transition matrices at the end of one pericd (forward
flight case) are obtained by utilizing the IMSL Mathematical Sub-
routine Library provided by IBM. First, the matrix is preconditioned
by reducing its norm through exact diagonal similarity transformations.
The matrix is then reduced to upper ﬁessen‘oerg form by orthogonal
similarity truensformations. Finally, all eigenvalues are computed by

using the QR method with origin shifts at each iteration.

All element matrices are evaluated using six-point Geussian

quadrature.

Results based on the global Galerkin method are computed using
a modified version of Power's computer code, Reference [57]. Five
nonrotating modes for each flap, lag, and torsion are used to obtain
the uncoupled free vibration frequencies and mode shapes of the

rotating blade.
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5.2 Free Vibration Results

In order to validate the finite element method, uncoupled free

vibrations of a cantilevered beam were considered rirst.

The convergence properties of the selected finite elements can
best be evaluated by computing the free vibration bending and torsion
frequencies of a nonrotating uniform beam. Figure 9 shows the relative
accuracy of the finite element solutions, as compared to the exact
solutions » ¥hen the mumber of elements is increased. The first bending
and torsion frequencies, curves labeled 1B and 1T respectively, are
obtained with excellent accuracy even when only two elements are used.
The second and third bending and torsion frequencies (curves labeled
2B, 2T and 3B, 3T) are obtained with less than one percent error
when three and five elements are used, respectively. Furthermore, it
is apparent that the cubic interpolation bending element and the
quadratic interpolation torsion element provide approximately the same
accuracy. For comparison, the results for the first torsional fre-
quency, when using the linear interpolation torsion element, are also
shovn. The performance of this element is considerably inferior when
compared to the refined torsion element based upon quadratic interpo-
lation. All elements exhibit uniform convergence. This was antic-
ipated, since the finite element model for this conservative problem

can be derived from a variational principle.

Results for the first bending frequency of a nonrotating,

nomuniform beam are shown in Figure 10. The beam has linear width and
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depth taper, the width and.depth values at the free end being 80
percent of the respective root values. The ensuing quadratic mass and
cubic bending stiffness distributions are approximated by using the
functional values at ten equidistant points and assuming linear varia-
tion inbetween. Based on this approximation, the mass and stiffness
prope-ties within the elements are modeled in three different ways.
First, the mass and stiffness within the element are assumed to be
constant, using the average of the respective nodal values. Second,
mass and stiffness are assumed to vary linearly within the element.
Third, the beam properties are integrated together with the element
shape functions, using six-pcint Gaussian quadrature. All frequencies
are referenced to a six-element solution, where the exact functional
form of the bheem properties is included in the element integrals.
Figure 10 shows that numerical integration of beam properties yields
accuracy comparsble to the case of a uniform beam (see curve 1B in
Figure 9). Modeling the beam properties as linear within the element
glves acceptahle results. However, it is camputationally more tedious.
Lastly, using the constant model would require a significantly larger
mumber of elements, solely for the purpose of modeling the nonuniform

mass and stiffness properties.

In the present study, numerical integration of the nomuniform
beam properties is chosen. It gives the best results and is computa-
tionally most easily implemented, since the element matrices are eval-

uated using numerical integration.

The free vibration problem of a uniform, rotating beam, having




in- and out-of-plane bending and torsion degrees of freedom, is
consider=d next. The fundamental uncoupled lag, flap, and torsion

frequencies are calculated using two methods:

l. A global Galerkin method in which five nonrotating modes
of a uniform beam are used to obtain the fundamental,
uncoupled, flap, lag, and torsion frequencies of a
rotating beam, and

2. The Galerkin finite element method of weighted residuals.

Comparison between the two sets of results, showing the un-

coupled rotating flap and leg frequencies, @ and W and the

Fl L’
torsion frequency, GTl as a function of the nonrotating frequencies
is shown in Figures 11 and 12, respectively. The results for the
fundamental frequencies are identical when three or six elements are
used, indicating that good accuracy can be obtained with a relatively

small mmber of elements.

A comparison of the first- and second-flap mode shape, obtained
using both methods is presented in Figure 13 for the nonrotating case
and two different speeds of rotation. For this case, eight elements
were used because it was more convenient to plot the results when
slightly more elements were used. From a numerical convergence point

of view, a smaller mumber of elements would have been adequate.

From these results it is clear that excellent agreement between
the global Galerkin and the Galerkin finite element method is obtained

for both frequencies and mode shapes.
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The free vibration results presented in this section show that
the selected cubic interpolation bending and quadratic interpolation
torsion elements ere very accurate, even when only a small number of
elements is used. It is reasonable to expect that these elements will
also perform very well in the aeroelastic analysis, since the aero-
dynamic loads do not depend on the strains. Modeling of strains, i.e.,
the higher-order derivatives of the elastic degrees of freedam,
usually governs the accuracy and convergence of the finite element

solution.

The actual number of elements used in the aeroelastic analysis
will be governed by the number of mcdes retained in the modal reduction

process.

5.3 Results for the Case of Hover

In this section the Galerkin finite element method is applied
to a typical rotary-wing aerocelastic problem. The coupled flap-lag
aeroelastic problem in hover (1], (68] is a convenient and simple
example which can be used to illustrate the Galerkin finite element
method. The finite element equations for this problem have been

derived in Section 3.1.

Ir calculating numerical results, certain simplifying assump-
tions were made, since the objective of this section is primarily to
illustrate the application of the Galerkin-type finite element method

to rotary-wing aeroelasticity.

These simplifying assumptions are listed below:
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1. The inflow was assumed to be constant over the blade and

equal to the inflow at 0.75 apan, i.e.,

A = (ac/16)((1 + zuo/w)l/2 -1] . (5.1)

2. Hub and tip losses were not included.
3. Structural damping was assumed to be zero.

Pertinent values of the data used in the calculations are

presented in Table 5.1 below.

TABLE 5.1
CONFIGURATION PARAMETERS FOR FLAP-LAG IN HOVER

a =27 : Cdo = 0,01; Y = 5.0;

b = 0.0313; ;1 = 0.0 ; ap = 0.0;
o = 0.10 (0.05); ‘;n =1.15 (1.0689);

@ Rc, E, M, = variable

m,

The nmumerical accuracy of the method can be beet seen by
comparing a global Galerkin solution, based on one uncoupled
rotating elastic mode for each degree of freedom, with a local
Galerkin finite element solution in which the blade is
represented by three finite elements and where, for consistency
with the global method, one uncoupled elastic rotating mode is used

for each degree of freedom to reduce the number of nodal degrees of
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freedom. The comparison between the two methods is presented in
Table 1. For two separate collective pitch angles ©, all pertinent
values associated with these cases were evaluated. The agreement
between the two methods is excellent when considering that only three
elements are used to represent the blade. Similar comparisons were
made for a variety of other cases, the results are not presented here
since they would have been repetitive of the behavior illustrated by
Table 1. The cases presented in Table 1 were stable configurations

because the elastic coupling paramcter Rc was taken as RC = 1.0.

Convergence properties of the Galerkin finite element method,
when applied to the aeroelastic problem, are considered next. It is
importaut to note that convergence of Galerkin-type methods in aero-
elasticity can be established only by numerical experimentation [55].
In rotary-wing aeroelastic problems this is further complicated due to
their nonlinear nature. Convergence of the method can be investigated,
alternatively, by varying the rumber of elements while retaining a
fixed number of modes in the modal reduction process, or by changing
the number of modes and maintaining a fixed number of elements.
Convergence with respect to the nonlinear iterative solution technique
{s not investigated here. It should be noted, however, that converg-

ence is very rapid. At most, three iteration cycles are required.

Figure 1L {1lustrates the convergence of stability doundaries for
three different values of the elastic " 1.pling parameter when the
number of elements is allowed to Vvary from three to six, while the

number of modes used in the modal reduction process is maintained at



one mode for each elastic degree of freedom. In all cases chown in
the figure, the unstable regions tend to decrease as the mumber of

elements is increased. The results for E = 5 and E = 5 are al-
most identical, ind!cating that four or five elements are sufficient

to capture the bending dynamics cof the blede.

Figure 15 shows the convergence characteristics when the nmumber
of elements is maintained at four, E = 4, while the number of modes
used in the modal analysis is allowed to vary. The curves represent
points at which the real part of those eigenvalues associated with
predominant lag modes, i.e., ;.LL and CZL’ is zero. The real part
of the eigenvalues associated with predominant flap modes, i.e., "’I.F
and ;.zp' is always negative. The couplea modes of the aeroelastic
system, Eq. (3.23), can be identified as predominantly lag or flap
modes by correlating the imaginary parts of the eigenvalues X.k with
the frequencies of the uncoupled rotating beam vibrations. OSystem

stability boundaries are obtained by plecewise combination of ny 8%

w" am "2 nd I“"

curves such that, overall, the lowest value of
Gc is maintained. For Rc = 0.0 and Rc = 0.4, system stability
{s determined by the behavior of the predominant first lag mode. The
predominant second lag mode is always stable, i.e., "’EL < 0. For
Hc = 0.0 1t 4is interesting to note that convergence trends differ,
depending on whether the blade is soft inplane or stiff inplane.

In the intermediate range of elastic coupling parameters, 0.5 < Rc <
0.8, the possibility of a flap-lag type instability dominated by the

second lag mode can occur. For Rc = 0.6 the system is unsiable
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due to the second lag mode when &__. < 1.6. Above &, = 1.6, the

L ol
first lag mode causes the system to become unstable. For Rc = 0.8
the second lag mode solely determines system stability. The first lag
mode also becomes unstable, however, at higher values of ©. Finally,
although not shown in the figure, it should be noted that the system
is stable for R, above 0.9 for the complete range of GLl
investigated. In conclusion, it can be said that the difference be-
tween taking two or four modes (i.e., M =2 vs. M =1L4) 4is rela-
tively small with respect to the behavior of the first lag mode. This

holds for velues of up to 2.5, which is rarely exceeded in

IR
practical hingeless helicopter blade configurations. However, it is
absolutely essential to use fou. uodes, since the second lag mode

governs system stability for intermediate values of elastic coupling.

In Figure 16 the number of elements is kept constant at six,
E = 6, and the number of modes is changed. The behavior of the two-
and four-mode model follows basically the same trends as those
observed when four elements are used (see Fig. 15). “hen using six
modes, as compared to four moaes (i.e., M=6 wvs. M= h), the same
results are obtained, except for the instability associated with the
third predominant lag mode. However, this instability occurs at very
high pitch settings and is therefore not relevant for system stabil-
ity. These results indicate that it is sufficient to use a total of
four modes, two modes each ’or the elastic flap and lag degrees of
freedam. As a cross-cneck, the four-element, four-mode solution for

Rc = 0.6 1is also shown in Fig.16. The results are essentially the



et g

same as in the six-element, four-mode solution. A difference occurs
at GLl=~O.8 and GLl =~ 1.6; however, it is very small, indicating
that four or five elements are sufficiently accurate even when four

modes are used.

Figures 17 and 18 illustrate the influence of the elastic coup-
ling parameter R c Om the real parts of the eigenvalues, which are a
measure of modal damping and determine system stability. The pitch
setting © 1is kept constant and two different values of lag frequency
o are considered. The predominant flap modes are very stable and

L1
damping associated with them remains almost constant when the elastic

coupling is changed. Damping of the predominant lag modes changes
considerably with elastic coupling. Damping of the first mode is

further strongly influenced by the value of @ It is also evident

L1
that the instability of the second lag mode is relatively weak and

usually it can be eliminated by including a small amount of structural

damping in the analysis.

A comparison of stability results wher using uncoupled versus
coupled mode shapes in the modal analysis is depicted in Figure 109.
Use of coupled mode shapes should lead to more accurate results;
however, it has the disadvantage that the coupled free vibration
problem has to be recomputed for each increment of pitch setting. A
total of four modes is used in each case. The four lowest frequency
coupled modes include the two lowest lag and flap modes (predominant)
when &Ll < 1.4 and, for GLl > 1.4k, the lowest lag and the three

lowest flap modes (predominant). This means that the actual modal
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representation changes with the inplane frequency aLl when simply
using the lowest frequency coupled modes. Thus, the analysis is not
able tc capture the behavior of the second predominant lag mode.
Figure 19 shows that accuracy is not improved when using coupled
modes. On the other hand, computing time increased roughly four-fold
for this example. Therefore, use of coupled modes is not recommended.
It should be noted that when six coupled modes were used the predom-

inant second lag mode was present for all values of @ and its be-

L1
havior was modeled correctly. However, computing cost increased in a
prohibitive manner without any noticeable gain in accuracy when com-

pared to the results using uncoupled modes.

In order to be able to compare the GFEM with the global Galerkin
method, Pcwers' computer code [57] was modified by excluding torsion
‘and introducing the elastic coupling parameter. The GFEM program was
set up such that it can represent the governing dynamic equations of
motion from Reference [57] without torsion. Then both methods were
applied to the same problem. Figures 20 and 21 show that excellent
agreement is obtained when using four or six uncoupled rotating modes.
These are modeled by four or six elements in the GFEM and ten un-
coupled nonrotating modes (five for flap and five for lag) in the
global Galerkin method. Again, it is concluded that four elements

and four modes will be sufficient to model simple flap-lag blade
dynamics in hover.

Figure 22 illustrates the effect of using different sets of non-

linear equations of motion. In Reference [3] the global Galerkin



method based on four coupled rotating modes (one predominant lag,’
three predominant flap) is used. In the GFEM, four elements and four
uncoupled rotating modes (M.L M, = 2) are used. Both, equations
from Reference [57] (without torsion) and the present equations of
motion are employed. Instability of the second lag mode at R, = 0.6
is not shown. The trends established by the three solution: are,
overall, the same. There are, however, marked differences in the
actual numerical values, in particular, at Rc = 0,0. This must be
attributed to the fact that the equations are slightly different.
Furthermore, it should be noted that the flap-iag aeroelastic problem
in hover, in the absence of elastic coupling terms, is very sensitive
to small, higher-order terms; thus, small differences in these terms
can lead to noticeable differences in the results. This also indicates
that unless the equations are derived in an identical manner, differ-
encec can be observed for the same problem. These differences are,

however, exaggerated by the fact that Rc was taken to be zero.

Figure 22 concludes the results presented for the flap-lag in
hover problem. The nmumerical experience gained by applying the
Galerkin finite element method to this basic rotary-wing aerocelastic
problem provides valuable guidelines when dealing with the more prac-
tical flap-lag in forward flight problem, for which results are pre-

sented in the next sectionm.

The computing times required to generate the stability boundar-
ies in this section were only slightly larger than those required when

using the global Galerkin method. This might seem to be scmewhat
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surprising; however, it has to be attributed to the fact that the
finite element program was efficiently structured to avoid unnecessary
recomputation of element matrices, assembly of system matrices, and
modal reduction. The exact comparison of camputing times for each
method depends, of course, on the number of elements employed in the

finite element model.

5.4 Results for Flap-Lag Blade Dynamics in Forward Flight

Numericel results presented in this section deal with the coup-
led flap-lag aeroelastic problem in forward flight. The finite element
equations for the camplete flap-lag-torsion problem in forward flight
have been given in Section 4.2. No previous finite element solutions
for the stability and response of nonlinear, nonconservative systems
with periodic coefficients are available. In view of the novel fea-
tures of the present research, where a finite element solution to such
systems is given for the first time, it was deemed appropriate to avoid,
initially, the added complexity of dealing with the torsional degree of
freedom. However, it should be mentioned that the torsional equation
of motion and the additional terms associated with the torsional degree
of freedom in the lag and flap equations, do not introduce amy concept-
ually new effects. They do, on the other hand, increase the size of
the problem, imposing additional requirements on camputer storage and

computer time.

The coupled flap-lag finite element equations in forward flight



were obtained by simply disregarding all torsional submatrices (third
row and column in the partitioned element matrices, see Equation
(F.1)) and deleting all torsion terms in the nonlinear bending sub-
matrices. This simplified system wes carefully checked and found to
be consistent with the ordering scheme. The method of solution pre-
sented in Section 4.3 was formulated in a general manner and is di-
rectly applicable to the flap-lag problem, as well as to the coupled
flap-lag-torsicn problem.

In calculating numerical results two types of inflow were in-

cluded in the analysis.

1. Uniform inflow, where A 1is given by Equation (5.2) and the
cyclic inflow camponents, )‘s and )\c, are set to zero;

thus,

Cp

7\0 = uta.nQR + ———m—m— . (5.2)
2 2
2\ju.+)\

0
2. Nomuniform cyclic inflow, where 7\0 is given by Equation
(5.2) and the total inflow is:
C

A=\ tanap + —_=T—-; (L+12xcos ¥v) . (5.3)

2\j |.L2+ )\g

For calculating the inflow at U = C.0 in the moment trim procedure,

Equation (5.1) was used.



The numerical results obtained for the flap-lag problem in for-

ward flight are presented in two groups.

First, results from the application of the Galerkin finite ele-
ment method (GFEM) are compared with previous solutions, where the
global Galerkin method (GGM) was used. This group also contains
results illustrating the numerical properties of the sclution proced-
ure for the discretized dynamic equations, described in Section 4.3.
Based on the experience gained with the hover problem, described in
Lection 5.2, three elements and, for consistency with the GGM results,
a total of two modes were used. The elastic coupling parameter was
set to Rc = 1.0. The data for this group of results is presented in

Table 5.2.

TABLE 5.2

CONFIGURATION PARAMETEGRS FOR FLAP-LAG IN FORWARD FLIGHT
(Figures 23-30)

O 1.417 3 Wpp = 1.087;
E =3 3 M =2 y Rc =1.0 ;
b = 0.0313; Y =5.0 ; ¢ =0.05;

N1 Nexs + Ny = variable.

In all these cases, propulsive trim with a weight coefficient of

cw = 0.01 and uniform inflow was used. The actual trim values,
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taken from the results of Reference (2], are listed in Table 2.

The second group of results deals with the convergence proper-
ties of the Galerkin finite element method and with the influence of
several configuration parameters on system stability and response.
The data values used for this group of results are presented in
Table 5.3. For the soft inplane blade, these properties are close to

those of the Boelkow BO-105 hingeless rotor.

TABLE 5.3

CONFIGURATION PARAMETERS FOR FLAP-LAG IN FORWARD FLIGHT
(Figures 31-39)

GLl = Q.73 (1.417) 5?1 = 1.125;
b =0.0275; ny =L ; Y =5.5 ;
o =0.07 ; Npsi = Nrki = 60; Nh =10 ;
E, M, R = variable.

c

The trim values were calculated using the trim procedures from Refer-
ence (63]. In all cases, the fuselage pitching moment and the var-
icus trim offsets were set to zero. Propulsive trim values for a

typical value of weight coefficient, Cw = 0.005, are shown in Table
5.

Parameters which remained unchanged for all forward flight

=1.23 kg/m3 (0.00238 slngs/ftj); a=2m, C, =

results are: 40

%
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CDP =0.01; x = 0.0; Xy = 1.0; e = ﬁp X T T 0.0; and gy, =

g = 0:0,

and the blade properties were assumed to be uniform over the span.

"SF = 0.0. Furthermore, blade pretwist was set to zero, ©

Other vertinent quantities are specified on the plots.

Stability results, showing the comparison between the
Galerkin finite element method with the global Galerkin method, are
given in Figures 23. The GGM results were taken from Reference (2],
Figure 3 and Reference [6l], Figure 9. In Re.erence (2] the same
equations of motion as in the present study were employed. Three
different values of torsional stiffness were considered. For the
comparison, the results for the highest torsional stiffness, GTl =
15.033, were used. Reference [6l] dealt with the flap-lag problem
in forwerd flight. However, the equations of mortioq did not include
some of the higher-order terms retained in the present study. In
all three cases, stability results were obtained by linearizing the
equations of motion about an approximate linear time-dependent equi-
librium position. To simulate the harmonic balance method, as it
was used in References (2] and [6l], only the first harmonic, (1\!.h =
1) was used in generating the GFEM results. For two advance ratios,
L =0.2 and U = 0.4, ten harmonics were also used. To find the
periodic response, the numerical integration was carried out over
three blade revolutions and the Fourier coefficients, computed
during the third revolution (N_ = 3)were used. The number of

psi) and

response (N, ,) was taken as 120, which is identical to the

azimuthal steps (per revolution) for both stability (N
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stepsize used in Reference [2].

The real part of the characteristic exponent for the predomi-
nant lag degree of freedom, CI.L , versus the advance ratio, M, is
plotted in Figure 23a. The value of L].L is a measure of the overall
damping associated with the first lag mode. The GFEM resuw).ts exhibit
the same trend as results from Reference (2]. The difference in ;1L
is roughly the same for all advance ratios. This difference must be
attributed to the absence of the torsional degree of freedam in the
GFEM results. This conclusion is further confirmed by the fact that
the GFEM results agres very well with those from Reference ([61], up
to an advance ratio of W = 0.2. When K 1is increased above that,
the additional higher-order nonlinear terms in the presently employed
equaticns of metion become more important, so that eventually, at

L = 0.4, the GFEM result is closer to the result from Reference (2].

Stability vesults for the flap degree of freedom, Figure 23b,
generally show the same behavior as discussed above for lag. Tt
should be pointed out that results for the characteristic exponents
from References [2] and (61] exhibit the splitting, typical of ver-
iodic systems, for Cu, from K = 0.2 on upward, while the GFEM
yields split values only at an advance ratio of W = 0.4. At lower
values of | the characteristic exponents appear in complex conju-
gate pairs. This difference betweer the two methods arises, probably
due to the new procedure employed for solving the dynamic equations

in the present study.

Agreement between the Galerkin finite element method and the
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global Galerkin method results, presented in Figures 23, should be
Judged in light of the previously discussed differences in the blade
model and in the procedure used to obtain the linear time-dependent
equilibrium position. Overall, qualitative agreement between the
two methods i3 quite good. Stability results at K = O.4, using
four finite elements, brought the GFEM results in even better agree-
ment with results from Reference (2]. For the configuration in
Figure 23, the blade motion was stable for all adveance ratios

considered.

When comparing GFEM results based on one harmonic (Nh =1)
with those using ten harmonics (Nh = 10), it is abvious that at
L = 0.2 results for clL (Figure 23a) and ClF (Figure 23b) are
almost identical. At W = 0.4 there is a minor difference for the
real part of the lag characteristic exponent. The flap degree of
freedom, on the other hand, exhibits e rather remarkable change in
ClF when using ten instead of just one harmonic. This last result
indicates that it is important to use more than one harmonic when

considering advance ratios above U = 0.2.

Figures 24a and 24b illustrate the effect of the number of
harmonics used in the Fourier analysis on the first aprroximation
(K = 1) to the nonlinear steady-state lag and flap response. The
blade tipdisplacements (generalized normalized coordinates) for | =
0.4, corresponding to the stability results in Figures 23, are
plotted during the third blade revolution. Again, the contribution of

the higher harmonics is more signiiicant in flap than in lag. This,



as a matter of fact, explains the remarkable change in flsp damping,
as seen in Figure 2Jb.

Table 4 contains the Fourier coefficiernts of the response as
plotted in Figures 24. From the relative magnitude of these coeffi-
cients it is apparent that, while it is essential to retain more than
the first harmonics, it probably would be sufficient to use the first
four harmonics. This conclusion was also found to be valid for other

configurations.

Since the CFU tire required for the Fourier analysis was very
small, ten harmonics (1*.1 = 10) were used in all subsequent

calculations.

Figures 25a and 25b address the question of how many blade
revolutions, i.e., periods, should be integrated in order to obtain a
periodic response. These plots show that the response is almost the
same during the first (Nrev = 1) and the second (Nrev = 2) blade

revolution. The difference between the response from the second and

third blade revolution cannot be distinguished on the plots.

If the maximum absolute change of any Fourier coefficient, as
compared to its value from the previous revolution, is taken as a
measure of convergence, both the second and the third revolution

yield Fourier coefficients which have converged within an accuracy of

10'}. Thus, an error control parameter based on such an accuracy

-j)

(10 seems to be adequate. Alsou recall that in the derivatiom of

the equations of motion the displacements were assumed to be of order



€, ~ 0.2 and terms of O(Ei) were neglected, as compared to
terms of O(1). Therefore, this error control quantity is also log-
ically consistent with the ordering scheme. Furthermore, it should
be noted that the initial conditions used for the numerical integra.
tion theoretically insure a periodic response. Tke effuct ¢f approx-
imat!ons and numerical errors in the actual calculation of the initial
corditions will most likely be corrected wiik ‘he integraticn over the
second or third blade revolution. Any further integration will merely

lead to an accumulation of errors in the integration routine.

Stability results (not shown), based on linearization about the
steady-state response from the second and third revolution, did not
change in any significant manner. This further confirms that an

3

accuracy of 10 ° for the absolute change of the Fourier coefficients

is sufficient.

Table 5 shows the first-order state variable vector at the
first three full blade revolutions, for the response plotted in Fig-
ures 25. The elements of this vector are the lag and flap blade tip
speeds and displacements in the rotating system. At the azimuthal
angle vy = 0, this vector is identical to the initial conditions.
From ¥ =27 on, only small changes occur. A monotonic convergence
trend from one complete revolution to the next cannot be observed.
However, by using the error c¢:'w.trol parameter associated with the
harmonic components, as discussed previously in this section, the

periodicity can be accurately determined.

Convergence of the results indicative of stability, Figures
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26, and of response, Figures 27, with the number of quasilinearization
steps wvas studied next. As expected, results for stability and p
response change markedly when going from the linear stability and
response solution, K = 0O, to the first nonlinear solu*ion, K = 1.
£22bility results based on the firat nonlinear equilibrium positionm,
i.e., curves labeled K = 2 in Figures 26, show a further change only
at the higher end of the advance ratio range, i.e., at U = 0.4. This
result, again, emphasizes the importance of retaining higher order
nonlinear terms when advance ratios above L = 0.2 are considered.
Therefore, stability information should be obtained by linearization
about a nonlinear time-dependent equilibrium position. For the
configuration considered in Figures 26 (dats from Table 5.2 ), the
nonlinear terms decrease the stability margin of the lag degree of
freedom for all values of . For the flap degree of freedom, stabil-
ity is decreased only at 4 = O.4; at lower values of | the non-
linear terms are stabilizing. It is interesting to note that flap
stability results are most sensitive to the nmumber of quasilineariza-
tion steps used in the analysis, i.e., nonlinearities are more
significant for flap. As a matter of fact, at U = O.4 the question
arises if, indeed, the lower of tbhe two values of the characteristic

exponent for flap has converged with the second iteration step; see

Figure 26b.

101



Response results in Figures 27 show that nonlinear terms (K =
1) increase the amplitudes of both the lag and flap response, as
compared to the linear solution (K = 0). When performing an addi-
tional iteration step, i:e., going from K =1 to K =2, the
response remains practically unchanged. The corresponding response
curves cannot be distinguished within the accuracy of Figures 27.
Inspecti~g the Fourier coefficients at K =2 for convergence, as
compared with the previous iteration step K =1, 1. was seen that
the maximum absoluce change of any Fourier coefficient at W = 0.4

is less than 10-3.

The above question of convergence of the characteristic ex-
ponents with the number of quasilinearization steps was pursued
further by allowing & third quasilinearization step (K = 3). for
stability only, i.e., by linearizing the system about the nonlinear
response from the second iteration step (K =2). Figure 28 shows
the relative change of the characteristic exponents versus the number
of quasilinearization steps for the most critical cases presented in
Figures 26. At W = O.L the exact solution was assumed to have been
obtained with the third iteration (K = 3), while at W = 0.2, the
second iterative solution (K =2) was used as reference. The
results in Figure 28 indicate that at K = 0.4 two iteration steps
are needed, while at the lower value of advance ratio, K = 0.2, one
iteration stz2p is sufficient to obtain converged values fcr the char-
acteristic exponents. Thus, it can be concluded that at higher

advance ratios, use of a nonlinear equilibrium position is necessary
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to obtain accurate stability information.

From the results presented in Figures 26 through 28, the
following procedure was established to obtain converged nonlinear
response and stability results. First, the quasilinearization iter-
ations are carried on until the maximum absolute change of any
Fourier coefficient of the response is less than 107, Second, the
system is linearized about this converged noniinear steady-state
response to yield the final explicit stability information, i.e.;, the
real part of the cﬁaracteristic exponents. It should be pointed out
that convergence of the characteristic exponents with the number of
iteration steps can also be monitored, since this information is
available at each quasilinearization step. Yowever, computationally,
it would be very cifficult to implement a comvergence test based on
the characteristic exponents, because their identification is compli-
cated ty the fact that the imaginary parts are not uniquely known and
that they do not always appear in complex conjugate pairs. The iden-
tification would be particularly difficult in the case where more

than one mode per elastic degree of freedom is considered.

The effect of the number of azimuthal stations in calculating

stability and the initial conditions, N psi’

per blacde revolution in the Runge-Kutta integrationm, Nrki’

illustrated in Figures 29 and 30. Note that all results presented

and the number of steps

is

for forward flight are obtained using the same step size for the

stability and response calculation, i.e., N = Nr

psi ki®
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The relative change of the real part of the characteristic
exponents at K = 0.4 versus the number of azimuthal steps, is

shown in Figure 29. The solution with N .t ™ 120 was assumed to

psi
be correct. Note that the flap degree of freedom does not have
complex conjugate characteristic exponents, i.e., two distinct real
parts are associated with it. Overall, results besed on fourty steps
are in excellent agreement. Even twenty steps, Nps g ® 20, glve
acceptable results. These conclusions, however, should be viewed as
dependent upon the particular configuration considered and the number
of modes used to reduce the nodal degrees of freedom. When ten steps
were used, the numerical procedure broke down. Note also, that for
the particular configuration considered here (data from Table 5.2),
the flap results converge slower than the lag results. The reason
f::vr this apparently being that higher harmonics are more significant
for the flap response than for the lag response; see Figures 24. The
higher harmonic response contributions obviously require a smaller

stepsize for a certain, desired accuracy.

Figures 30a and 30b compare the lag and flap response, respect-
ively, for 20 and 120 steps (per revolution). Agreement between
the response curves for the different number of azimuthal steps is
quite good, although the absolute values of the Fourier coefficients
differs by more than 10'3 . When using 4O steps, the response could
not be distinguished from the curves based on 120 steps, within the
accuracy of the plot (result not shown). For this case (Nps ¢ ™ 40),

the absolute difference for the Fourier coefficients of the response
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from the two different step sizes was less than 10'3, indicating

that forty steps would be sufficient.

Figure 30b concludes the results intended to illustrate the
effects of the various parameters, associated with the solution prc-
cedure, on the blade dynamics in forward flight. These parametric
studies were necessary since previous numerical experience was limited
and restricted to the cass where the linear steady-state response was
used as the equilibrium position. No solutions to nonlinear sero=-

elastic periodic systems using quasilinearization were available.

From the numerical experience gained in this study, the fol-
lowing conclusions were drawn. It is important to retain more than
the first harmonic in the Fourier analysis of the response. In sub-
segquent calculations, ten harmonics, Nh =,lO, were used. The non-
linear response was considered to be periodic and to have converged
when the maximum absolute change of each Fourier coefficient was less
than 10'3. According to this criterion, periodicity was achieved
with the second or third blade revolution and the quasilinearization
procedure converged with the first (K = 1) or second (K =2) non-
linear response, depending on the value of the advance ratio. Forty
azimuthal steps were sufficient to obtain accurate response and stab-
11ity solutions. In all subsequent calculations, sixty sters, N =

psi

N = 60, were used. This should be adequate even when more ele-

rki
ments and mode shapes are used in the analysis.

The configuration for which these results were calculated
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(data in Tables 5.2 and 2) correspond to a relatively high loading
case (cw = 0.01). The choice of parameters made above should thus
be considered conservative when cases with a more moderate blade
loading are sought. Therefore, the parametric study above was not
repeated for the other blade configurations and discretization models

considered in this study.

The convergence properties of the Galerkin finite element

method are considered next. This 1is accomplished by changing the
number of elements or the number of mode shapes in the modal reduc-
tion process. All the results are based on the configuration para-

meters given in Teble 5.3.

The relative change in the real part of the characteristic
exponent versus the number of elements is shown in Figure 31 for the
soft in-plane blade, C’m = 0.732, and elestic coupling R, = 0.6.
The number of modes was kept constant at two. As reference, the five-
element solution was used. It is apparent that excellent convergence
is achieved, in particular, when considering that the results in
Figure 31 are for a high advance ratio, K = 0.4. Interestingly, the
accuracy for the flap degree of freedom is much higher than that for
lag. This must be attributed to the lower stability margin for lag;
see Figures 32. Overall, the three-element solution can be considered
sufficiently accurate. It should be kept in mind, however, that the
configuration in Figure 31 is stable. For a more critical case, more

elements might be required to model the system accurately. Finally,

it is interesting to compare Figure 31 with the accuracy for the




first bending frequency of a nonrotating beam in Figure 9. As ex-

pected, the solution of the aeroelastic problem does require a larger

number of elements than the free vibration problem.

Figures 32 show system stability when changing the number of
modes from two to four, while keeping the number of elements constant
at E = 4, The aerocelastic damping for the fundamental modes, ;lL
and C:LF’ remains unchanged when using four modes as compared to two
modes. The damping, i.e., real part of the characteristic exponents,
for both predominant flap modes is practically constant for all ad-
vance ratios. The absolute value of CZF is somewhat lower than that

for the first flap mode, ¢ however, both modes are strongly

17’
damped. The first lag mode has its lowest damping values at moderate
advance ratios, K = 0.1-0.2. When the advance ratio is increased,
the results indicate that the forward flight aerodynamics have a
stabilizing eftect. Overall, the smallest stability margin occurs at
hover, K = 0.0, for the second predominant lag mode. However, with
increasing advance ratios, more aeroelastic damping is fed into the
second lag mode. For advance ratios, W > 0.2, the real parts of

the characteristic exponents for both lag modes, Cu and CZL’ are

roughly the same.

The lag and flap blade tip response was plotted in Figures 33
and 34. The configuration considered is the same as that for which

stability results were presented in Figures 31 and 32.

Figures 335 show the response for three different advance ratios
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obtained by using four elements and two modes. The time dependence
of the response in forward flight (i = 0.2, 0.4) as compared to
the static response in hover (K = 0.0) 4is clearly illustrated.
The time dependent contribution to the lag displacements is basic-
ally a one per rev motion, while the major contribution to the flap
displacements is a two per rev motion, i.e., it stems from the sec-
ond harmonic. This is the same behavior as encountered for the
stiff in-plane blade in Figures 24. Another interesting aspect of
the response curves in Figures 33 is that the displacements at the
advance ratio K = 0.2 are lower than those for hover. From the
trim data in Table 3 it is obvious that there is a direct relation

between the value of collective pitch setting ©. and the magnitude

0
of the response. The largest displacements occur at the advance
ratio K = 0.4 which has the largest value of -
The effect of the number of modes retained in the modal

reduction process on the blade response at | = 0.4 1is 1llustrated
in Figures 34. The response of the second lag mode, h,, 1is very
small. Only in the reversed flow region can it be distinguished
from zero. The second flap mode respomse, & is more important.
The behavior of the response associated with the first lag and flap
mode, respectively, varies accordingly. For lag, the response of the
first mode does not change significantly when going from two to four
modes in the analysis. For flap, on the other hand, there is a size-
able change. When the response of the first and second flap mode

(from the four-mode analysis, M = L) are added together, i:s
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maximum value is roughly 8 percent larger than that of the response

based on the two-mode analysis (M =2).

The effect of the number of mcdes used in the analysis was
further investigated by considering stability of a stiff in-plane
blade, Ju = 1.417, with elastic coupling R, = 0.8. Results for
the real part of the characteristic exponents are obtained by using
two and four modes. In both cases, the blade is represented by four
elements. The stability curves in Figures 35 exhibit the same gener-
al behavior as encountered for the soft in-plane blade (Figures 32).
There are, however, two important differences. The second lag mode
is unstable at W = 0.0, i.e., LzL 1s positive. Thereafter, the
forward flight aerodynamics introduce a considerable amount of damp-
ing, so that at WU = 0.1 the second lag mode is more stable than
the first lag mode by a factor of five. A further increase in the
advance ratio, changes the value of Eu such that it approaches
the value of ;er.' and at K = 0.4 they are practically the same.
The other interesting point is that at | = 0.k only the four-mode
solution exhibits splitting of the characteristic exponents (real
part) associated with the first flap mode. The two-mode solution

does not capture this effect.

Results presented in Figures 34 and 35 indicate that for both
response and stability it is important to retain four modes in the
anaiysis. Recall, that in the hover case the second predominant lag
mode itself was the cause for system instability at certain values of

the lag frequency :".: 1’ B8ee Figure 15. In the forward flight case

109




such an instability was not observed; however, the presence of the
second lag and flap mode did change the response and, in certain
cases, the stability behavior associated with the predominant first
flap mode. Although this change did not result in a critical condi-
tion, it certainly will have an effect on blade bending moments and
vibration levels. This, in turn, effects the fatigue life of the

blades and the vibration Jevels in the fuselage.

The effect of the elastic coupling parameter Rc on the stab-
111ty of the first a1 ' second predominant lag mode is shown in
Figures 36 and 37, respectively, for the soft in-plane blade. The
stability margin of the first lag mode (Figure 36) increases propor-
tionally with the value of Rc throughout the entire range of advance
ratios. The least stable configuration is obtained for zero elastjic
coupling, at low advance ratios (i = 0.1-0.2). The behavior of the
second lag mode, (Figure 37), is quite different. The variation of
damping versus the advance ratio depends strongly on the value of
Rc. Lastly, it should be mentioned that the predominant flap modes
are very stable and the damping associated with them remained almcst
constant when the elastic coupling was changed. The same observation

was made for the hover case; see Figures 17 and 18.

A comparison of stability results for two values of the weight
coefficient is presented in Figures 38. The damping associated with
the second lag and flap mode 1is practically unaffected by the value of

Cw. For the first flap mode the higher value of CW reduces damping
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increasingly with the advance ratio. Also note that at W = O.4L the
blade subjected to higher loads (Cw = 0.01) exhibits splitting of
the real parts of the characteristic exponents for ch' Damping
values for the first lag mode show a reversed trend. The lower value

of Cw = 0,005 decreases considerably, in particular, at high

clL
sdvance ratios. Additional results (not presented here) for a still
lower value of the weight coefficient, Cw = 0,0025, showed that the
small stability margin of the predominant first lag mode at W = 0.1
was reduced even further. This is consistent with the physical be-
havior of the flap-lag instability in hover, since lower values of
C'.w at low advance ratios result in reduction of the aerodynamic

damping available in the lag degree of freedom.

The results presented so far were based on the uniform inflow
model, given by Equation (5.2). Figure 39 illustrates that the in-
fluence of the nomuniform inflow, Equation (5.3), on the stability
results is minor. A small difference for the lag stability results
can be observed only at K = 0.1. The flap stability results (not
shown) were unaffected at all. These results suggest that either the
configuration considered in Figure 39 is not sensitive to the inflow
model, or the inflow representation must be more sophisticated than

Equation (5.3) in order to have any effect on system stability.

Finally, it should be pointed out that all forward flight
results presented in this study were obtained by using the linear
equilibirum position as an initial guess in the quasilinearization

procedure. For a test case, system response and stability were



computed, incrementing K in four equal steps from K = 0.0 to

4 = 0.4, The linear response at the current value of |, as well as
the converged nonlinear response from the previous lower value of W,
were used as the initial guess for the nonlinear response solution.
Both, the nonlinear response and the stability values of the linear-
ized system, converged to the same solution for all values of W,
regardless of which type of initial guess was employed. Since using
the linear initial guess was computationally cheaper, this option was
chosen. It alzo has the additional advantage that results can be
computed for any arbitrary value of advance ratio, without having to
sweep the entire range of WU's, starting from zero up to the desired

value of the advance ratio.

The results presented in this section for the flap-lag problem
in forward flight.indicate that this 1is basically a stable configura-
tion. Figure 35a illustrates that the second lag mode instability
encountered in the hover problem (Section 5.2) does not persist in
the forward flight region. Froam results in Reference [2] it becomes
clear that inclusion of the torisonal degree of freedom introduces
instability, usually associated with the lag motion. However, only
for torsionally soft blades does this instability manifest itself in

the range of advance ratios considered in the present study.

The computational times required for the flap-lag problem in
forward flight are quite significant. They depend on a number of

parameters, such as the number of e. ments and modes, number of



azimithal steps, numbeir of quasilinearization iterations; and number
of revolutions integrated. Furthermore, the configuration parameters
also play a role, in as much as they determine the degree of nonlin-
earity of the system. To find the converged, nonlinear periodic
response and linearized stability for one value of advance ratio,
approximately 30 CPU seconds were needed in the three-element two-
mode case. When using four elements, 40 CPU seconds were required.
In the case of four elements and four modes, this value increased to
approximately 100 CPU seconds. The computation of the element
matrices of aerodynamic origin, which must be performed for each value
of azimuth angle, takes up roughly 50 percent of these CPU times.

A direct camparison with computing times necessary for the global
Galerkin method was not possible since those results were generated
using the harmonic balance method to compute the equilibrium positionm.

All forward flight results were generated on an IEBM 3033 camputer.

Lastly, it should be mentioned that the iterative trim -
aeroelastic analysis, as discussed in Section 4.3.3 and indicated by
Steps 7 and 8 in Figure 8, was not used to generate results in the
present study. It would have increased the computing times
considerably, without contributing to the basic objective of this
study which is primarily aimed at the application of the finite ele-

ment method to rotary-wing aeroelasticity.
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SECTION 6
CONCLUSIONS

This study presents the formulation of a Galerkin-type finite

element method for nonselfadjoint, nonlinear aercelastic rotary-wing

problems.

From the numerical results presented for the aercelastic

stability and response of hingeless helicopter rotor blades, the

following conclusions can be drawn:

1.

The Galerkin finite element method is a practical tool for
formulating and solving rotary-wing aeroelastic problems .
Since spatial disorgtizatiun is applied directly to the
partial differential equations, algebraic manipulative
labor is reduced significantly when compared to the appli-
cation of the global Galerkir method to similar problems.

However, more computer time is spent in calculations.

Four or five elements are suf®icient to capture the bending
dynamics of the blade with the same accuracy as the global
Galerkin method.

Normal mode transformation, combined with the Galerkin
finite element formulation, reduces the number of nodal
degrees of freedom significantly and enables one to deal

efficiently with complex problems.

For the flap-lag problem in hover it is essential to use
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two modes for each elastic degree of freedom, since the
second lag mode determines system stability for certain

values of elastic coupling.

S. The flap-lag problem {n forward flight is basically stable.
The lowest stability margins are associated with the lag
degree of freedom at moderate advance ratios and low rotor
loading. Inclusion of two modes for each elastic degree
of freedom is necessary to determine blade response

accurately.

6. Nonlinear effects are important for both stability and

response, in particular, at high advance retios.

7. Higher harmonic contributions to the periodic blade motion
are significant, especially for flap stability and

response.

At this point it should be mentioned that a portion of the
research presented in this dissertation hac already been published
[69] and was presented at the Fourth Furopean Rotorcraft and

Powered Lift Aircraft Forum.

Based on the experience gained frim the flap-lag problem, the
Galerkin finite elemenu formulation for the coupled flap-lag-torsion
problem, presented in Section 4, can be implemented directly. It is
expected that four or five elements are also adequate to model the

coupled bending-torsional dynamics of the blade.

115



Finally, it should be noted that the Galerkin finite element
method, as formulated in this study, provides a natural tool for
dealing with the complex structural configurations encountered in

modern bearingless flexbeam-type main rotors and tail rotors.
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TABLE 1

COMPARISON OF GLOBAL GALERKIN AND FINITE ELEMENT GALERKIN METHODS

g =0.05; 7Y =5.0;

Upng = O+Ys

@

LiNR

=1.1; Rc = 1.0

Finite element results based on three elements and one mode per
degree of freedom; Global Galerkin results based on one mode per

degree of freedom.

Global Galerkin GFEM Global Galerkin GFEM
© =0.20 @ = 0.20 @ =0.45 @ = 0.45

(e =0) 1.179967 1.18026 1.179967 1.18026

(e=0) 1.140290 1.14150 1.140290 1.14150
0.016T19 0.016484 (-1.4%) 0.087953 0.086768 (-1.3%)
0.070289 0.066521 (-5.4%) 0.187816 0.177959 (-5.2%)
-0.026198 -0.026168 (-.11%) -0.066079 -0.065838 (-.36%)
-0.307892 -0.308048 (.05%) -0.281260 -0.281628 (.13%)

A%

GFEM - Global Galerkin

« 100

Global Galerkin
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TABLE 2

*
PROPFULSIVE TRIM VALUES

m L % % Y e
0.0 .07071 .0000 | .2970 -.0000 .0000
0.1 LOU5TT .0031 2652 - .0605 .0038
0.2 .02850 .0187 2559 -.1178 .0072
0.3 .02880 .0L06 2874 -.1878 .0113
0.k4 .03939 .06T2 <3577 -.2853 .0166

*
Based on C_ = 0.01; taken from results of Ref. [2]. Used
for configurations where data in Table5.2 was employed.
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TABLE 3

*
PROPULSIVE TRIM VALUES

m % % % ®1s e
0.0 .05000 | .0000 1432 - .0003 0002
0.1 .02518 | .0094 .1084 -.0247 .0078
0.2 .02057 | .0LO6 .1086 - .0487 .0151
0.3 .03463 .0875 <1454 -.0867 .0248
0.4 .05653 .1250 2110 -.1501 .0382

*
Based on data in Table 5.3; Cy = 0.005, uniform inflow.

Calculated with trim program from Ref. [63].




FOURIER COEFFICIENTS OF STEADY-STATE RESPONSE WHEN USING ONE AND TEN HARMONICS

(Results pertain to response plotted in Figs. 2k)

by &,

NH = 10

8LT
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-0.6304TE-01 I 0.11936E+ 00
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TABLE 5

+
STEADY-STATE RESPONSE AT FIRST THREE COMPLETE BLADE REVOLUTIONS

v B (¥) &, (v) h, (¥) g,(v)
0 . 1%52 - Qd‘hel - 009811‘ 007w5
2]’ olwm - -01‘871‘ - .09685 007137
b' 015&2 - oou&l - .@7"0 .O70'R
ém .13849 -.04858 -.09724 07102

*
First-order state variable vector at v = n-°2mw,
n =0,1,...,35. Results pertain to response
plotted in Figs. 25.



APPENDIX A

COORDINATE TRANSFORMATIONS

The transformations between the various coordinate systems are
given below. Note that for rotations of order O(ED ) the small angle

assurption is used.

1.‘ F cos ¥ sin vy 0 f
1 = -sinvy cosv O Y
X 0 0 1 z
~ i iy
A - i
é, 1 0 f 1
e = 0 1
& 3
3 - 0 k
. ez i bp J k
r
( & 2 5 v 1 ( s
x ' X )X | X
“ - - f a
' - - - 2
l °y v ¥ </ ¢ | ®y
~ - o2 - - - - ' ~
e (w,x év,x) (b+ ¥ w,x) 1 , €,
- )
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APPENDIX B

INTEGRALS AND COEFFICIENTS

yo-ncOlOG-CainOG

-nainOG+ { cos @

o) G

[ ans
ﬂ ¢ -1y

lf pyodA-mxIcoaOG

pz.dA =mx_sin @

ﬂonQdA-o

r‘ 2
j mxodxo-lb
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Y B TCRR A 25)&0

- ,/ 1 - - - -
T,(x5) = f m(e, + x,)ax,

0
x
. [0 2 2 .\
u(xo) i 1 JO (V’x + ',x)dxo »
2 b R 2a b Rh
. = i_g_ - y o A e
¥ R 5

- 2 : 2 .
B, = Eia cos” R, O, + EIB sin” R, .

=Bl - (B, - E1,) 1’ R O

1 -
By =3 (E!t2 - EI)) sin 2R O,

. 2 2
Byy = ziz sin” R, O, + EI3 cos” R, O,

2
- H} - (212 - Eij) sin” R, O,

B, -% (1, - £1,) cos 2R_ O,

2 2
B oo -Z(Imz cos GG+ Im} sin OG)
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B = (1

m2 3 m2

B =2(}

m33 L2 G

B‘h-(lmz-lﬂ)conzo

-2 2
FIR Q% 1 (
no

-2 GJ

- Imb) sin 20

G

S

I

nj)

H%

2 2
sin” © +Im3c0| OG)
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APFENDIX C

ELEMENT INTERFOLATION

>t
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APPENDIX D
MATRICES FOR HOVER

The various matrix operators and element matrices required for

the treatment of the flap-lag problem in hover are presented below.

xo-xe+re

R -
-2 e 0
‘!wp+ xOBp
[ﬁ] = T
X 0
i xOBp _j
0% 2E20% +1Bz: o
% y/ »X z %o »)X X
[AZ] = T :
& - 4
; 0", x ™ X0¥, <P =
(.2 R 68X .
, [ (-2 5 e 08 %) ]
e - r\ e -
[All fo dx,
%Py 0
B R.\.T e0 R-= T 0 7
y ‘YYT(OxO-z tk)n g +x~y?x7xo D—,x g o
Sl=r[°® X
[%] JO dxe
T 2 T e0
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APFENDIX E
SOLUTION OF THE NONLINEAR EQUILIBRIUM EQUATIONS

IN HOVER

The final nonlinear static equilibrium position equations

are given as
(£} = (8.0(a°) + (o (@)1} - (e} = o , (£.1)

see Eq. (3.18). The soclution to this system is obtained by applying

the iterative Newton-Raphson technique [47]. The solution increment

during iteration step n can be expressed as

%

(%), = @, - @Y, = -0 i, €.2)

n

where the Jacobian matrix [J] is given by

x

() = =% = s) + =5 (s @)D . (€.3)
X x

J J

In order to illustrate the evaluation of the nonlinear term and
its derivative, it is helpful to use indicial notation (33]. In
the following lower/upper case subscripts will be used for the
element /system nodal parameters, while Greek subscripts will be used

for the generalized modal coordinates.

192



On the element level the nonlinear term is, see Eq. (3.14),

(3] Py (E.b)
or, in indicial notation,
)y - o5 - & - (5-5)

Using Eq. (3.16) to express a;O {n terms of its modal representation,

(B.5) becomes

e0 0
(A;)ijk L8y Ae Y% (E.6)

(a5 M)y g - o5 cag - (E.7)

Here, (Ag A) 1is a new third-order tensor. This tensor is now

assembled to yield an expression for the system, namely,

(hy Mg * 85 * g - (E.8)

Now, the modal reduction is completed as indicated by Zq. (3.20), i.e.,
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(E.9)

$o
o

Ay (g Nige Mg
or

) qg . qg : (E.10)

(s )y
Note that expression (E.10) can be written in matrix form which will
yield the final expression for the nonlinear term as it is presented

in Eq. (E1).

The derivative of (SNL)'VﬁC! is simply taken according to the

chain rule

0 0

) o 0 X\, o My

? (o )ipe 37 % = (‘NL)m:(_é QY * 9, ;6 >
J y

0 0
= (oyp)yge O * (oypligg9, - (E.11)
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APPENDIX F

ELEMENT MATRICES FOR FORWARD FLIGHT

The element matrices for the coupled flap-lag-torsion problem
in forward flight, see Equation (4.20), are defined below. Each

coupled element matrix can be written in a partitioned form, e.g.:

. | rae 1 ]
(a3},] | (A7) | (A7)
(A% [Agnl_: (AS :_[A;nl (r.1)
it Vot T |
i | P |l

Since some of the element matrices are rather lengthy expressions,
they will be defined in terms of the suv-matrices. Sub-matrices which

are not listed below are identically zero.
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APFENDIX G

LINEARIZATION OF FORWARD FLIGHT EQUATIONS

The nonlinear flap-lag-torsion equations of motion, Equation
(4.22),

¢ = [m(g)1{3)+ [dlg,d)](d) + [x(a)l(a) + (£} = 0 (G.1)

are linearized using a Taylor series expansion. The nonlinear mass,

damping, and stiffness matrices and the forcing vector are defined

below in indicial notation. The range of the indices is 1 through
M, where M is the total number of modes used in the analysis.

(m(g)] = gy ¥ Tyt (G.2)

[alg, @)1 = e)yy + dgyy + 4y

* (gt oy Chtgit Y2 age” G3gw0 0%

* eyge * oy * d}zmkz'qz)‘ik (G.3)

(k(@)] = dyyy + by + Kyyq + 8y,
* et Koy gt By gkt B3ygks a,)a, (G.b)
(£} = ¢, + ¢ (G.5)

el Al
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_ where

myy = A7) )
By & = (AT (515 (4]
toag % = (A7 ((1,0% + [2218)()

e % = T, 1%+ (el 1%y

by = IRB0% + (31%)0A)
T s

f1 = (A" (F,)

oy - ()" {FA}S

All other quantities in Equations (G.2) - (G.5) are obtained directly

from the corresponding (upper case) System matrices, i.e.,

1T S
cli,j - [AJ [CI] [A] »

etc.

The derivatives of G, Equation (4.24) and Zquation (L.34),

are then defined as follows:
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g

R e o

=

T Punt tynt kg ta,

* Oyt ¢ 210k * 310, 9,09,

t (B + 21t g0 * ®314ns 1,09,

" ®319kn % 9y

+

(o?ijn # t21.,111 - cA.xiJn * d213n i d)iJnl 9y

¥ 9315kn % * 9304 4n 4

+ m21.1n ‘dJ " (G.6)

%,
i T Cunt 454, t 4,

* (o * by - “axtnk ¥ %ink * 340, 9 )e

* (e L2ink * Y ims qz)qk

* (CEIiJn * d221jn * d321,jn1 q,)dJ ’ (G.7)
&31
i T Min Y Moyg 9 - (G.6)
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