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Abstract—An improved finite-difference time-domain (FDTD)
method has been extended to analyze the antennas with complicated
lumped/active networks in this paper. The improved FDTD method is
based on a novel integral transform and the matrix theory. Combining
the novel integral transform with Kirchhoff’s circuit laws, the hybrid
networks comprised of high order linear and nonlinear elements with
arbitrary connection can be modeled by a stable matrix equation. An
effective model is built for linear lumped networks including internal
independent sources. A wire antenna loaded with wideband match
network and a two-element active patch antenna loaded with Gunn
diodes are analyzed by the developed techniques. The analysis results
indicate that the improved matrix-type FDTD method is not only sta-
ble and accurate, but also time-saving in simulating the complicated
hybrid networks.

1. INTRODUCTION

There are several methods to analyze electromagnetic characteristics
of microwave and antenna structures, such as method of moment
(MOM), finite-difference time-domain (FDTD) method, finite element
method (FEM), etc. [1–3]. The FDTD method is one of the good
candidates to model the electromagnetic structures because it can
provide an efficient and powerful global analysis [4–7]. Lump and active
circuits play an important role in microwave and antenna systems.
In modern RF front-end systems, lots of lumped and active devices,
such as chip resistors, diodes and FETs, are integrated with passive
circuits tightly. In antenna applications, active antenna concept has
been used extensively, and lumped and active element loading has
become a critical technique to improve the antenna characteristics, e.g.,
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enhance antenna bandwidth and reduce antenna size [8], etc. When
the FDTD method is used to analyze these microwave circuits and
antenna systems, one of the most difficult challenges is to construct
the models for these lumped and active circuit units.

A so-called lumped-element FDTD method has been presented
to simulate single lumped elements such as resistors, inductors,
capacitors, and also diodes and transistors with very simple equivalent
models [9]. Its main limitation is that it cannot account for two-
terminal circuit consisting of arbitrary connection of several lumped
elements. To improve its application, a recent literature [10] has
developed an approach to treat the arbitrary linear lumped network,
where the networks are described in terms of its impedance in
Laplace domain and then transformed to Z-domain by the bilinear
transformation. The time domain port voltage of the linear lumped
networks required by Yee’s cell can be obtained by using appropriate
digital signal processing techniques. More recently, Wu et al. [11] have
proposed another method to incorporate arbitrary high order linear
lumped networks into FDTD method. These methods in [10, 11] are
based on explicit iterative techniques to treat linear lumped network.
In order to create an explicit iterative formula, in literature [11] a
complex recursion technology has been used. However, these methods
in [10, 11] cannot be utilized to analyze linear lumped networks
including internal independent sources and active elements. For
overcoming the disadvantages in [9–11], a matrix method based on
Kirchhoff’s circuit laws developed in the literature [12] can be used to
model linear lumped and active networks, whereas it is very difficult
to use this method to deal with the networks in which some elements
expressed by high order linear equations are included.

In this paper, the effective FDTD models are presented based on
literature [13] to simulate complex hybrid networks which consist of
independent sources, nonlinear elements and the elements expressed
by high order linear equations. The effective models are applied to
analyze the active antenna and show their potential value.

2. THE BASIC THEORY OF THE IMPROVED MATRIX
METHOD

2.1. The Matrix Method for Linear Lumped Network

The frequency dependent impedance of a linear lumped network is
described in integral form of the rational function as [11]

V0(s)
I0(s)

=
∑R

r=0 ar (1/s)r

∑M
m=0 bm (1/s)m

(1)
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where, V0 and I0 are the terminal voltage and current, s = jω. R and
M with the relationship of |R−M | ≤ 1 are the order nominator and
denominator of the rational function, respectively. The coefficients ar

and bm are determined by lumped network.
Formula (1) can be rewritten as

∑M

m=0
bm (1/s)mV0(s) =

∑R

r=0
ar (1/s)rI0(s) (2)

Using Laplace-transform relationship between s-domain and time
domain

F (s)/s ↔
∫ t

0
f(τ)dτ, (3)

and the improved finite integration (5) [13], Equation (2) can be
discretized as follows

b0V
n+1
0 +

∑M

m=1
bm(∆t)mV n+1

0m =a0I
n+1/2
0 +

∑R

r=1
ar(∆t)rI

n+1/2
0r (4)

where, ∆t is the time increment and

V n+1
01 =

1
∆t

∫ (n+1)∆t

0
V0(τ)dτ

=
1

∆t

∫ n∆t

0
V0(τ)dτ +

1
∆t

∫ (n+1)∆t

n∆t
V0(τ)dτ

= V n
01 +

V n+1
0 + V n

0

2
(5a)

V n+1
02 = V n

02 +
V n+1

01 + V n
01

2
(5b)

. . .

V n+1
0M = V n

0M +
V n+1

0(M−1) + V n
0(M−1)

2
(5c)

I
n+1/2
01 =

1
∆t

∫ (n+1/2)∆t

0
I0(τ)dτ

= I
n−1/2
01 +

I
n+1/2
0 + I

n−1/2
0

2
(5d)

I
n+1/2
02 = I

n−1/2
02 +

I
n+1/2
01 + I

n−1/2
01

2
(5e)

. . .

I
n+1/2
0R = I

n−1/2
0R +

I
n+1/2
0(R−1) + I

n−1/2
0(R−1)

2
(5f)

The finite integration (5) has been presented by Shao et al. to
analyze the linear lump element-loaded microstrip hybrid circuit [13].
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According to the traditional finite integration introduced in [11],
Equation (2) is discretized as

b0V
′n+1
0 +

∑M

m=1
bmV

′n+1
0m = a0I

′n+1/2
0 +

∑R

r=1
arI

′n+1/2
0r (6)

where

V
′n+1
01 =

∫ (n+1)∆t

0
V0(τ)dτ

=
∫ n∆t

0
V0(τ)dτ +

∫ (n+1)∆t

n∆t
V0(τ)dτ

= V
′n
01 + ∆tV

′n+1
0 (7a)

. . .

V
′n+1
0m = V

′n
0m + ∆tV

′n+1
0(m−1) (2 ≤ m ≤ M) (7b)

I
′n+1/2
01 = I

′n−1/2
01 + ∆tI

′n+1/2
0 (7c)

. . .

I
′n+1/2
0r = I

′n−1/2
0r + ∆tI

′n+1/2
0(r−1) (2 ≤ r ≤ R) (7d)

It can be seen that an additional factor of 1/∆t is multiplied at the right
side of the novel integral transform (5) compared with the traditional
one (7).

In linear, lossless and homogeneous medium, the coupling among
the electric field E, magnetic field H and current density J satisfies
the following curl equation

ε∂E/∂t = ∇×H− J (8)

when lumped network occupies only one Yee’s cell along x-direction,
the coupling between the electromagnetic fields and the current I0

passing through the lumped network can be written as

En+1
x = En

x + ∆t/ε(∇×H)n+1/2
x −∆t/ε · In+1/2

0 /(∆y∆z) (9)

The relationship between local electronic field and port voltage of the
lumped network is

V n+1
0 = En+1

x ∆x (10)

where ∆x, ∆y and ∆z are the spatial increment along x-, y- and z-
directions, respectively. From Equations (4), (5), (9), and (10), it
is seen that an equations set can be constructed with (M + R + 3)
equations to solve (M + R + 3) unknowns. The equations set can be
written as a matrix format

AB = C0 (11)
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where, A is the (M + R + 3)× (M + R + 3) cofactor matrix,

A =




1 0 ∆t/ε/(∆y∆z) 0
−∆x 1

0 − 1
2

1 0 · · · 0
0 0 − 1

2
1 0 · · · 0 · · ·

· · ·
0 0 · · · − 1

2
1 0

0 b0 b1∆t · · · bM (∆t)M −a0 −a1∆t · · · −aR(∆t)R

0 0 · · · − 1
2

1 · · · 0
0 0 · · · − 1

2
1 · · · 0

· · ·
0 · · · − 1

2
1




(12)

B is the unknowns vector (En+1
x , V n+1

0 , V n+1
01 , . . . , V n+1

0M , I
n+1/2
0 ,

I
n+1/2
01 , . . . , I

n+1/2
0R )T , and C0 is the constant vector

C0 =
[
En

x +
∆t

ε
(∇×H)n+1/2

x 0
V n

0

2
+ V n

01

. . .
V n

0(M−1)

2
+ V n

0M 0
I

n−1/2
0

2
+ I

n−1/2
01

. . .
I

n−1/2
0(R−1)

2
+ I

n−1/2
0R




T

(13)

Based on the traditional finite integration (6) and (7), a similar
equations set with (11) and a cofactor matrix A

′
can be obtained.

Literature [13] has demonstrated the solution of the equations set
of (11), which exists because of non-zero determinant of matrix A,
and matrix A is more well-conditioned than matrix A

′
. Thereby, it

is very easy to solve the electronic field on the Yee’s cell occupied by
linear lumped network. The examples in Section 3 will validate this
nature numerically.

2.2. Matrix Method for Linear Lumped Network Including
Internal Independent Sources

Based on the FDTD method introduced above, the analysis of linear
lumped networks has been simplified. However, Formula (1) cannot
be applied to calculate the impedance of linear lumped networks in
which independent currents or voltage sources are included. According
to the circuit equivalent principle, a linear lumped network including
internal independent sources can be equivalent to Norton or Thevenin
equivalent forms, as shown in Figs. 1(a) and (b), respectively. In Fig. 1,
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Iso is Norton equivalent current source and Vso Thevenin equivalent
voltage source. The passive lumped network can be obtained by
shorting the internal voltage sources and opening the internal current
sources in the original network.

Therefore, from the equivalent principle, the total current and
terminal voltage of the linear lumped network in which k independent
current/voltage sources are included can be connected with the
expressions

Znos =
V0(s)

I0(s) +
∑K

k=1 Ik
so(s)

=
∑R

r=0 ar (1/s)r

∑M
m=0 bm (1/s)m

(14a)

or Znos =
V0(s)−

∑K
k=1 V k

so(s)
I0(s)

=
∑R

r=0 ar (1/s)r

∑M
m=0 bm (1/s)m

(14b)

where, Znos is the impedance of the passive lumped network; Ik
so and

V k
so are the Norton equivalent current source and Thevenin equivalent

voltage source of the k-th internal independent sources, respectively.
Here, we only corporate Formula (14a) into the matrix type FDTD

method to analyze linear lumped network with internal independent
sources. Formula (14b) can be utilized by the similar procedure.

 Thevenin equivalence 

 Norton equivalence 

Linear LN 

including internal 

independent sources 

V0

I0
Zin

+

_
Passive 

lumped 

network 

Zin

Vso

+

_

I0

V0

I0

Passive 

lumped 

network  

Passive 

lumped 

network 

V0

Iso 

Zin

+

_

Rnos

Rnos

+

-

Figure 1. Equivalent models of the linear lumped network including
internal independent sources.
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Formula (14a) can be re-written as

V0(s)
∑M

m=0
bm (1/s)m = I0(s)

∑R

r=0
ar (1/s)r

+
∑K

k=1
·
∑R

r=0
arI

k
so(s) (1/s)r (15)

According to Equations (3)–(5), Equation (15) is transformed into time
domain and then is discretized as

b0V
n+1
0 +

∑M

m=1
bm(∆t)mV n+1

0m

−
∑K

k=1
·
∑R

r=0

{
F−1

[
arI

k
so(s) (1/s)r

]}n+1

= a0I
n+1/2
0 +

∑R

r=1
ar(∆t)rI

n+1/2
0r (16)

F−1(•) is the operator of the inverse Fourier transform. Using
Equations (5), (9), (10), and (16), a new equations set as (11) can
be established, where the known volume matrix C0 is changed as

Cs
0 =

[
En

x +
∆t

ε
(∇×H)n+1/2

x 0
V n

0

2
+ V n

01

. . .
V n

0(M−1)

2
+ V n

0M −
R,K∑

r=0,k=1

{
F−1

[
arI

k
so (1/s)r

]}n+1

I
n−1/2
0

2
+ I

n−1/2
01 . . .

I
n−1/2
0(R−1)

2
+ I

n−1/2
0R




T

(17)

In Equation (17), the (M + 3)-th item, i.e., the source item, can be
computed from the known internal independent sources and network
structures. Thus, the electronic field on the Yee’s cell occupied by
linear lumped network with internal independent sources can be solved
easily.

2.3. Matrix Method for Complex Linear Lumped Networks
Based on Kirchhoff’s Circuit Laws

The methods introduced in Subsections 2.1 and 2.2 require that
impedance expression of linear lumped network be described by an
equation about port current and voltage. In some cases, it is
very troublesome even difficult to obtain a impedance expression for
complicate linear lumped networks. An improved method can be used
to avoid this difficulty. Based on Kirchhoff’s current and voltage laws, a
circuit equations set about the nodal voltage and branch current can be
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extracted from the network topology. Combining it with Equations (4),
(5), (9), and (10), a novel equations set as (11) can be established. In
this procedure, each internal independent current/voltage sources is
just connected with one equation.

Traditionally, when Kirchhoff’s laws are used to analyze linear
lumped network with the matrix method [12], the order of each element
in the network and each equation in the equations set are required
to be zero or one. However, using Kirchhoff’s laws in conjunction
with the new integral transform technique in (4) and (5), the network
having the subcircuits expressed by high order equations can also be
analyzed. The improved transform (4) and (5) should be used not
only to discretize the time domain integration expresses, but also to
describe the relationship between the current and voltage of each high
order subcircuit.

2.4. Matrix Method for Complex Hybrid Network Including
Nonlinear and High Order Linear Elements

Complex hybrid networks comprised of linear and nonlinear elements
have been used extensively in various microwave circuits and antenna
systems. For instance, the diode and FET devices have been used
frequently as mixers or oscillators and can be equivalent to a complex
hybrid network. In order to model such a network, a FDTD model
has been presented in [14, 15]. However, in complex hybrid network,
when some elements are the high order ones (expressed by high order
equations), these methods are ineffective. Combining Kirchhoff’s
circuit laws with Equations (4), (5), (9), and (10), the improved
matrix method is able to extend to solve this problem. Because of
existence of the nonlinear elements, a nonlinear equations set is used
to describe the complex hybrid network. Its solution can be obtained
by Newton-Raphson numerical method [15, 16]. The procedure to build
and discretize the nonlinear equations set is basically the same as that
in Subsection 2.3.

In the following context, two active antenna examples are analyzed
to demonstrate the efficiency and applicability of the proposed
approaches.
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3. THE APPLICATION OF THE IMPROVED MATRIX
METHOD TO ANTENNA ANALYSIS

3.1. The Wide-band Wire Antenna Loaded with Wide-band
Match Network

The structure of the wire antenna is shown in Fig. 2. Its half length
is l = 5.0m, and the diameter of the metal wire is D = 0.02m.
The antenna is fed at its middle point. In order to obtain a good
match characteristic, an impedance match network is added at the
input port, and its detailed configuration is shown in Fig. 3(a). Three
sets of different element parameters listed in Table 1 are used for
matching the antenna at different operation frequency bands. In
order to simplify the loaded network, a voltage source V ′′

s and an
impedance R0 = n2 · RsΩ are used in Fig. 3(b) instead of the original
voltage source V ′

s , impedance Rs, and transformer. This network in
Fig. 3(b) is the one with an internal independent voltage source. The
antenna has been analyzed by MOM in [8]. The spatial increments
∆x = ∆y = ∆z = 0.04m and time increment ∆t = 77 ps are selected
for the improved FDTD method, respectively. We assume the network
occupies one FDTD cell. Gedney’s PML is used to truncate all of the
radiation boundaries [17].

l 
D 

M.N. 

Source 

Figure 2. Structure of the wire antenna loaded with match network.

Table 1. Three sets match network parameters.

L1 (µH) L2 (µH) L3 (µH) C1 (PF) C2 (PF) n

M. N. 1 0.027 0.017 93.05 2.72 17.75 1.863
M. N. 2 0.069 0.017 99.13 4.18 7.38 3.526
M. N. 3 0.048 0.21 95.6 0.30 0.012 4.811
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Figure 3. Loaded match network structure, (a) original structure and
(b) simplified structure.

The relationship between the port voltage V0 and port current I0

can be deduced and expressed as
L2L1

C2R0

∫
I0dt +

(
1 +

L2

L3

)
L1

C2

∫∫
I0dt2

+
L1 + L2

R0

∫∫∫
I0dt3 +

(
1 +

L1 + L2

L3

)∫∫∫∫
I0dt4

=
1

R0

∫∫∫∫
V
′′
s dt4 + C1

L1L2

C2R0
V0 + C1

(
1 +

L2

L3

)
L1

C2

∫
V0dt

+
(

L1 + L2

R0
C1 +

L2

R0C2

) ∫∫
V0dt2

+
[
C1

(
1 +

L1 + L2

L3

)
+

(
1 +

L2

L3

)
1
C2

] ∫∫∫
V0dt3

+
1

R0

∫∫∫∫
V0dt4 +

1
L3

∫∫∫∫∫
V0dt5 (18)

In this equation, the coefficients of ∫ . . . V0dtm and ∫ . . . I0dtr

correspond to bm and ar according to Equations (2) and (3). From
Norton equivalent principle and Equation (18), it can be found that
the relationship between Norton equivalent current source I1

so and
independent V ′′

s in the network can be expressed as follow


L2L1
C2R0

∫
I1
sodt +

(
1 + L2

L3

)
L1
C2

∫∫
I1
sodt2

+L1+L2
R0

∫∫∫
I1
sodt3+

(
1+ L1+L2

L3

) ∫∫∫∫
I1
sodt4


 = − 1

R0

∫∫∫∫
V
′′
s dt4 (19)
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Because of single internal source in this network, the second item of
the right side in Equation (15) can be written as

SI =
∑R

r=0
arI

1
so(s) (1/s)r (20)

The expression at the left side of Equation (19) is just the inverse
Fourier transform of (20). Therefore, the inverse Fourier transform of
the second item of the right side in Equation (15) can be substituted
with the item at the right side in Equation (19). Then the constant
volume matrix Cs

0 in Equation (17) can be computed simply, and
the required electronic field at the location of the match network
can be calculated by the method presented in Subsection 2.2. This
analysis has also demonstrated the physical meaning of the first
item at the right side in Equation (18). In order to calculate the
match characteristic of the antenna, the time domain information at
the source port should be obtained. From Fig. 3(b), the following
discretized equations can be used to calculate the voltage Vp2 and
current Isou of the source port

I
n+1/2
L1 = I

n+1/2
0 − C1

(
V n+1

0 − V n
0

)
/∆t (21a)

V n
P1 = V n

0 − L1

(
I

n+1/2
L1 − I

n−1/2
L1

)
/∆t (21b)

I
n+1/2
L2 = I

n+1/2
L1 − C2

(
V n+1

P1 − V n
P1

)
/∆t (21c)

V n
P2 = V n

P1 − L2(I
n+1/2
L2 − I

n−1/2
L2 )/∆t (21d)

In
sou = In

L2 − (1/L3)
∑n

i=0
V i

P2∆t (21e)

10 15 20 25 30
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V
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Frequency (MHz)

 M. N. 1 M OM

 M. N. 1 FDTD

 M. N. 2 M OM

 M. N. 2 FDTD

 M. N. 2 M OM

 M. N. 3 FDTD

Figure 4. VSWR of the loaded antenna with different match network.
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The VSWR extracted from Vp2 and Isou is shown in Fig. 4. The
results from MOM [8] are also demonstrated as a reference. It is seen
that they are in good agreement with each other. So, the developed
FDTD model for linear lumped network including internal independent
sources is effective and accurate.

Certainly, the loaded lumped network in this antenna can also
be analyzed by the method introduced in Subsection 2.3 in order to
avoid the mathematic operations for network equation and internal
independent source. If just the nodal voltages or branch currents
in the network are regarded as the unknowns, some equations from
Kirchhoff’s laws are the high order ones, and the transform (4) and (5)
must be used to discretize them. The analyses have indicated that the
two models in Subsections 2.2 and 2.3 can yield the same results.

The condition numbers of matrix A based on the improved FDTD
method in Subsection 2.2 and matrix A′ based on Equations (6) and
(7) are compared to evaluate the algorithmic stability. The condition
numbers of matrixes A and A′ with different time increment ∆t are
listed in Table 2. From this table, it can be deduced that the stability of
the proposed FDTD method is improved markedly compared with the
traditional method. Meanwhile, the stability of the proposed FDTD
method is improved further as ∆t reduces. However, it is uncertain
for the traditional method because its condition number of matrix A′
becomes worse as ∆t is reduced in some cases, e.g., M.N.1.

Table 2. Comparison of the condition number of matrix A and A′.

Matrix
Condition number

∆t = 77 ps ∆t = 7.7 ps ∆t = 0.77 ps

M. N. 1
A1 4.3e + 23 6.8e + 22 3.2e + 21
A′1 1.8e + 41 2.2e + 41 3.8e + 41

M. N. 2
A2 5.5e + 22 1.1e + 22 3.1e + 21
A′2 1.2e + 41 3.7e + 40 3.7e + 38

M. N. 3
A3 1.0e + 021 1.5e + 20 1.5e + 19
A′3 1.3e + 41 2.5e + 38 1.4e + 36

3.2. Two-element Active Antenna Loaded with Gunn Diodes

Using the improved matrix type FDTD method, an example of the
two-element active patch antenna shown in Fig. 5 is analyzed. The two
elements of the antenna are connected by a coupling line. One Gunn



Progress In Electromagnetics Research, PIER 100, 2010 257

diode is integrated in each element to generate microwave signals. The
antenna patches are supported by microstrip substrate with a relative
permittivity εr and a thickness h. This antenna has been researched
in [18] and analyzed by the traditional FDTD method in [19–23]. The
configuration parameters are listed in Table 3. The spatial increments
are selected as ∆x = 0.24mm, ∆y = 0.31 mm and ∆z = 0.263mm,
respectively, and the time increment ∆t = 0.5 ps is selected in FDTD
simulation.

The equivalent circuit of the quasi ideal-packaged Gunn diodes D1

and D2 in Fig. 5 is the part enclosed in dotted box in Fig. 6. In Fig. 6,
Is is a nonlinear current source and can be expressed by

Is = −G1Vc + G3V
3
c (22)

Firstly, the active antenna loaded with the quasi ideal-packaged
Gunn diodes is analyzed. In terms of Kirchhoff’s laws, the circuit

y

x

Patches 

Gunn diode 

Coupling line 
D1 D2

W5

W3

W2

L1

W1

L3

L5

W4

L4

L2

Figure 5. Layout of the two-
element patch antenna.

R0

C0

Is

+

-

Vc

Rs

RN

I2

I3

I1I0+

V0

V1

-

Figure 6. Equivalent circuit
model of the loaded Gunn diode.

Table 3. Configuration parameters of the two-element microstrip
antenna.

L1 = 10.8mm L2 = 0.24mm L3 = 2.16mm L4 = 0.48mm
L5 = 17.76mm W1 = 8.37mm W2 = 5.27mm W3 = 3.72mm
W4 = 2.48 mm W5 = 5.58mm h = 0.79 mm εr = 2.33
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equations of the device are

I2 − I3 − Is = 0 (23a)
V0 − Vc − I2R0 = 0 (23b)

C0Vc −
∫

I3dt = 0 (23c)

I2 and V0 are the port current and port voltage of the quasi ideal-
packaged diode, respectively. Assuming each loaded diode occupies
one FDTD cell, Equations (23a) and (23b) can be discretized as

I
n+1/2
2 − I

n+1/2
3 − In+1/2

s = 0 (24)
(
V n+1

0 − V n+1
c

)
/2− I

n+1/2
2 R0 + (V n

0 − V n
c )/2 = 0 (25)

Based on the transform (4) and (5), Equation (23c) should be
discretized as the following equations,

C0V
n+1
s −∆tI

n+1/2
31 = 0 (26a)

I
n+1/2
31 − 1

2
I

n+1/2
3 −

(
I

n−1/2
31 +

1
2
I

n−1/2
3

)
= 0 (26b)

Then, combining Equations (22) and (24)–(26) with Equations (9)
and (10), a nonlinear equations set can be constructed. By Newton-
Raphson method, the required fields can be solved conveniently.

The circuit parameters in Equations (22) and (23) are: G1 =
0.0252Ω−1, G3 = 0.0265 Ω−1V−1, R0 = 1.0 Ω and C0 = 0.2 pF,
respectively. In this example, only the case that the coupling line
in Fig. 5 is an ideal metal pad is considered. As excitement, a
small amount of numerical noise is introduced into the FDTD cell.
The simulated total voltage across the diode D1 is shown in Fig. 7.
From the simulated voltage signal, it can be found that the resonant
voltage amplitude of the Gunn diodes and the resonant frequency of the
antenna system are 1.125V and 12.38GHz, respectively, which are the
same as those of [19]. This procedure also indicates that the improved
method is effective and accurate.

Now another parasitic effect on the Gunn diodes is considered and
is equivalent to an additional shunt circuit, as shown in Fig. 6. This
parasitism can be caused by a non-ideal packaging of the Gunn diodes.
In this shunt circuit, Rs = 100Ω, RN is a high order network and
expressed with

RN =
A1(1/s)

B0 + B2 × (1/s)2
, (27)

where A1=1, B0 = 8.85 × 10−13 and B2 = 5 × 109, respectively.
Obviously, it is very difficult, if not impossible, for the traditional
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FDTD method to model this complicated hybrid network [12, 15].
However, it is straightforward to model this device by the improved
matrix type FDTD technique. Besides Equations (9), (10), and (24)–
(26), the additional equations required to describe the complex hybrid
network are

V1 − V0 −RNI1 = 0 (28a)
I0 + I1 − I2 = 0 (28b)

V1 + I1Rs = 0 (28c)

Equation (28a) should be discretized as the following equations by
transform (3)–(5)

B0V
n+1
1 + B2(∆t)2V n+1

12 − (
B0V

n+1
0 + B2(∆t)2V n+1

02

)

−A1∆tI
n+1/2
11 = 0 (29a)

V n+1
11 − 1

2
V n+1

1 −
(

V n
11 +

1
2
V n

1

)
= 0 (29b)

V n+1
12 − 1

2
V n+1

11 −
(

V n
12 +

1
2
V n

11

)
= 0 (29c)

V n+1
01 − 1

2
V n+1

0 −
(

V n
01 +

1
2
V n

0

)
= 0 (29d)

V n+1
02 − 1

2
V n+1

01 −
(

V n
02 +

1
2
V n

01

)
= 0 (29e)

I
n+1/2
11 − 1

2
I

n+1/2
1 −

(
I

n−1/2
11 +

1
2
I

n−1/2
1

)
= 0 (29f)

(28b) and (28c) can be discretized by the ordinary method.

0 500 1000 1500 2000
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

V
o

lt
ag

e 
(V

)

Time (ps)

Figure 7. Time development of
the total voltage across the diode
D1 when the quasi-ideal packaged
diode model is used.
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Figure 8. Time development of
the total voltage across the diode
D1 when another parasitic shunt
circuit is added.
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Newton-Raphson method is used to resolve nonlinear equations
set. Fig. 8 shows the simulated voltage across the first diode D1. Due
to the effect of parasitic shunt circuit, the resonant voltage amplitude of
the Gunn diode has changed from 1.125 V to 0.856 V, and the resonant
frequency of the antenna system has also shifted from 12.38 GHz to
12.52GHz. The voltages across the diode D1 and D2 indicate that the
two patch antenna elements operate with out-of-phase mode [19].

The performance of the Jacobian matrix AJ in Newton-Raphson
method has also been analyzed in the example in which the parasitism
effect is considered. The Jacobian matrix AJ is changeable slightly
at different time updates, and its typical condition number has
been listed in Table 4. For the purpose of comparison, the typical
condition number of the Jacobian matrix A′

J based on the traditional
transform (6) and (7) has been listed in Table 4. Table 4 has also
given the typical and maximum iteration times at the time updates
when Newton-Raphson numerical method is used to solve the nonlinear
equations set. From Table 4, it is clear that the matrixes based on
transform (4) and (5) are more well-conditioned than those based on
transform (6) and (7), and the improved matrix type FDTD method
needs less computational time.

In this paper, our experience has demonstrated that when the
time and spatial increments satisfy traditional Courant condition, the
improved matrix type FDTD method is stable.

Table 4. Comparison between the novel matrix and the traditional
one.

Matrix Typical Condition umber
iterate times with∑

B(i)2 < 1.0e−10

Typical Maximum
AJ 1.0e + 22 9 10
A′

J 1.0e + 26 12 138

4. CONCLUSION

The application of the improved matrix type FDTD method has been
extended further to analyze the antenna loaded with complex lumped
and hybrid network in this paper. A simple FDTD model for linear
lumped networks including internal independent sources is developed,
and as an example, a wire antenna loaded with a wide band-matched
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lumped network is analyzed using this model. The complex hybrid
networks which compose of nonlinear and high order linear elements
with arbitrary connection can be also analyzed by the developed
method, and a diode-loaded two-element patch antenna is selected
to demonstrate the application. Due to the new integral transform
technique, the coefficient matrixes A of the complex linear lumped
networks and the Jacobian matrixes A′

J of the complicated hybrid
networks are much more well-conditioned than those of the traditional
method, respectively. The example of the diode-loaded patch antenna
has also indicated that the improved matrix type FDTD method is
more time-saving than the traditional one for the analysis of complex
hybrid network.
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