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Abstract: This paper presents an extension of impedance control of robots based on fractional
calculus. In classical impedance control, the end-effector reactions are proportional to the end-effector
position errors through the stiffness matrix K, while damping is proportional to the first-order time-
derivative of the end-effector coordinate errors through the damping matrix D. In the proposed
approach, a half-derivative damping is added, proportional to the half-order time-derivative of the
end-effector coordinate errors through the half-derivative damping matrix HD. The discrete-time
digital implementation of the half-order derivative alters the steady-state behavior, in which only
the stiffness term should be present. Consequently, a compensation method is proposed, and its
effectiveness is validated by multibody simulation on a 3-PUU parallel robot. The proposed approach
can be considered the extension to MIMO robotic systems of the PDD1/2 control scheme for SISO
mechatronic systems, with potential benefits in the transient response performance.

Keywords: impedance control; fractional calculus; half-order derivative; parallel kinematics machine

1. Introduction

In a wide range of robotic applications, for example, assembly of electronic boards
or handling of objects to be placed on horizontal pallets, the full mobility (6-DOF) of the
end-effector is not necessary, since the tasks can be proficiently performed by means of a
3-DOF translational motion or by a 4-DOF motion with three translations and one rotation
around a vertical axis (Schoenflies motion [1]). The rotational degree of freedom of the
Schoenflies motion is often obtained by adding a 1-DOF wrist to a translational mechanism.

Considering serial robots, translational and Schoenflies motions are realized in most
cases by Cartesian robots or by SCARA robots [2–5]. Considering parallel kinematics
machines (PKMs), translational motion can be obtained by parallel Cartesian robots [6–8],
characterized by three legs that are planar serial mechanisms moved by three orthogonal
linear actuators perpendicularly to their planes, or by other closed-loop schemes which
are not purely translational in general, but become purely translational in case of specific
orientations of the joint axes [1,9–11]. If necessary, translational PKMs can be upgraded
to Schoenflies motions by a 1-DOF wrist, but there are also some designs of PKMs which
perform native Schoenflies motions [12,13].

No matter if it is serial or parallel, a robot can be controlled in position if the task can be
correctly performed regulating only the end-effector trajectory, or by hybrid position/force
control when the proper execution of the task requires accurate force regulation in some
phases and in some directions [14]. An intermediate approach, which is widely adopted
since it does not require force sensors, is represented by impedance control [15,16].

The basic concept of impedance control is that the robot end-effector, subject to ex-
ternal forces, follows a trajectory with a predetermined spatial compliance. The relation-
ship between the force/moment exerted by the end-effector on the environment and the
end-effector position/orientation error is defined by means of the stiffness and damping
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matrices. This approach allows to obtain a compliant behavior in the directions which must
be force-controlled, and a stiff behavior in the directions which must be position-controlled.

There are many possible ways to the define the orientation of a rigid body in space [17],
and this results in different possible approaches for the definition of the rotational stiff-
ness/damping in impedance control [18–21]. On the contrary, for translational robots, the
approach to impedance control is much less diversified and simpler, since a point position
in space is always represented using an orthogonal reference frame. Additionally, in case
of a robot with Schoenflies motion, impedance control is simplified, since the rotation is
mono-dimensional, and the rotational behavior is decoupled from the translational behav-
ior. In this work, we will consider only translational impedance control, considering that it
can be easily extended to robots with Schoenflies motion.

For translational robots, the impedance behavior of the end-effector is usually defined
by means of the stiffness and damping matrices, which respectively represent the zero-order
and the first-order terms of a three-dimensional PD control in the external coordinates,
expressed in the principal reference frame. These matrices are non-diagonal in the world
frame when the principal stiffness and damping directions are not parallel to the axes of
the fixed reference frame [11].

Some authors have proposed nonlinear impedance algorithms, in which nonlinear
stiffness and damping are imposed to the end-effector, in particular for a better execution
of cooperative human–robot tasks, or to maintain position/orientation within a specified
region even in case of excessive forces/moments [22–24].

An alternative method to define the impedance behavior is based on fractional calculus,
which introduces derivatives and integrals of non-integer order [25]. Accordingly, the
damping term can be defined proportional not to the first-order derivative of the end-
effector error, but to a derivative with generic non-integer order µ. In the scientific literature,
there are some examples of fractional-order impedance controls of robots [26,27]. This kind
of impedance control generalizes to a three-dimensional system the fractional-order PDµ

control scheme for SISO systems [28]. Fractional-order impedance can be used, for example,
to perform contact force tracking control more accurately than traditional impedance
control [29].

In the proposed work, the stiffness/damping behavior imposed by the impedance
control is linear, but a half-order term, based on the fractional derivative of order 1/2 of
the position error, is added to the zero-order and first-order terms of classical impedance
control. This impedance control generalizes to a three-dimensional system the fractional-
order PDD1/2 control scheme developed, so far, for single axes [30].

As a matter of fact, it is evident that traditional linear impedance control of a n-DOF
mechanical system (KD) is the n-dimensional version of the PD control of a 1-DOF me-
chanical system, with the n-dimensional stiffness term K, proportional to the position error,
corresponding to the proportional term, and the n-dimensional damping term D, propor-
tional to the first-order derivative of the position error, corresponding to the derivative term.
The proposed KDHD impedance control is obtained from the KD scheme with the addition
of an n-dimensional half-order damping term HD, proportional to the derivative of order
1/2 (half-derivative) of the position error; therefore, the aim of this work is to investigate if
the addition of the half-derivative term in the implementation of the impedance algorithm
can bring the same benefits that have been shown theoretically and experimentally for the
PDD1/2 control of a 1-DOF inertial system with respect to the classical PD scheme [31].

As a case study, the KDHD impedance control is applied to a 3-PUU parallel robot
and compared to the classical KD impedance control.

In the remainder of the paper, Section 2 discusses the theoretical definition and the
digital implementation of the half-derivative of a function of time, Section 3 proposes
the KDHD impedance control, highlighting the differences with respect to the classical
KD impedance control, and Section 4 presents the 3-PUU architecture and its kinematics.
Section 5 compares the KDHD and the KD impedance controls applied to the 3-PUU robot
by multibody simulation, and Section 6 outlines conclusions and future developments.
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2. Half-Order Derivative: Definition and Digital Implementation Issues

Fractional calculus generalizes the concept of derivative and integral to non-integer
order [25]. According to the Grünwald–Letnikov definition, suitable for robust discrete-
time implementation [32], the fractional differential operator for a continuous function of
time, x(t), is defined as:

dα

dtα
x(t) = lim

h→0

1
hα

[ t−a
h ]

∑
k=0

(−1)k Γ(α + 1)
Γ(k + 1)Γ(α− k + 1)

x(t− kh), (1)

where α ∈ R+ is the differentiation order, a and t are the fixed and variable limits, Γ is
the Gamma function, h is the time increment, and [y] is the integer part of y. For real-
time digital implementation with sampling time Ts, Equation (1) can be rewritten in the
following form [31]:

x(t)(α) ∼= x(kTs)
(α) ∼=

1
Tsα

(
k

∑
j=0

wα
j x((k− j)Ts)

)
, k = [(t− a)/Ts], (2)

where:

wα
0 = 1, wα

j =

(
1− α + 1

j

)
wα

j−1 , j= 1, 2, . . . . (3)

The calculation of Equation (2) requires considering all the k + 1 sampled values of the
time history of x; therefore, the incessant increase of the number of addends is an issue for
real-time implementation, and consequently, only a fixed number of n previous steps is
used in Equation (2), realizing a nth order digital filter, with fixed memory length L = nTs.
This is acceptable according to the so-called short-memory principle [33], which states
that considering only the recent past of the function in the interval [t–L, t] does not yield
relevant approximations in the evaluation of the fractional derivative.

Nevertheless, the truncation of the summation of Equation (2) to n + 1 addends is an
issue if the fractional derivative is applied to impedance control. As a matter of fact:

lim
k→∞

k

∑
j=0

wα
j = 0, (4)

but with finite n, this summation is non-null:

Wα(n) =
n

∑
j=0

wα
j > 0. (5)

Moreover, Wα tends to zero quite slowly, as shown in Figure 1, as an example, for
α = 1/2 (half-derivative).

Figure 1. Summation of the approximated fractional-derivative filter terms (Wα) as a function of the
filter order, for α = 1/2 (half-derivative).
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As a consequence, the numerically evaluated fractional derivative of a constant c is
non-null, but equal to cWα(n)/Tα

s , tending to zero as n tends to infinite. This influences the
behavior of impedance control in the steady state, giving rise to a constant position error. In
this condition, only the stiffness term should be non-null, but if fractional-order damping
is numerically evaluated with a finite-order digital filter, the half-derivative damping term
is also present, and should be properly compensated.

3. KDHD Impedance Control

The classical formulation of impedance control with gravity compensation of a non-
redundant parallel robot is expressed by the following control law [11]:

τ =
(

JT
p

)−1[
KKD(xd − x(q)) + DKD(xd − x(q))(1)

]
+ τg(q), (6)

where Jp is the Jacobian matrix for a parallel robot, which defines the relationship between
the time-derivative of the external coordinates x and the time-derivative of the internal
coordinates q:

.
q = Jp

.
x, (7)

In Equation (6), KKD and DKD are the stiffness and damping matrices, xd is the refer-
ence trajectory expressed in external coordinates, and τg is the gravity compensation vector.

Let us note that the matrices KKD and DKD, on the basis of the robot mobility, define
the translational impedance, the rotational impedance, or both [21]. In case of robots with
Schoenflies motion, their size is 4 × 4, but the rotational behavior is evidently decoupled
from the translational behavior; therefore, the stiffness and damping matrices are block-
diagonal, with a 3 × 3 submatrix representing the translational behavior and a fourth
diagonal element representing the rotational behavior. In the following, for the sake
of simplicity, we will consider translational robots with 3 × 3 stiffness and damping
matrices, bearing in mind that the proposed approach can be easily extended to robots with
Schoenflies motion.

The stiffness and damping matrices are in general non-diagonal in the fixed reference
frame, W. On the basis of the task requirements, it is possible to choose a principal reference
frame, P, in which it is convenient to define decoupled stiffness and damping; therefore,
the stiffness and damping matrices are defined diagonal in P and are transformed into the
frame W by means of the rotation matrix between W and P [21]:

KKD =
(

RP
W

)T
KP

KD RP
W , (8)

DKD =
(

RP
W

)T
DP

KD RP
W . (9)

In the proposed KDHD impedance control, the damping term is not proportional only
to the first-order derivative of the position error in external coordinates, but also to its
half-derivative (derivative of order 1/2), in order to implement the extension from PD to
PDD1/2 in the three-dimensional space:

τ =
(

JT
p

)−1[
KKDHD(xd − x(q)) + DKDHD(xd − x(q))(1) + HDKDHD(xd − x(q))(1/2)

]
+ τg(q) (10)

Obviously, the half-derivative damping matrix HDKDHD can also be defined in the
principal reference frame, P, and then transformed to the frame W:

HDKDHD =
(

RP
W

)T
HDP

KDHD RP
W . (11)

Let us note that in the definition of the KDHD impedance control law, a non-redundant
parallel robot has been considered. In case of non-redundant serial robots, the approach
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is similar, but it is more convenient to adopt the Jacobian matrix, which transfers from
internal coordinates’ derivatives to external coordinates’ derivatives [2]:

.
x = Js

.
q. (12)

Consequently, for application to non-redundant serial robots, the impedance control
laws (6) and (10) can be rewritten in the following form:

τ = JT
s

[
KKD(xd − x(q)) + DKD(xd − x(q))(1)

]
+ τg(q), (13)

τ = JT
s

[
KKDHD(xd − x(q)) + DKDHD(xd − x(q))(1) + HDKDHD(xd − x(q))(1/2)

]
+ τg(q) (14)

4. Kinematic and Dynamic Model of the 3-PUU Parallel Robot

The proposed KDHD impedance control has been tested by multibody simulation on
the 3-PUU parallel robot, whose scheme is shown in Figure 2.

Figure 2. Geometrical model of the 3-PUU parallel robot.

The reference frame O(x,y,z) of the base platform is located at the center of the equi-
lateral triangle B1B2B3, whose vertices lie on a circumference with center O and radius R,
while the reference frame O’(x’,y’,z’) of the moving platform is located at the center of the
equilateral triangle A1A2A3, whose vertices lie on a circumference with center O’ and radius
r. The unit vector e, perpendicular to the plane of the triangle B1B2B3, defines the direction
of the three prismatic joints, and the vector of the internal coordinates q = [q1, q2, q3]T is
composed by the distances of the centers of the three sliders from the points B1, B2, and B3;
consequently, the three vectors, q1e, q2e, and q3e, represent the displacements of the sliders’
centers with respect to B1, B2, and B3. For constructive reasons, the centers of the universal
joints mounted on the sliders do not lie on the prismatic joints’ axes, but are shifted by
the three vectors di, i = 1 . . . 3, with equal module d and the direction of the vector (O–Bi).
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Six universal joints are located at the points C1, C2, C3, A1, A2, and A3. In order to obtain
purely translational motion of the moving platform, in each PUU kinematic chain, the first
revolute axis of the upper U joint must be parallel to the first revolute axis of the lower
U joint, and the second revolute axis of the upper U joint must be parallel to the second
revolute axis of the lower U joint [34].

5. Comparison of the KD and KDHD Impedance Control Laws by
Multibody Simulation
5.1. Modeling and Simulation Overview

The model of the 3-PUU parallel robot has been implemented in the multibody simula-
tion environment Simscape MultibodyTM by MathWorks (Figure 3). The robot geometrical
and inertial parameters considered in the simulations are collected in Table 1.

Figure 3. Multibody model of the 3-PUU parallel robot.

Table 1. Geometrical and inertial parameters of the 3-PUU parallel robot.

Symbol Parameter Value Unit

r moving platform radius 0.0693 m
R base platform radius 0.3864 m
d distance from slider center and universal joint center 0.04 m
l leg length 0.5 m

mmp moving platform mass (including three universal joints) 5 kg
ml mass of one leg 1 kg
ms mass of one slider (including one universal joint) 1.5 kg

The proposed KDHD impedance control law has been compared to KD impedance
control in the following case studies.

(A) End-effector reference trajectory, xd, characterized by displacements along the
three directions with trapezoidal speed laws, no external force on the end-effector, and the
end-effector behavior is isotropic: the stiffness and damping matrices are diagonal with
three equal elements. This case represents an approach/depart motion without contact
with the environment.

(B) Constant end-effector reference position and external force applied to the end-
effector. The stiffness and damping matrices are diagonal in the world frame (the fixed
reference frame, W, coincides with the principal stiffness/damping reference frame, P),
but the end-effector behavior is not isotropic, since the three diagonal elements are not
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equal. This case study evidences how with the KDHD scheme, the approximation of the
half-derivative calculation by means of a digital filter with a fixed memory length alters
the stiffness imposed by impedance control, as discussed in Section 2; consequently, the
stiffness matrix must be properly compensated. A compensation method (KDHDc) is
proposed, and its effectiveness is validated by simulation.

(C) Constant end-effector reference position and external force applied to the end-
effector, as in case B, but with non-diagonal stiffness and damping matrices, since the
fixed reference frame, W, does not coincide with the principal stiffness/damping reference
frame, P. Additionally, in this case, the effectiveness of the proposed stiffness-compensated
KDHDc impedance control is validated by simulation.

In all the case studies, gravity force is neglected, since its effect is exactly compensated
by the gravity compensation term, which is equal for all the considered impedance controls
schemes. This allows to better highlight the differences between the KD, KDHD, and
KDHDc schemes, eliminating the equal contribution to the actuation forces due to gravity.

Impedance control is based on the measurement of the internal coordinates of the
robot without measurement of the force exerted by the end-effector on the environment,
as in the case of hybrid position/force control. The internal coordinates of the robot, both
for rotational and for linear actuators, are measured by digital encoders, which are not
affected by noise; therefore, we have decided not to take into account noise on the measured
position of the three sliders.

On the other hand, some noise is certainly present on the actuation forces, due to
the electrical effects of the current loop of the motor drivers; nevertheless, the sensitivity
of the closed-loop transfer function to disturbances on the direct path, which comprises
the motor driver, is much lower than the sensitivity to disturbances on the feedback path.
Consequently, noise has been neglected in the first stage of the research.

5.2. Case Study A

In this case study, the stiffness and damping matrices are diagonal and isotropic both
for the KD and KDHD impedance controls. For the KD scheme:

KKD = kKDI, (15)

DKD = dKDI, (16)

where I is the identity matrix. The diagonal value, dKD, of the damping matrix can be
selected starting from the nondimensional damping coefficient, ζKD, according to the
following expression [35]:

dKD = 2ζKD

√
kKDmmp, (17)

in which the mass, mmp, of the moving platform (including the three lower universal joints)
is considered.

For the KDHD scheme, the stiffness matrix and the first-order and half-order damping
matrices are:

KKDHD = kKDHDI, (18)

DKDHD = dKDHDI, (19)

HDKDHD = hdKDHDI. (20)

The diagonal values dKDHD and hdKDHD of the damping matrices can be selected starting
from the nondimensional coefficients ζKDHD and ψKDHD, according to the following expressions:

dKDHD = 2ζKDHD

√
kKDHDmmp, (21)

hdKDHD = ψ3/4
KDHDm1/4

mp . (22)
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The coefficients ζKDHD and ψKDHD non-dimensionally represent the derivative and
half-derivative damping terms [35]. In [36], three couples of PD and PDD1/2 tunings are
compared in the control of a linear axis (Table 2).

Table 2. Nondimensional parameters of the compared PD and PDD1/2 tunings.

KD/KDHD Comparison

PD Control/
KD Impedance Control

PDD1/2 Control/
KDHD Impedance Control

ζKD ζKDHD ψKDHD

I 0.8 0.46 0.7990
II 1 0.45 1.4266
III 1.2 0.48 2.1510

These three couples of PD and PDD1/2 tunings have been selected as starting points of
the research using the nondimensional approach discussed in [36] to derive the coefficients
ζ and ψ of a PDD1/2 controller from the coefficient ζ of a reference PD controller, with
application to a nondimensional second-order purely inertial linear system, with transfer
function G(s) = 1/s2. This method can be summarized as follows:

- A PD closed-loop control with a given ζ is applied to the position control of G(s),
considering a step input.

- The settling energy of the step response is calculated.
- There are infinite combinations of ζ and ψ for a PDD1/2 controller with the same

proportional gain which are characterized by the same settling energy of the PD. The
ζ–ψ combination which minimizes the settling time is selected.

Table 2 collects the PDD1/2 ζ–ψ combinations associated to three reference PD con-
trollers, with ζ = 0.8, 1, and 1.2. The basic idea of this approach is to obtain a PDD1/2

tuning with a similar control effort as the corresponding PD tuning, but with improved
readiness. Since this approach is nondimensional, the association between the coefficient ζ
of the PD and the ζ–ψ combination of the PDD1/2 controller is not influenced by the system
mass/inertia nor by the proportional gain; moreover, even if this approach is based on
the step input, the benefits in terms of control readiness of the PDD1/2 controller are also
demonstrated with different reference inputs [36].

The stiffness and damping matrices for the KD and KDHD impedance controls have
been obtained starting from the nondimensional values of Table 2, imposing
kKD = kKDHD = 1·103 N/m and using Equations (15) to (22); then, the two control laws have
been compared in the presence of a trapezoidal reference trajectory, xd, characterized by
four phases:

1. Constant velocity from (0, 0, zd,in) to (0.1, 0.1, 0.1 + zd,in) [m], where zd,in is the initial
z-coordinate of the end-effector, which does not influence the simulation results due
to the architecture of the PKM, with three sliders aligned along the fixed frame z-axis.
The duration of this phase is tramp.

2. xd remains constant in (0.1, 0.1, 0.1 + zd,in) [m] for tstop.
3. xd returns to (0, 0, zd,in) [m] with constant velocity in tramp.
4. xd remains constant in (0, 0, zd,in) [m] for tstop.

Some simulation results are shown in Figures 4 and 5, with reference to the KD-KDHD
comparison number I (ζKD = 0.8, Table 2), ramp time tramp = 0.5 s, and stop time = 3 s.
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Figure 4. Case study A, kKD = kKDHD = 1·103 N/m, KD-KDHD comparison number I, ramp time
tramp = 0.5 s, stop time tstop = 3 s, external coordinates.

Figure 5. Case study A, kKD = kKDHD = 1·103 N/m, KD-KDHD comparison number I, ramp time
tramp = 0.5 s, stop time tstop = 3 s, actuation forces.

Table 3 summarizes the results of the case study A with the three considered KD-
KDHD tuning couples of Table 2, and with two different ramp times (0.5 and 1 s), while the
stop time has been kept constant at 3 s, sufficient to reach the settling time to within 2%
after phases 1 and 3. The half-derivative is calculated using Equation (2) with sampling
time Ts = 0.005 s and filter order n = 10, and these values are suitable for a real-time
digital implementation on a commercial controller. The total control effort related to the
three motors, reported in Table 3, is defined as:

Etot =
3

∑
i=1

Tsim∫
0

τ2
i dt, (23)

where Tsim is the simulation time.
Comparing the performances of the two impedance controllers in the six cases of

Table 3, it is possible to observe the following outcomes:

- The KDHD control has lower integral absolute errors of all the external coordinates in
all the cases (average variation with respect to KD: −25.0%), and has lower maximum
actuation forces for all three motors in all the cases (average variation with respect
to KD: −17.6%). This is the most interesting aspect, because it means that the KDHD
control can reduce the tracking error with same size of actuators; moreover, this
confirms that the extension from KD to KDHD has benefits similar to the extension
from PD to PDD1/2 [31], supposed as the starting point of the investigation.
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- Considering the maximum error, in most cases, the KDHD is better than the KD,
but not for all the external coordinates and for all the cases, such as for the integral
absolute error; however, the average reduction of the maximum error is −3.4%.

- The settling time to within 2% of the commanded displacement is in general better for
the KDHD, with an average reduction over the six cases and over the three external
coordinates of −25.8%.

- The total control effort is higher for the KDHD with respect to KD, with an average
increase over the six cases and over the three external coordinates of +24.7%.

Table 3. KD/KDHD impedance control comparison, case study A.

Comparison tramp
(s)

Maximum Motor Force (N) Total Control
Effort (N2s) Maximum Error (mm) Integral Absolute

Error (IAE) (mm·s)
Settling Time

to Within 2% (s)

τ1,max τ2,max τ3,max Etot ex,max ey,max ez,max IAEx IAEy IAEz ts,x ts,y ts,z

I KD
KDHD 0.5 25.48

19.48
17.38
15.43

34.74
28.52

422.78
470.35

8.6
8.3

9.1
8.8

12.8
11.9

5.9
5.4

6.3
5.7

11.7
9.9

0.2415
0.1980

0.2555
0.2100

0.2760
0.3925

II KD
KDHD 0.5 31.36

23.06
21.19
18.25

42.29
33.77

470.86
557.19

7.6
7.3

8.0
7.7

11.2
10.4

5.5
4.2

5.7
4.5

10.0
7.2

0.2450
0.1700

0.2590
0.1800

0.2950
0.2960

III KD
KDHD 0.5 37.36

27.47
25.15
21.67

49.89
40.23

533.46
640.80

6.8
6.3

7.2
6.7

10.1
9.0

5.3
3.1

5.5
3.3

8.9
5.3

0.2465
0.1425

0.2615
0.1520

0.3145
0.1520

I KD
KDHD 1 12.35

9.71
8.34
7.72

16.28
14.39

95.94
122.15

4.1
4.2

4.4
4.4

6.1
6.0

3.1
2.9

3.3
3.1

5.8
5.2

0.2050
0.1640

0.2200
0.1755

0.2380
0.1825

II KD
KDHD 1 15.26

11.49
10.25
9.12

20.12
16.86

105.05
140.73

3.6
3.7

3.8
3.9

5.5
5.2

2.9
2.2

3.0
2.3

5.1
3.8

0.1915
0.1365

0.2080
0.1475

0.2330
0.1515

III KD
KDHD 1 18.18

13.69
12.23
10.84

23.99
20.09

117.16
160.68

3.2
3.2

3.4
3.4

4.9
4.5

2.8
1.6

2.9
1.7

4.8
2.8

0.1755
0.1110

0.1925
0.1205

0.2285
0.1270

In [31], a detailed discussion of the PDD1/2 tuning of a second-order, purely inertial
system is outlined, and these tuning criteria can be applied to the KDHD impedance control
tuning, bearing in mind that the nonlinearity of a MIMO system as an impedance-controlled
PKM introduces some alterations in the three-dimensional extension of the PDD1/2 concept.

Let us note that the considered trapezoidal reference position law is characterized
by velocity steps and impulsive accelerations in 0, tramp, (tramp + tstop), and (2tramp + tstop);
consequently, the position error cannot be completely eliminated, not even adopting a
model-based control scheme, since infinite actuation forces would be required. Accordingly,
some overshoot is unavoidable in the transitory states after the discontinuities in tramp
and (2tramp + tstop). A smoother reference law for position, for example, with cycloidal or
trapezoidal speed, would decrease the position error; nevertheless, here, a trapezoidal
position law was adopted to highlight the differences between the KD and the KDHD
impedance controls in trajectory tracking. The position error can be reduced by using
higher stiffness, with increasing force peaks; for example, Figures 6 and 7 represent the
external coordinates and the actuation forces for the same KD-KDHD comparison of
Figures 4 and 5 (comparison number I, ramp time tramp = 0.5 s, stop time tstop = 3 s), but
with kKD = kKDHD = 1·104 N/m. The maximum error of the external coordinates is lower,
but the actuation forces are higher.

5.3. Case Study B

In this case study, the stiffness and damping matrices are diagonal in the world frame,
but the desired end-effector behavior is not isotropic; therefore, the three diagonal ele-
ments of each matrix are not equal as in case study A. We impose higher compliance on
the z-axis through the following values: kKD,x = kKDHD,x = kKD,y = kKDHD,y = 2·104 N/m,
kKD,z = kKDHD,z = 1·103 N/m. The diagonal values of the damping matrices are ob-
tained as in case A, starting from the nondimensional parameters of Table 2 and using
Equations (17), (21), and (22) separately for each axis. A force F = [100,100,100] T N is
applied to the end-effector at t = 0 s. The half-derivative is calculated adopting the same
discrete-time implementation as in case A (Ts = 0.005 s, n = 10).

Figures 8 and 9 show the simulation results with reference to the KD-KDHD compar-
ison number II (ζKD = 1, Table 2), in terms of external coordinates and actuation forces.
Observing Figure 8, it is possible to note that the steady-state displacements of the external



Actuators 2022, 11, 45 11 of 15

coordinates using the impedance control KD (blue) and KDHD (violet) are different. This is
due to the fact, already discussed in Section 2, that the approximation of the half-derivative
calculation by means of a digital filter with a fixed memory length alters the stiffness
imposed by impedance control. As a matter of fact, considering that the half-derivative of
a constant c is non-null, but equal to cW1/2(n)/(Ts)1/2, as discussed at the end of Section 2,
the following stiffness-compensated KDHD impedance control (KDHDc) is proposed:

τ =
(
JT)−1

[(
KKDHD −

W1/2(n)
T1/2

s
HDKDHD

)
(xd − x(q))+

+DKDHD(xd − x(q))(1) + HDKDHD(xd − x(q))(1/2)
]
+ τg(q)

(24)

The effectiveness of this stiffness compensation is validated by the fact that applying
the KDHDc control law, the external coordinates (Figure 8, yellow) tend to the same values
obtained by applying the KD control law, which is not affected by the stiffness alteration
due to the numerical evaluation of the half-derivative; as expected, these steady-state
values correspond to the force/stiffness ratios Fx/kKD,x, Fy/kKD,y, and Fz/kKD,z for the three
directions. Let us note that, due to the definition of Wα, this compensation is correct only in
the steady state with a constant position reference, which are the conditions for which it has
been introduced to obtain a correspondence between steady-state force and displacement.

Figure 6. Case study A, kKD = kKDHD = 1·104 N/m, KD-KDHD comparison number I, ramp time
tramp = 0.5 s, stop time tstop = 3 s, external coordinates.

Figure 7. Case study A, kKD = kKDHD = 1·104 N/m, KD-KDHD comparison number I, ramp time
tramp = 0.5 s, stop time tstop = 3 s, actuation forces.
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Figure 8. Case study B, KD-KDHD comparison number II, external coordinates.

Figure 9. Case study B, KD-KDHD comparison number II, actuation forces.

5.4. Case Study C

In this case study, the stiffness compensation of the impedance control law KDHDc
(Equation (24)) is applied when the fixed reference frame, W, does not coincide with the
principal stiffness/damping reference frame, P. This occurs when impedance control must
impose compliance in a specific direction, not coincident with one axis of the reference
frame W, and higher stiffness in the remaining ones. In this case, a rotation of 45◦ around
the z-axis is considered; therefore, the rotation matrix between W and P is:

RP
W =


√

2/2
√

2/2 0
−
√

2/2
√

2/2 0
0 0 1

 (25)

The stiffness matrix expressed in the principal reference frame, P, is characterized by
the following diagonal values: kKDp,x = kKDHDp,x = 1 × 103 N/m, and kKDp,y = kKDHDp,y =
kKDp,z = kKDHDp,z = 2 × 104 N/m, with higher compliance along the x-axis of the reference
P. A force of F = [0,100,100] T N in the frame W is applied to the end-effector at t = 0 s. The
half-derivative is calculated adopting the same discrete-time implementation as in cases A
and B (Ts = 0.005 s, n = 10). Figure 10 shows the simulation results with reference to the
comparison number II (ζKD = 1, Table 2), in terms of external coordinates for the KD and
KDHDc control laws.
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Figure 10. Case study C, KD-KDHD comparison number II, external coordinates.

The effectiveness of the KDHDc stiffness compensation is also validated in this case
by the fact that the external coordinates tend to the same steady-state values of the KD
control law. The steady-state displacement along xW is slightly higher than the steady-state
displacement yW, while the steady-state displacement along zW is much lower. This is
coherent with the fact that the principal direction with lower stiffness is xP, which is rotated
by 45◦ around the z-axis; therefore, considering only the x-y plane (Figure 11), a force
along xW causes a larger displacement along xP with a positive direction, and a smaller
displacement along yP with a negative direction. This results, in the frame W, in a slightly
higher displacement along xW with respect to yW. In this case study, the ratio between
the stiffness along xP and the ones along yP and zP is 1/20; imposing a lower ratio, the
displacement would more precisely follow the desired compliance direction.

Figure 11. Case study C, F: external force; xss: steady-state displacement (x-y plane).

6. Conclusions

In this paper, an extension of classical impedance control (KD), with compliance
defined by the stiffness (K) and damping (D) matrices, has been proposed and tested by
multibody simulation on a 3-PUU parallel robot. This extension is based on fractional
calculus, and in particular on the half-order derivative (derivative of order 1/2), adding a
half-derivative damping defined by the matrix HD.

This work was inspired by the research about the PDD1/2 control scheme for SISO
systems, which is a PD with the addition of the half-derivative term, and extended it
to a particular class of MIMO systems, impedance-controlled robots. In this work, a
PKM was considered, but the approach can also be applied to serial robots by using
Equations (12) to (14).

This work is only a starting point, and the effects of the introduction of the half-
derivative damping must be further investigated. However, it is possible to outline the
following conclusions:

• Even if applied to a nonlinear MIMO system, the introduction of the half-derivative
term allows to tune the system behavior differently from a classical KD impedance
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control. The gains’ set used in the case study A attained a reduction of maximum actu-
ation force and total control effort, but the system can be tuned differently in order to
improve other performance indexes, exploiting the previous works on PDD1/2 control.

• The addition of the half-derivative damping necessarily introduced, with the discrete-
time implementation by a finite-order digital filter, an alteration to the stiffness of the
impedance control in steady state, as shown by Equation (5) and Figure 1. This hinders
the capability of impedance control to regulate the contact force between the end-
effector and the environment, which is the main scope of impedance control. To solve
this issue, a stiffness-compensated KDHD impedance control algorithm (KDHDc) has
been proposed (Equation (24)), and its effectiveness has been verified by simulation.

The saturation of the currents, and consequently of the actuation forces on the sliders,
has not been taken into account to avoid the influence of an additional parameter, introduc-
ing a highly nonlinear effect and making the KD-KDHD comparison more complex. In any
case, the simulations showed that the maximum actuation forces, with the considered con-
trol gains, were lower with the KDHD impedance control, so saturation cannot undermine
the benefits of the proposed scheme.

In the future research, a systematic analysis of the influence of the control parameters
of the KDHDc impedance control algorithm will be carried out in order to highlight
the benefits of the proposed approach, also considering serial chains and robots with
rotational mobility.
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