
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 259125, 6 pages
http://dx.doi.org/10.1155/2013/259125

Research Article

Application of the Local Fractional Series Expansion Method
and the Variational Iteration Method to the Helmholtz Equation
Involving Local Fractional Derivative Operators

Ai-Min Yang,1,2 Zeng-Shun Chen,3 H. M. Srivastava,4 and Xiao-Jun Yang5

1 College of Science, Hebei United University, Tangshan 063009, China
2College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
3 School of Civil Engineering and Architecture, Chongqing Jiaotong University, Chongqing 400074, China
4Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 3R4
5Department of Mathematics and Mechanics, China University of Mining and Technology, Jiangsu, Xuzhou 221008, China

Correspondence should be addressed to Ai-Min Yang; aimin heut@163.com

Received 31 July 2013; Accepted 17 October 2013

Academic Editor: Bashir Ahmad

Copyright © 2013 Ai-Min Yang et al. 
is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate solutions of the Helmholtz equation involving local fractional derivative operators. We make use of the series
expansion method and the variational iteration method, which are based upon the local fractional derivative operators. 
e
nondi�erentiable solution of the problem is obtained by using these methods.

1. Introduction


eHelmholtz equation is known to arise in several physical
problems such as electromagnetic radiation, seismology, and
acoustics. It is a partial di�erential equation, which models
the normal and nonfractal physical phenomena in both time
and space [1]. It is an important di�erential equation, which is
usually investigated by means of some analytical and numer-
ical methods (see [2–11] and the references therein). For
example, the FEM solution for the Helmholtz equation in
one, two, and three dimensions was investigated in [2, 3].

e variational iteration method was used to solve the Helm-
holtz equation in [4]. 
e explicit solution for the Helmholtz
equationwas considered in [5] by using the homotopy pertur-
bation method. 
e domain decomposition method for the
Helmholtz equation was presented in [6]. 
e boundary ele-
ment method for the Helmholtz equation was considered in
[7, 8]. 
e modi�ed Fourier-Galerkin method for the Helm-
holtz equations was applied in [9]. 
e Green’s function
for the two-dimensional Helmholtz equation in periodic
domains was suggested in [10, 11].

Fractional calculus theory [12–26] has been applied
to deal with the di�erentiable models from the practical
engineering discipline, which are the anomalous and fractal
physical phenomena. 
e fractional Helmholtz equations
were considered in [27–29]. In this work, there are two
methods to deal with such problems. For example, an analytic
solution for the fractional Helmholtz equation in terms of the
Mittag-Le�er function was investigated in [28]. 
e homo-
topy perturbation method for multidimensional fractional
Helmholtz equation was considered in [29].

Local fractional calculus theory [30–44] has been used to
process the nondi�erentiable problems in natural phenom-
ena. Taking an example, the local fractional Fokker-Planck
equation was proposed in [30]. 
e mechanics of quasi-
brittle materials with a fractal microstructure with the local
fractional derivative was presented in [31]. 
e anomalous
di�usion modeling by fractal and fractional derivatives was
considered in [35]. 
e local fractional wave and heat equa-
tions were discussed in [36, 37]. Newtonian mechanics on
fractals subset of real-line was investigated in [38]. In [39],
the Helmholtz equation on the Cantor sets involving local
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fractional derivative operators was proposed.
ere are some
other methods to handle the local fractional di�erential
equations, such as local fractional series expansion method
[40] and variational iteration method [41–44].


e main objective of the present paper is to solve the
Helmholtz equation involving the local fractional derivative
operators by means of the local fractional series expansion
method and the variational iteration method. 
e structure
of the paper is as follows. In Section 2, we describe the
Helmholtz equation involving the local fractional derivative
operators. In Section 3, we give analysis of the methods used.
In Section 4, we apply the local fractional series expansion
method to deal with theHelmholtz equation. In Section 5, we
apply the local fractional variational iteration method to deal
with theHelmholtz equation. Finally, in Section 6, we present
our conclusions.

2. Helmholtz Equations within Local
Fractional Derivative Operators


e Helmholtz equation involving local fractional derivative
operators was proposed.

Let us denote the local fractional derivative as follows [36,
37, 39–44]:

�(�) (�0) = ��� (�)���
���������=�0 = lim�→�0

Δ� (� (�) − � (�0))(� − �0)� , (1)

where Δ�(�(�) − �(�0)) ≅ Γ(1 + �)Δ(�(�) − �(�0)).
Using separation of variables in nondi�erentiable func-

tions, the three-dimensional Helmholtz equation involving
local fractional derivative operators was suggested by the
following expression [39]:

�2�(�, �, �)
��2� + �2�(�, �, �)

��2� + �2�(�, �, �)
��2�

+ �2�(�, �, �) = 0,
(2)

where the operator involved is a local fractional derivative
operator.

In this case, the two-dimensional Helmholtz equation
involving local fractional derivative operators is expressed as
follows (see [39]):

�2�(�, �)
��2� + �2�(�, �)

��2� + �2�(�, �) = 0. (3)


e three-dimensional inhomogeneous Helmholtz equation
is given by (see [39])

�2�(�, �, �)
��2� + �2�(�, �, �)

��2� + �2�(�, �, �)
��2�

+ �2�(�, �, �) = � (�, �, �) ,
(4)

where �(�, �, �) is a local fractional continuous function.


e two-dimensional local fractional inhomogeneous
Helmholtz equation is considered as follows (see [39]):

�2�(�, �)
��2� + �2�(�, �)

��2� + �2�(�, �) = � (�, �) , (5)

where �(�, �) is a local fractional continuous function.

e previous local fractional Helmholtz equations with

local fractional derivative operators are applied to describe
the governing equations in fractal electromagnetic radiation,
seismology, and acoustics.

3. Analysis of the Methods Used

3.1. �e Local Fractional Series Expansion Method. Let us
consider a given local fractional di�erential equation

�2�� = ���, (6)

where � is a linear local fractional derivative operator of order2� with respect to �.
By the local fractional series expansion method [40], a

multiterm separated function of independent variables � and� reads as

� (�, �) = ∞∑
�=0

�� (�) �� (�) , (7)

where ��(�) and ��(�) are local fractional continuous func-
tions.

In view of (7), we have

�� (�) = ���Γ (1 + ��) , (8)

so that

� (�, �) = ∞∑
�=0

���Γ (1 + ��)�� (�) . (9)

Making use of (9), we get

�2�� = ∞∑
�=0

1Γ (1 + ��) �����+2 (�) ,

��� = �� [∞∑
�=0

���Γ (1 + ��)�� (�)] = ∞∑
�=0

���Γ (1 + ��) (����) (�) .
(10)

In view of (10), we have

∞∑
�=0

1Γ (1 + ��) �����+2 (�) = ∞∑
�=0

���Γ (1 + ��) (����) (�) . (11)

Hence, from (11), the recursion reads as follows:

��+2 (�) = (����) (�) . (12)

By using (12), we arrive at the following result:

� (�, �) = ∞∑
�=0

���Γ (1 + ��)�� (�) . (13)
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3.2. �e Local Fractional Variational Iteration Method. Let us
consider the following local fractional operator equation:

��� + ��� = � (�) , (14)

where �� is linear local fractional derivative operator of order2�, �� is a lower-order local fractional derivative operator,
and �(�) is the inhomogeneous source term.

By using the local fractional variational iteration method
[41–44], we can construct a correctional local fractional
functional as follows:

��+1 (�) = �� (�) + 0�(�)�
× {� (�) [���� (�) + ���̃� (�) − �̃ (�)]} , (15)

where the local fractional operator is de�ned as follows [36,
37, 41–44]:

	�(�)
 � (�) = 1Γ (1 + �) ∫

	

� (�) (��)�

= 1Γ (1 + �) lim
Δ�→0

�=−1∑
�=0

� (��) (Δ��)�
(16)

and a partition of the interval [', *] is Δ�� = ��+1 − ��, Δ� =
max{Δ�1, Δ�2, Δ��, . . .}, and - = 0, . . . , / − 1, �0 = ', � = *.

Following (15), we have

3���+1 (�) = 3��� (�) + 0�(�)� 3�
× {� (�) [���� (�) + ���̃� (�) − �̃ (�)]} . (17)


e extremum condition of ��+1 is given by [37, 41, 42]

3���+1 = 0. (18)

In view of (18), we have the following stationary conditions:

1 − �(�)(�)������=� = 0, � (�)�����=� = 0,
�(�)(2�)������=� = 0. (19)

So, from (19), we get

� (�) = (� − �)�Γ (1 + �) . (20)


e initial value �0(�) is given by

�0 (�) = � (0) + ��Γ (1 + �)�(�) (0) . (21)

In view of (20), we have

��+1 (�) = �� (�) + 0�(�)� (� − �)�Γ (1 + �)
× {���� (�) + ���̃� (�) − �̃ (�)} .

(22)

Finally, from (22), we obtain the solution of (14) as follows:

� = lim�→∞��. (23)

4. Local Fractional Series Expansion Method
for the Helmholtz Equation

Let us consider the following Helmholtz equation involving
local fractional derivative operators:

�2�� (�, �)
��2� + �2�� (�, �)

��2� = � (�, �) . (24)

We now present the initial value conditions as follows:

� (0, �) = 0,
���� � (0, �) = 4� (��) . (25)

Using relation (12), we have

��+2 (�) = (����) (�) ,
�0 (�) = � (0, �) = 0,

�1 (�) = ���� � (0, �) = 4� (��) ,
(26)

where

���� = �� − �2�����2� . (27)

Hence, we get the following iterative relations:

��+2 (�) = (�� − �2�����2� ) (�) ,
�0 (�) = � (0, �) = 0,

(28)

��+2 (�) = (�� − �2�����2� ) (�) ,
�1 (�) = 4� (��) .

(29)

From (28), we have

�0 (�) = �2 (�) = �4 (�) = ⋅ ⋅ ⋅ = 0. (30)

From (29), we get the following terms:

�1 (�) = 4� (��) ,
�3 (�) = (�1 − �2��1��2� ) (�)

= [4� (��) − 4� (��)] = 0,
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�5 (�) = 0,
�7 (�) = ⋅ ⋅ ⋅ = 0.

(31)

Hence, we obtain

� (�, �) = ��Γ (1 + �)4� (��) . (32)

5. Local Fractional Variational Iteration
Method for the Helmholtz Equation

We now consider (24) with the initial and boundary condi-
tions in (25) by using the local fractional variational iteration
method.

Applying the iterative relation equation (22), we get

��+1 (�, �) = �� (�, �) + 0�(�)� (� − �)�
Γ (1 + �)

× {�2��� (�, �)
��2� + �2��� (�, �)

��2� − �� (�, �)} ,
(33)

where the initial value is given by

�0 (�, �) = ��Γ (1 + �)4� (��) . (34)


erefore, from (34) we have

�1 (�, �) = �0 (�, �) + 0�(�)� (� − �)�
Γ (1 + �)

× {�2��0 (�, �)
��2� + �2��0 (�, �)

��2� − �0 (�, �)}

= ��Γ (1 + �)4� (��) .
(35)


e second approximate term reads as follows:

�2 (�, �) = �1 (�, �) + 0�(�)� (� − �)�
Γ (1 + �)

× {�2��1 (�, �)
��2� + �2��1 (�, �)

��2� − �1 (�, �)}

= ��Γ (1 + �)4� (��) .
(36)


e third approximate term reads as follows:

�3 (�, �) = �2 (�, �) + 0�(�)� (� − �)�
Γ (1 + �)

× {�2��2 (�, �)
��2� + �2��2 (�, �)

��2� − �2 (�, �)}
= ��Γ (1 + �)4� (��) .

(37)

Other approximate terms are presented as follows:

�4 (�, �) = �3 (�, �) + 0�(�)� (� − �)�
Γ (1 + �)

× {�2��3 (�, �)
��2� + �2��3 (�, �)

��2� − �3 (�, �)}
= ��Γ (1 + �)4� (��) ,

�5 (�, �) = �4 (�, �) + 0�(�)� (� − �)�
Γ (1 + �)

× {�2��4 (�, �)
��2� + �2��4 (�, �)

��2� − �4 (�, �)}
= ��Γ (1 + �)4� (��)
...

�� (�, �) = ��−1 (�, �) + 0�(�)� (� − �)�
Γ (1 + �)

× {�2���−1 (�, �)
��2� + �2���−1 (�, �)

��2�
− ��−1 (�, �) }

= ��Γ (1 + �)4� (��)
(38)

and so on.
So, we get

� (�, �) = lim�→∞�� (�, �) = ��Γ (1 + �)4� (��) . (39)


e result is the same as the one which is obtained by
the local fractional series expansion method. 
e nondi�er-
entiable solution is shown in Figure 1.

6. Conclusions

In this work, the nondi�erentiable solution for theHelmholtz
equation involving local fractional derivative operators is
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Figure 1: Graph of �(�, �) for � = ln 2/ ln 3.

investigated by using the local fractional series expansion
method and the variational iteration method. By using
these two markedly di�erent methods, the same solution is
obtained. 
ese two approaches are remarkably e�cient to
process other linear local fractional di�erential equations as
well.
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�nite element method for the Helmholtz equation,” Journal of
Modern Optics, vol. 58, no. 5-6, pp. 424–437, 2011.

[4] S. Momani and S. Abuasad, “Application of He’s variational
iteration method to Helmholtz equation,” Chaos, Solitons &
Fractals, vol. 27, no. 5, pp. 1119–1123, 2006.

[5] M. Rafei and D. D. Ganji, “Explicit solutions of Helmholtz
equation and ��h-order KdV equation using homotopy pertur-
bation method,” International Journal of Nonlinear Sciences and
Numerical Simulation, vol. 7, no. 3, pp. 321–328, 2006.

[6] J.-D. Benamou and B. Desprès, “A domain decomposition
method for the Helmholtz equation and related optimal control

problems,” Journal of Computational Physics, vol. 136, no. 1, pp.
68–82, 1997.

[7] M.M.Grigoriev andG. F.Dargush, “A fastmulti-level boundary
element method for the Helmholtz equation,” Computer Meth-
ods in Applied Mechanics and Engineering, vol. 193, no. 3–5, pp.
165–203, 2004.

[8] S. Tomioka, S.Nisiyama,M. Itagaki, andT. Enoto, “Internal �eld
error reduction in boundary element analysis for Helmholtz
equation,”EngineeringAnalysis with Boundary Elements, vol. 23,
no. 3, pp. 211–222, 1999.

[9] O. F. Næss and K. S. Eckho�, “A modi�ed Fourier-Galerkin
method for the Poisson and Helmholtz equations,” Journal of
Scientic Computing, vol. 17, no. 1–4, pp. 529–539, 2002.

[10] C. M. Linton, “
e Green’s function for the two-dimensional
Helmholtz equation in periodic domains,” Journal of Engineer-
ing Mathematics, vol. 33, no. 4, pp. 377–401, 1998.

[11] A. Dienstfrey, F. Hang, and J. Huang, “Lattice sums and the
two-dimensional, periodic Green’s function for the Helmholtz
equation,” Proceedings of the Royal Society A, vol. 457, no. 2005,
pp. 67–85, 2001.

[12] J. T. Machado, V. Kiryakova, and F.Mainardi, “Recent history of
fractional calculus,” Communications in Nonlinear Science and
Numerical Simulation, vol. 16, no. 3, pp. 1140–1153, 2011.

[13] I. Podlubny, Fractional Di�erential Equations, vol. 198 ofMath-
ematics in Science and Engineering, Academic Press, San Diego,
Calif, USA, 1999.

[14] B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal
Operators, Institute for Nonlinear Science, Springer, New York,
NY, USA, 2003.

[15] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, �eory and
Applications of Fractional Di�erential Equations, vol. 204 of
North-Holland Mathematics Studies, Elsevier Science, Amster-
dam, 
e Netherlands, 2006.

[16] R. L. Magin, Fractional Calculus in Bioengineering, Begerll
House, West Redding, Conn, USA, 2006.

[17] J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in
Fractional Calculus: �eoretical Developments and Applications
in Physics and Engineering, Springer, New York, NY, USA, 2007.

[18] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics,
Oxford University Press, Oxford, UK, 2008.

[19] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelas-
ticity: An Introduction toMathematical Models, World Scienti�c
Publishing, Singapore, 2010.

[20] R. Herrmann, Fractional Calculus: An Introduction for Physi-
cists, World Scienti�c Publishing, Singapore, 2011.

[21] J. Kla�er, S. C. Lim, and R.Metzler, Fractional Dynamics: Recent
Advances, World Scienti�c Publishing, Singapore, 2012.

[22] S. Das, Functional Fractional Calculus, Springer, Berlin, Ger-
many, 2nd edition, 2011.

[23] V. E. Tarasov, Fractional Dynamics: Applications of Fractional
Calculus to Dynamics of Particles, Fields and Media, Springer,
Berlin, Germany, 2011.

[24] A. B. Malinowska and D. F. M. Torres, Introduction to the Frac-
tional Calculus of Variations, Imperial College Press, London,
UK, 2012.

[25] H. Sheng, Y. Chen, and T. Qiu, Fractional Processes and
Fractional-Order Signal Processing: Techniques and Applications,
Signals and Communication Technology, Springer, New York,
NY, USA, 2012.

[26] D. Baleanu, J. A. T. Machado, and A. C. Luo, Fractional Dynam-
ics and Control, Springer, New York, NY, USA, 2012.



6 Abstract and Applied Analysis

[27] E. Goldfain, “Fractional dynamics, Cantorian space-time and
the gauge hierarchy problem,” Chaos, Solitons & Fractals, vol.
22, no. 3, pp. 513–520, 2004.

[28] M. S. Samuel and A. 
omas, “On fractional Helmholtz equa-
tions,” Fractional Calculus & Applied Analysis, vol. 13, no. 3, pp.
295–308, 2010.

[29] P. K. Gupta, A. Yildirim, and K. N. Rai, “Application of He’s
homotopy perturbation method for multi-dimensional frac-
tional Helmholtz equation,” International Journal of Numerical
Methods for Heat & Fluid Flow, vol. 22, no. 3-4, pp. 424–435,
2012.

[30] K. M. Kolwankar and A. D. Gangal, “Local fractional Fokker-
Planck equation,” Physical Review Letters, vol. 80, no. 2, pp. 214–
217, 1998.

[31] A. Carpinteri, B. Chiaia, and P. Cornetti, “On the mechanics of
quasi-brittle materials with a fractal microstructure,” Engineer-
ing Fracture Mechanics, vol. 70, no. 16, pp. 2321–2349, 2003.

[32] F. Ben Adda and J. Cresson, “About non-di�erentiable func-
tions,” Journal of Mathematical Analysis and Applications, vol.
263, no. 2, pp. 721–737, 2001.

[33] A. Babakhani and V. Da�ardar-Gejji, “On calculus of local frac-
tional derivatives,” Journal of Mathematical Analysis and Appli-
cations, vol. 270, no. 1, pp. 66–79, 2002.

[34] Y. Chen, Y. Yan, and K. Zhang, “On the local fractional deriv-
ative,” Journal of Mathematical Analysis and Applications, vol.
362, no. 1, pp. 17–33, 2010.

[35] W. Chen, H. Sun, X. Zhang, and D. Korošak, “Anomalous di�u-
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