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Application of the Generalized Differential
Quadrature Method to the Study of Pull-In

Phenomena of MEMS Switches
Hamed Sadeghian, Ghader Rezazadeh, and Peter M. Osterberg

Abstract—This paper reports on the pull-in behavior of non-
linear microelectromechanical coupled systems. The generalized
differential quadrature method has been used as a high-order
approximation to discretize the governing nonlinear integro-
differential equation, yielding more accurate results with a
considerably smaller number of grid points. Various electrostati-
cally actuated microstructures such as cantilever beam-type and
fixed–fixed beam-type microelectromechanical systems (MEMS)
switches are studied. The proposed models capture the following
effects: 1) the intrinsic residual stress from fabrication processes;
2) the fringing effects of the electrical field; and 3) the nonlinear
stiffening or axial stress due to beam stretching. The effects of
important parameters on the mechanical performance have been
studied in detail. These results are expected to be useful in the
optimum design of MEMS switches or other actuators. Further,
the results obtained are summarized and compared with other
existing empirical and analytical models. [2006-0101]

Index Terms—Electromechanical coupled system, generalized
differential quadrature method (GDQM), microelectromechanical
systems (MEMS) switch, pull-in voltage.

I. INTRODUCTION

M ICROELECTROMECHANICAL systems (MEMS) de-
vices are rapidly gaining popularity in a variety of

industrial applications such as aerospace, automotive, and
biomedical industries. MEMS devices are generally classified
according to their actuation mechanisms. Actuation mecha-
nisms for MEMS vary depending on the suitability to the
application at hand. The most common actuation mechanisms
are electrostatic, pneumatic, thermal, and piezoelectric [1].
Electrostatically actuated devices form a broad class of MEMS
devices due to their simplicity, as they require few mechanical
components and small voltage levels for actuation [1]. The
structural elements that are used in MEMS devices are typically
simple elements including beams (or microbeams), plates, and
membranes. Electrostatically actuated microbeams (e.g., can-
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tilever and fixed–fixed microbeams) are used in many MEMS
devices such as capacitive MEMS switches and resonant sen-
sors. Manufacturing and design of these devices are, to some
extent, in a more mature stage than some other MEMS devices.

MEMS microbeams are susceptible to an instability that
is known as pull-in. When the applied voltage is increased
beyond a critical value, which is called the pull-in voltage,
stable equilibrium positions of the microbeam cease to exist.
Pull-in instability [2] greatly limits the stable range of operation
of microbeams. In most cases, it would be highly desirable to
delay the onset of pull-in for better performance of the device.
The pull-in voltage depends on the interaction of the electrosta-
tic forces (generated by the applied voltage) and the structural
stiffness of the microbeam. Previous work addressing pull-in
instability has taken both electrical and mechanical approaches.
In 1994, Osterberg et al. [3] proposed three pull-in models to
elucidate the pull-in behavior of cantilever, fixed–fixed, and
circulate plate microstructures including a 1-D lumped parallel
plate spring model, a 2-D finite-difference model, and a 3-D
analytical model. These were compared to a 3-D numerical
computer model using the CoSolve-EM simulator [4]. In 1997,
Legtenberg et al. [5] proposed the use of curved electrodes to
determine the characteristics of large-displacement actuators.
A 3-D coupled electromechanical model was presented to
understand the interaction between the deflection of the actuator
and the electrostatic force where the Rayleigh–Ritz method was
applied to solve the 1-D small deflection energy model. Hung
and Senturia [6], [7] presented a technique where the electro-
static force is applied only to a certain portion of a beam. This
design uses lever action to achieve full gap deflection, while
keeping the electrostatic gap deflection within the one-third
range. Sadeghian and Rezazadeh [8], [9] performed a formal
numerical investigation of the behavior of MEMS switches for
the following purposes: 1) to capture important second-order
effects including residual stress; 2) to develop a new method to
measure the stress gradient in cantilever beam-type switches;
and 3) to analyze the effect of real anchors of fixed–fixed
beams on pull-in phenomena. Sadeghian et al. [10] presented
a technique where the electrostatic force is applied only to
a certain portion of a beam to decrease the pull-in voltage.
In the case of multilayer microstructures, Rezazadeh et al.
[11], [12] developed a comprehensive model to study the pull-
in behavior of nonlinear electromechanical coupled systems
where the effects of both thickness and Young’s modulus of
each layer on the pull-in voltage were captured.

1057-7157/$25.00 © 2007 IEEE
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Fig. 1. Schematic diagrams of (a) fixed–fixed beam-type MEMS switch and
(b) cantilever beam-type MEMS switch.

In this paper, the pull-in behaviors of MEMS switches with
various electrostatically actuated microstructures such as can-
tilever beam-type and fixed–fixed beam-type are studied. The
influence of various parameters on the pull-in voltage, such
as nonlinear stiffening, fringing fields [13], trapezoidal cross
section [14], residual stress [15], and axial stress, has been
studied. The static pull-in voltage is determined by coupling
the mechanics to a nonlinear voltage-dependent electrostatic
pressure term and finding the lowest voltage at which the sys-
tem is unstable. The method for solving the governing integro-
differential equation in this paper is the generalized differential
quadrature method (GDQM). The predecessor to GDQM was
the differential quadrature method (DQM). It was originally
introduced by Bellman et al. [16] as a simple and highly
efficient numerical technique. One essential issue pertaining to
the method is how to efficiently and accurately determine its
weighting coefficients. The earlier approach (i.e., DQM), which
requires solving algebraic equations with an ill-conditioned
Vandermonde matrix, is neither efficient nor accurate when the
number of grid points is large [16], [17]. Based on the Lagrange
interpolation, Shu and Richards [18] presented GDQM where
the determination of weighting coefficients of the differential
quadrature discretization is generalized under the analysis of
a high-order polynomial approximation and the analysis of
a linear vector space that make GDQM more accurate and
efficient.

II. MODEL DESCRIPTION

MEMS switches are generally modeled as a cantilever beam
structure or a fixed–fixed beam structure (see Fig. 1). The
device consists of a thin film metal membrane, which is called
the “beam,” suspended over a dielectric film deposited on top
of the center conductor and fixed at one side in the case of the
cantilever and fixed at both ends to the ground conductors in
the case of the fixed–fixed beam. When a voltage is applied
between the beam and substrate, the attractive electrostatic
pressure pulls the beam down toward the dielectric film. The
dielectric film serves to prevent stiction between the beam and
substrate and provides a low impedance path between the two
contacts. The switch can be fabricated using surface microma-
chining techniques, electroplating techniques, and dry releasing
techniques that are compatible with millimeter-wave integrated
circuit fabrication processes. A brief fabrication sequence for
the fixed–fixed beam MEMS switches that is shown in Fig. 1(a)
is described in [19].

The choice of the appropriate structural analysis model of the
microbeam depends on the magnitude of the deflection com-
pared to the thickness of the microbeam. Since the deformation

of the microbeam will be on the same order of magnitude as the
initial gap dimension g, the proper form of the structural model
will depend on the ratio g/t, where t is the thickness of the
beam. For values of g/t ≤ 1, a linear Euler–Bernoulli model
will be an adequate representation of the microbeam behavior.
In the case of fixed–fixed beams, for moderate values of g/t
(i.e., g/t ≈ 1), bending–stretching coupling terms need to be
taken into account, and for large values of g/t (i.e., g/t ≥ 2),
or when the microbeam is initially under large tension, the
fixed–fixed microbeam should be modeled as a membrane with
geometrical nonlinearity.

III. NONLINEAR DISTRIBUTED ELECTROMECHANICAL

COUPLED MODEL

When a driving voltage is applied between the electrodes,
the electrostatic pressure deflects the beam. The mechanical
bending strain energy Um of the beam and the electrical co-
energy U ∗

e (which is the sum of the electrostatic energy stored
between the upper and lower electrodes of the beam and the
electrostatic energy of the voltage source) are given by

Um =

L∫
0

∫
A

Ẽ

2

(
−z

d2u

dx2

)2

dAdx =

L∫
0

ẼI

2

(
d2u

dx2

)2

dx

(1)

U ∗
e =

1
2

L∫
0

ε0wV 2

(g − u(x))
dx (2)

where z is the coordinate in the load direction with the origin
in the centroid of the cross section, ε0 is the permittivity of the
vacuum, w is the width of the beam, g is the initial gap between
the upper and lower electrodes, u(x) is the deflection, and V
is the applied voltage between the movable upper plate and the
fixed ground plate on the substrate. Ẽ is dependent on the beam
width w and film thickness t [20]. A beam is considered wide
when w ≥ 5t. Wide beams exhibit plane-strain conditions, and
therefore, Ẽ becomes the plate modulus, i.e., E/(1 − ν2),
where E is the Young’s modulus. A beam is considered narrow
when w < 5t. In this case, Ẽ simply becomes the Young’s
modulus E. The quantity I (the moment of inertia of the cross
section) is equal to (wt3)/12.

The energy stored in the beam due to residual and axial
forces is

Us =

L∫
0

(Tr + Ta)
(

du

dx

)2

dx (3)

where Tr and Ta are the residual and axial forces, respectively.
The total potential energy U of the system is

U = Um − Us + Ue. (4)

The variation of total energy is zero at the equilibrium
position, i.e.,

δU = δUm − δUs + δUe = δUm − δUs − δU ∗
e = 0. (5)
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Now by considering the function U(u) as follows:

U(u) =

L∫
0

F (x, u, ux, uxx)dx (6)

we can derive the nonlinear differential equation of the system.
The necessary conditions for u(x) to be a minimizing function
can be derived if we integrate the second and third terms by
parts. The result is given as follows:

δU =
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[
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∂u
− d

dx
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∂ux

)
+
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dx2
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δu + x

]L

0

= 0. (7)

The first part of (7) is called the Euler–Lagrange equation and
is the differential equation that u(x) must satisfy. The second
and third parts are satisfied by the variations of u and ux, which
are zero on the boundaries. Substituting our equation for total
potential energy in (7) yields

δU =

L∫
0

(
d2

dx2

(
EI

d2u

dx2

)
− d

dx

(
(Tr + Ta)

du
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)

− ε0wV 2

2 (g − u(x))2

)
δudx = 0 (8)

where δu is an arbitrary function. Therefore, we obtain the
following expression:

d2

dx2

(
ẼI

d2u

dx2

)
− (Tr + Ta)

d2u

dx2
=

ε0wV 2

2 (g − u(x))2
. (9)

A. Residual Stress

Residual stress, due to the inconsistency of both the thermal
expansion coefficient and the crystal lattice period between the
substrate and thin film, is unavoidable in surface micromachin-
ing techniques. Accurate and reliable data for residual stress
are crucial to the proper design of MEMS devices that are
related to these techniques [21], [22]. Therefore, residual stress
is an attractive research topic in microsystems technology. Con-
sidering the fabrication sequence of radio frequency MEMS
switches, residual force can be expressed as

Tr = σr(1 − ν)wt (10)

where σr is the biaxial residual stress [23] (equal to zero for
cantilever beams), and ν is the Poisson’s ratio.

B. Axial Stress

When a beam is in tension, the actual beam length L′ is
longer than the original length L. Although there is no displace-
ment in the x-direction at the beam ends, the bending of the
beam generates an axial force, i.e.,

Ta =
ẼA

L
(L′ − L) ≈ Ẽwt

2L

L∫
0

(
du

dx

)2

dx (11)

where L′ is the actual length along the centerline of the beam.
This length is calculated by integrating the arc length ds along
the curved beam based on the cubic shape functions for small
angle beam deflection.

C. Fringing Effect of Electrical Field

A uniform electric field cannot abruptly drop to zero at an
edge. In an actual situation, there always exists a “fringing
field.” Therefore, a more realistic model including the “fringing
field” is necessary. The first-order fringing field correction [15],
[24] is expressed as

ff = 0.65
[
g − u(x)

w

]
. (12)

The driving electrostatic pressure q, which is the term on the
right-hand side of (9), becomes

q(u, V ) =
ε0V

2w

2 [g − u(x)]2
(1 + ff ). (13)

D. Stress Gradients

Nonuniform stresses in the film thickness create built-in
moments, which in released cantilevers cause them to curl
out of plane. Because of the large possible deflections in gap
from these structures, the electrostatic pressure is significantly
modified from the corresponding uniformly flat case and the
pull-in voltages can be significantly shifted. Because the stress
gradient is assumed to be uniform in-plane, the cantilever
experiences a constant bending moment along its length when
it is flat and has a constant radius of curvature Rc after it is
released. fc is the modification term for stress gradient [23] and
is expressed as

fc ≈ 1 + 0.5096
(

L2

gRc

)
+ 0.0006347

(
L2

gRc

)2

. (14)

Cantilevers curl out of plane due to stress gradients through
the polysilicon film thickness. An optical tip deflection mea-
surement was used to determine the curling radius Rc of
40 ± 0.3 mm from the 500-mm-long cantilever [23]. The mod-
ification term for stress gradient is calculated using the results
in [23]. This modification term is then multiplied by the pull-
in voltages from the ideal uniformly flat case to yield the real
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Fig. 2. SEM cross sections of cantilevers [23].

pull-in voltage of cantilevers with initial deformation due to
stress gradients.

E. Trapezoidal Cross Section

The SEM images in Fig. 2 are used to obtain the trapezoidal
cross section due to plasma etching process [23]. The compli-
ance of the beam’s trapezoidal cross section on the bottom face
of the beam is included in the effective moment of inertia of the
cross section, i.e.,

I = (t3/36)
{
(w2 + 4ww′ + w′2)/(w + w′)

}
(15)

where w′ is the bottom width of the beam, and w is the top
width of the beam.

IV. GQDM

GDQM is used to transform the aforementioned nonlinear
integro-differential equations into the corresponding discrete
forms and is an extension of the predecessor method, i.e.,
DQM. The fundamental idea behind DQM is that the different-
order partial derivatives of a function at a given point can
be approximated by a weighted sum of function values at
all discrete points in the variable domain. Therefore, an mth-
order derivative of a function u(x) at a given point xi can
be determined. GDQM uses the same basic concept as DQM.
Specifically, the derivative of a sufficiently smooth function
with respect to a coordinate direction at a discrete point can
be approximated by a weighted linear sum of functional values
at all discrete points in that direction.

It has been observed that GDQM has two advantages over
DQM as follows: 1) there is no restriction required on the
distribution and number of discrete grid points and 2) the
weighting coefficient w

(m)
ij can be determined using a simple

recurrence relation instead of solving a set of linear algebraic
equations. By applying GDQM with N discrete points [25], we
obtain the following expressions:
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The weighting coefficients of higher order derivatives can
also be determined by matrix multiplication as follows [21]:

w
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For a cantilever beam, the corresponding boundary condi-
tions are

u(0) = 0,
du

dx
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The aforementioned set of boundary conditions yields the
following weighting coefficient matrices:

w
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For a fixed–fixed beam, the matrices of weighting co-
efficients using GDQM and considering the boundary
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conditions are

w
(1)
ij =




0 0 · · · 0 0
0 w

(1)
22 · · · w

(1)
2,N−1 0

...
...

. . .
...

...
0 w

(1)
N−1,2 · · · w

(1)
N−1,N−1 0

0 0 · · · 0 0


 (25)

w
(2)
ij =




w
(1)
11 w

(1)
12 · · · w

(1)
1,N−1 w

(1)
1,N

w
(1)
21 w

(1)
22 · · · w

(1)
2,N−1 w

(1)
2,N

...
...

. . .
...

...
w

(1)
N−1,1 w

(1)
N−1,2 · · · w

(1)
N−1,N−1 w

(1)
N−1,N

w
(1)
N,1 w

(1)
N,2 · · · w

(1)
N,N−1 w

(1)
N,N



[
w

(1)
ij

]

(26)

w
(3)
ij =




w
(1)
11 w

(1)
12 · · · w

(1)
1,N−1 w

(1)
1,N

w
(1)
21 w

(1)
22 · · · w

(1)
2,N−1 w

(1)
2,N

...
...

. . .
...

...
w

(1)
N−1,1 w

(1)
N−1,2 · · · w

(1)
N−1,N−1 w

(1)
N−1,N

w
(1)
N,1 w

(1)
N,2 · · · w

(1)
N,N−1 w

(1)
N,N



[
w

(2)
ij

]

(27)

w
(4)
ij =




w
(1)
11 w

(1)
12 · · · w

(1)
1,N−1 w

(1)
1,N

w
(1)
21 w

(1)
22 · · · w

(1)
2,N−1 w

(1)
2,N

...
...

. . .
...

...
w

(1)
N−1,1 w

(1)
N−1,2 · · · w

(1)
N−1,N−1 w

(1)
N−1,N

w
(1)
N,1 w

(1)
N,2 · · · w

(1)
N,N−1 w

(1)
N,N



[
w

(3)
ij

]
.

(28)

The Newton–Raphson method is a standard procedure for
solving a set of nonlinear algebraic equations that result from
the application of GDQM to nonlinear differential and integro-
differential equations.

V. RESULTS

The pull-in results for a cantilever beam made of single-
crystalline silicon subjected to a voltage are now presented.
Specifically, the cantilever beam’s pull-in results predicted from
the proposed GDQM algorithm are compared with the results
predicted in [27]. These pull-in results are also compared with
the experimental results [27]. The cantilever beam’s geometric
and material properties are given as follows [27]: Young’s mod-
ulus E is 155.8 GPa, Poisson’s ratio is 0.06, length of the beam
L is 20 mm, width of the beam w is 5 mm, thickness of the beam
t is 57 µm, initial gap g is 92 µm, and the permittivity of air is
8.85 pF/m. The stress gradient is estimated to be 0.2 MPa/µm.
This value is used to check the influence on the pull-in voltage.
Table I shows the end gap versus voltage simulation results
(GDQM and [27]), which are compared with the experimental
results. ∆% in Table I is the difference between the results from

TABLE I
END GAP VERSUS VOLTAGE FOR CANTILEVER BEAM

Fig. 3. GDQM-modeled deflection of cantilever beam at different voltages
generated by MATLAB 7.

Fig. 4. Rate of convergence with respect to the number of grid points
evaluated with GDQM.

the proposed model and the experimental data. Fig. 3 shows the
deflection of the cantilever beam at pull-in and two voltages just
below pull-in from Table I using GDQM and MATLAB 7. In
the proposed GDQM, only 13 grid points on the beam are used,
and a convergence with a tolerance of 10−12 was achieved in
less than ten iterations. The rate of convergence with respect to
the number of grid points has been demonstrated in Fig. 4. The
estimated pull-in voltage is approximately 66.4 using GDQM
compared to 68.5 in [27].

For fixed–fixed beams, the results predicted by employing
the 2-D distributed model and 3-D micro-electro-mechanical
computer-aided-design (MEMCAD) simulation [28] are com-
pared with those obtained using the proposed GDQM algorithm
to demonstrate the feasibility. GDQM results are consistent
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TABLE II
CALCULATED PULL-IN VOLTAGES FROM THE GDQM MODEL AS A

FUNCTION OF VARIOUS EFFECTS FOR A FIXED–FIXED

BEAM WITH L = 250 µm

TABLE III
CALCULATED PULL-IN VOLTAGES FROM THE GDQM MODEL AS A

FUNCTION OF VARIOUS EFFECTS FOR A FIXED–FIXED

BEAM WITH L = 350 µm

TABLE IV
COMPARISON OF CALCULATED PULL-IN VOLTAGES FOR

FIXED–FIXED BEAMS WITH L = 250 µm

with the results obtained using MEMCAD [28]. Six fixed–fixed
beam models with different residual stresses were simulated
and compared in Tables II and III. The geometric and material
properties are given as follows [28]: Young’s modulus E is 169
GPa, Poisson’s ratio is 0.06, width of the beam w is 50 µm
for the simple beam, beam thickness t is 3 µm, initial gap g
is 1 µm, and the permittivity of air is 8.85 pF/m. As shown
in Tables II and III, the dominant effect (as measured by the
quantity called “effectiveness”) is residual stress. “Effective-
ness” is defined as the ratio of the pull-in voltage with the effect
to the pull-in voltage without the effect and, therefore, gives a
quantitative measure as to the importance of each effect on pull-
in behavior. The results in Tables IV and V indicate that pull-in
voltages calculated from the proposed GDQM agree well with
the results calculated from the 2-D distributed model and the
3-D MEMCAD model [28]. In this paper, only 21 grid points
of GDQM were required to calculate the pull-in voltages within
a tolerance of 10−12 in less than ten iterations. Figs. 5 and 6
show the center gap versus voltage according to Tables II and
III and demonstrate that by increasing the residual stress, the
pull-in voltage is increased.

TABLE V
COMPARISON OF CALCULATED PULL-IN VOLTAGES FOR

FIXED–FIXED BEAMS WITH L = 350 µm

Fig. 5. Center gap versus voltage for fixed–fixed beams with 250-µm
length and different residual stresses from Table II generated by MATLAB 7
using GDQM.

Fig. 6. Center gap versus voltage for fixed–fixed beams with 350-µm length
and different residual stresses from Table III generated by MATLAB 7
using GDQM.

VI. CONCLUSION

The design and pull-in simulation of both cantilever and
fixed–fixed beam MEMS switches has been implemented using
the GDQM and compared with other models as well as with
the experimental results. This model captures all important
effects that exist on these structures along with their “effective-
ness” and shows that the residual stress is the most dominant.
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GDQM was developed and presented, wherein a few grid points
and Newton–Raphson iterations are implemented to achieve
convergence for various beam types. Pull-in results of both
cantilever and fixed–fixed beams reveal that the GDQM algo-
rithm is more efficient than other methods for analyzing pull-in
behavior of nonlinear electromechanical coupled systems.
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