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Using the method of generating function, we have discussed the shape of the absorption band and 

the probability for non-radiative transition of a trapped electron in insulating or semiconducting crystal, 

especially their temperature dependence. We have thereby chosen a model for the vibrational motion 

of the lattice as general as possible, the normal modes for any two electronic states being different as 

regards not only their equilibrium positions but also the principal axes and frequencies. For non-radia

tive transition, we have derived, in comparatively general cases, the high and low temperature behaviors 

of the probability which correspond to the process through activated states and the tunneling of the 

lattice co-ordinates, respectively. The result is applied to calculations of the probability for thermal 

ionization of trapped electrons (or holes) and the capture cross-section of impurities for free electrons 

(or holes) in non-polar semiconductors. Further, the high temperature expansion of a density matrix 

is used to discuss the transitions on a most general model in which lattice vibration is no longer of 

harmonic type. Two problems related to the degeneracy of electronic states are discussed briefly. 

§ 1. Introduction 

The temperature dependence of an absorption band due to a trapped electron in insula· 

ting or semiconducting crystal has been studied by a number of authors. The simplest but 

most essential explanation of the broadening effect is found in the text-book of Mott and 

Gurney/l where they take a one-dimensional model for the lattice configuration space to 

discuss the breadth of the F-absorption band. More general discussion has been given by 

Muto2l on a quantum mechanical basis. Inui and Uemura, aJ with one dimensional model, 

explained the shift of the F-absorption peak by the thermal expansion of the lattice, taking 

advantage of Ivey's empirical law. Quantum mechanical calculation of adiabatic potentials 

was first carried out by Williams4l for KCl : Tl crystal, with one dimensional model. Huang 

and Rhys5l discussed the shape of the F-absorption band and the thermal ionization pro

bability of the F-electron, taking into account all the longitudinal waves of optical modes 

of vibration which interact strongly with the electron. Their mathematical technique, though 

very ingenious in itself, is confined to a single frequency model, and can hardly be genera

lized to a many-frequency model which involves, for instance, the acoustical modes. 

Under these circumstances it is very desirable to have a mathematical tool which enables 

one to discuss radiative and non-radiative transitions on a general model of lattice vibration. 

One of the present authors6l developed the method of generating function several years ago, 
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Application of the Method of Generating Function to RadiatiYe etc. 161 

and an example of its application to the thermal ionization of a trapped electron was already 

reported. Independently Lax7J also found essentially the same technique, applied it to the 

discussion of Franck-Condon principle in optical absorption and also compared the result 

with that of Huang and RQys. 

In the present paper, we apply the method of generating function to the discussion of 

radiative and non-radiative transitions of a trapped electron from a unified point of view, 

the model for the lattice vibrational motion being taken as general as possible ; at the same 

time, we have aimed at obtaining conclusions which are directly applicable to actual crystals 

and serve in analysing experimental data. 

§ 2. Summary of the method of generating function 

Though the essential framework of the method of generating function has been given 

in a previous paper,8l we shall summarize it here in such a way as is convenient for the 

treatment which we present in later sections. 

As is well known, an electron trapped at some crystal imperfection, which may be an 

impurity atom, an interstitial ion0 or a vacant lattice site, causes one or more absorption 

bands in the otherwise transparent region of wave-length. The remarkable temperature de

pendence of the shape of the absorption band is due to the electron-lattice interaction, which 

is also responsible for the thermal excitation or ionization of the electron. Denoting the 

co-ordinates of the electron and the lattice by r and Q, respectively, we can write down 

the Hamiltonian of the system as 

(2·1) 

where H., HL and H1 mean the energy of the electron, that of the lattice vibration and 

the interaction between them, respectively. If the electron is in a discrete bound state of 

the imperfection, we can utilize the adiabatic approximation : that is, by solving 

{H.,(r) +H1(r, Q)}SOl(r, Q) =Wz(Q)SOl(r, Q), 

{HL(Q) +Wz(Q)}(z.(Q) J-lczJ(z.=Eiv(z.(Q), 

we can write the wave function of the total system in the form : 

(2·2) 

(2·3) 

(2·4) 

where l and v are used to specify the electronic and vibrational.states, respectively. Strictly 

speaking, this wave function does not correspond to a stationary state, because, due to the 

Q-dependence of the electronic wave function S01, the quantity defined by 

(2·5) 

does not vanish identically, which fact is nothing but the limitation of the applicability of 

the adiabatic approximation. 

When there comes an incident light of appropriate frequency '1', the electron in the 

ground state I' can undergo optical transition to some higher electronic state !". If there 

are N. such impurity electrons per unit volume, the optical absorption constant of the 
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162 R. Kubo and Y. Toyozawa 

crystal for this frequency is given by 

k('r) = (81fl~j3nc)v Fy(hv), (2·6) 

(2·7) 

where c and n mean the light velocity in vacuum and index of refraction, M = er denotes 

the dipole moment operator of the electron, and i= (l', v') and f= (l", v11) specify corres

ponding to the initial and final states respectively the electronic and vibrational quantum 

numbers. w, means the probability that the system is initially in the v'-th vibrational state. 

The intensity distribution of the emitted light by the electron can be written in a similar 

way as the above expression. 

The system, however, can undergo transition to another electronic state f' without ex

ternal perturbation, owing to the non-stationariness of the state lJf11.,. The probability for 

this process which one may call non-radiative transiton or thermal transition is given by 

the formula 

W=27rfn FHI(o), 

E<E,-E,<E+4E 
Fw(E)=1/L1E 2J 2JI([IH'Ii)l 2w1, 

vi vii 

(2·8) 

(2·9) 

the non-adiabatic Hamiltonian H' defined by ( 2 · 5) playing the role of perturbation in this 

case. 

The central problem common to the above two cases is to carry out the double sum

mation 

(2 ·10) 

for an operator T. For a very special case where all the modes of lattice vibration in both 

of the electronic states have a common single frequency w, Huang and Rhys5l worked out 

the above summation with the use of an ingenious technique, which, however, is not ap

plicable for more general cases important in practical problems. It is more convenient to 

calculate the Laplace transform 

(2·11) 

instead of FT(E) itself for the following reason. Denoting the density matrix for the 

vibrational motion in the l-th electronic state by 

(2·12) 

where P[C~v] means the projection operator to the state ( 1., and using the initial distribu

tion of the system over the various vibrational states : 

w,=wl'•' =exp ( -{1E1,.,) /trace p11 ({1), (1= 1/kT, 

we can easily see that 

(2 ·13) 
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Application of the Method of Generating Function to Racliati-re etc. 163 

= ::E ::E (l'v'l Tll"v") e-J.E l"v" (l"v"l Tll'v') e-<~-"A'E l'"' /trace p1, ({1) 
vi vii 

(2 ·14) 

which no more contains intractable summation as is prescribed in the expression (2 ·10). 

The matrix element 

(2·15) 

is still an operator as regards the vibrational motion. Once the generating function fr (J.) 

is calculated, one can easily go back to the original distribution function by utilizing the 

inverse formula8l for the Laplace transformation : 

(2 ·16) 

where integration should be carried out inside the convergence region of ( 2 · 11) . 

Instead of the distribution FT(E) itself, it is often more convenient, especially in case 

of optical absorption, to calculate the moments of it. If we expand [T (A) in a power series : 

co 

[T(A)=[T(O) {1+D,.(-J.)"/n!}, 
n-1 

the n-th coefficient p.,. is nothing but the n-th moment of F T (E) : 

p.,.=Ff'= r:E"FT(E)c/Ejr:FT(E) ciE, 

{T(O) = r:FT(E) c/E, 

(2·17) 

(2·18) 

(2·19) 

as is evident from the equation (2 ·11). If we expand the logarithm of [T(J.) as 

co 

[T(J.) =[T(o) exp [::E A,.(-J.)"/n!J, 
n=1 

(2·20) 

the coefficients are semi-invariants of FT(E), which are related to the moments by 

A1=f1t=E, 

A2=P.2-P.t2= (E-£)2, 

As=P.s-31'-21'-1 +2p./= (E-E) 3• 

§ 3. An assemblage of harmonic oscillators as a model 

for vibrational motion 

(2·21) 

The Hamiltonian for the lattice vibration (2 · 3) consists of kinetic part KL and po

tential part U, 

(3·1) 
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164 R. Kubo and Y. Toyozawa 

Let us choose lattice co-ordinates Q4 (j = 1, 2, · .. ,N) in such a way that KL takes a unit 

quadratic form : 

(3·2) 

The potential energy U11 .for the ground state can be expanded in a Taylor series around 

the minimum point (Q/, Q/···QJ). If we take a quadratic approximation (harmonic 

oscillator model), we can write 

(3·3) 

which can be brought into a diagonal form 

Uu=1/2'2}JJ/2 (q"-q/) 2 • (3·3') 

The direction of principal axes, as well as the characteristic frequencies lu/ and the 

minimum point (Q/, Q/,···,QJ) are different for each of the electronic states. Consequently 

we take the form (3 • 3) rather than (3 · 31), or its tensor expression 

Uv= 1/2(Q-Q') !2'2 (Q-Q'), (3·4) 

where !2' and Q are N-dimensional tensor and vector, respectively. The adiabatic potential 

for an excited electronic state l", the minimum of which is higher than that of the ground 

state l' by 80, can be written as 

(3. 4') 

Making u~ of the well-known formula9> for the density matrix of a one dimensional 

harmonic oscillator with unit mass and frequency w : 

(qJp(A)Jq)={2d sinh ({inltJ)jw}-1' 2 

Xexp [- (wf4n) tanh ({3"hw/2) (q+q) 2- (wj4n) coth({ihw/2) (q-qy], 
(3 ·5) 

we have only to take the product of these expressions for all normal modes (q,-q/) of 

(3 · 31) in order to obtain the density matrix for the multidimensional harmonic oscillator, 

which again can conveniently be written in a tensor expression: 

(QJp' ({3-A) JQ) =[det(2rrn!JH sinh { ({3-A) n_.Q'}) J-112 

Xexp[ -1/4 (Q+Q-2Q') {n-1 !2' tanh( ({3-A) /2· n!J')} (Q+Q-2Q') 

-1/4(Q-Q) {n-1 !2' coth( {19-A} f2·n!2')} (Q-Q)]. (3·6) 

The corresponding one for the excited state l" is obtained by replacing {3-A, !2' and Q' 

with A, !2" and Q", respectively, and by multiplying a factor ~:xp (- Ac0). 

The operator T 1" 1' for the optical absorption is the dipole moment: 

T 11111 (opt.) = M ( Q) = J so:, (r, Q) er S01, (r, Q) dr. (3·7) 
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Application of the Method of Generating Function to Radiati'l'e etc. 165 

Let us define the Fourier transform of M(Q) by 

M(Q) = ~exp(iK·Q)M.zrdK. 

For the thermal transition we have 

Tz,1, (therm.) =H'z"Z' = Jf!J't,2J {PJf!Jz,P4+ 1/2 (P/f!J1,)} dr 

=n-1 5(Q) ·P+S(Q), 

(3·8) 

(3·9) 

as is evident from (2 · 5), (3 ·1) and (3 · 2). Neglecting the second term and the Q

dependence of 5, we have 

Hz,z/=n-1 S·P=-iS·ajaQ (3 ·9') 

which is Hermitian. We have defined the N-dimensional vector 5 by 

S 4 =-in 2 ~f!Jj'i, ajoQ4 f/Jz' dr. (3 ·10) 

Putting (3·6), (3·8) and (3·9') into (2·14) and carrying out 2Ndimensional in

tegration over the variables Q and Q, we get the generating functions for the optical and 

thermal transitions : 

{;,t ().) ={a().) &M ().), 

fn, ().) = fo ().) &HI().), 

where the common factor fo ().) is defined by 

[o ().)=[A().) [r (J.) exp ( -}.80), 

[A().) =exp [-A 8/ (8/ + 8/') - 18/' A], 

fr ().) = {det <P} - 112 =exp [ -1/2 trace (log <P) ], 

and the other factors are given by 

(3 ·11) 

(3 ·12) 

(3 ·13) 

(3 ·14) 

(3 ·15) 

gJI().) = ~ ~dK di{ Ml:*M.zr exp[i(K-K) · {A+-1/2(8/ + 8/')-1 (e/-8/')A} 

-1/4(K-K) ((}/ + 8/') -l(K- K) -1/4 (K + K) (8/ + 8/')-1 (K + K)] 
(3 ·16) 

gn, ().) = Js8/ (8/ + 8/')-1e/'Al 2 + 1/2· 5* {8/ ce/ + 8/')-18/' 

-8/ ( 8/ + 8/') -I(}~'} 5 

In the above expressions we have used the following abreviations : 

8/= (ljn)12' tanh {(j9-).)Ji12'j2}, 8/'= (1/n)!J" tanh ().Ji!J"/2), 

8/= (1/n)!J' coth {(j9-..i)n12'j2}, 8/'= (1/n)!J" coth ().Ji!J"/2), 

A=Q"-Q', A+=1/2 (Q'+Q") 

<P= {2 sinh ( (J9/2) n12')} - 2 Ql-1 sinh { ((d-i.) n12'} h2 (8/ + 8/') (8/ + 8/') 

x JJ"-1 6inh (J. n !J"). 

(3 ·17) 

(3 ·18) 

(3 ·19) 

(3 ·20) 
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166 R. Kubo and Y. Toyozawa 

For the above expressions we must note the following: (1) When one takes M(Q) 

to be constant, gM (.A) reduces to a constant. (2) If the difference of the frequency tensors 

!JII2_!J12=r (3·21) 

is equal to zero, fr(.A) turns out to be unity. (3) .A=O evidently results inf11 =1. When 

these conditions are not fulfilled, each of the original distribution functions G M (E), F r (E) 

and F11 (E) which are obtained from the corresponding generating functions gM (.A), [r (.A) 

and [ 11 (.A) , has some broadening instead of reducing to a sharp line. These broadenings 

contribute to that of the optical absorption band in such a manner as is suggested by the 

convolution theorem8>. Thus we can consider &M• [r and [11 as the generating functions 

which correspond to the broadenings due to the Q-dependence of dipole moment, the dif

ference in vibrational frequencies and the difference in equilibrium lattice positions, respec

tively. 

§ 4. Linear approximation of the interaction 

As is well known, the Hamiltonian for the electron-lattice system with an imperfec

tion giving a potential V { r) for the electron, in case of ionic crystals, can be written down10>5> 

as 

H=-fi2/2m*·J+V(r) + 1/2 2J' 2J (P.,J.L2+alQ0
2,J.L) 

0 IL=h 2 

- _} 41l'ew[- 1 -(~-~)] 112 2j 1 1jo-{Q.,,1 sin (o-·r) +Qa,2cos (o-·r))} 
'V N 21l'v0 tc0 tc a 

(4·1) 

where tc and tc0 are the static and high frequency dielectric constants, wj2Tr the frequency, 

assumed to be constant, of the optical longitudinal vibrations, 0" the wave number vector, v0 

the volume of a unit cell, and N the total number of unit cells. 2J' means that the sum

mation should be carried out over a half of the (]"·space, for instance o-. > 0. 

For non-polar crystals the corresponding Hamiltonian is given by 

H=- n2 
J+V(r) +_!__2J' 2J(P.,,/+w.,2 Q.,,J.L2) 

2m* 2 o J.L-1,2 

(4·2) 

where M is the mass of each atom, and the interaction constant C with dimension of 

energy can be determined from the mobility data.11>12> Since the lattice vibrations to be con

sidered here is the longitudinal acoustical modes, w., is no longer constant but is related 

with 0" by 

(4·3) 

where c means the longitudinal sound velocity. 

The above Hamiltonians are based on somewhat idealized model : in fact the normal 
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Application of tbe Method of Generating Function to Radiati-re etc. 167 

modes of lattice vibrations are more or less distorted near the imperfection and it is even 

possible that some of them are localized in its neighbourhood, and interact with the trap

ped electron more strongly than the other modes. Denoting the normal co-ordinate (whether 

it may be localized or extends over the crystal) by Q4, when there is no electron, and ex

panding the interaction Hz(r, Q) to the first order in Q/s. we have 

HL=1/2"2].(P/+w/ Q/). 
J 

(4·4) 

H1=-"2]. u1(r) Q/. 
J 

(4·5) 

the zero-th term of Hz being removed into H.. This linear approximation of Hz includes 

( 4 · 1) and ( 4 · 2) as special cases. 

Let us solve the equation (2·2) with H1 given by (4·5) as perturbation. If we 

define 

(4·6) 

where ~~o> is the !-th electronic state of the non-perturbed system with energy cl0l, the 

wave function for the perturbed system can be written as 

(4·7) 

and the adiabatic potential in (2 · 3) is given by 

Ul (Q) =clO) + 1/2"'2. w/Q/- "2]. Uj, U Qj+ "2]."2]_ (b1UJll' UJIIIz/ (ci(O)- c~7l)) QiQJI• ( 4 • 8) 
i J Jjllf 

If we neglect the last term, we have 

U,(Q) =c1+1/2 "2]. w/(Q 4 -~) 2 , 
J 

C1=c~O)- "2]_ (ujll 2/2w/), 
i 

~ =u4afwl, 

(4 ·9) 

(4·10) 

(4·11) 

the last quantity denoting the displacement of equilibrium lattice position from that posi

tion when the electron is not trapped. Taking account of the last term in (4·8) causes 

the change in frequency tensor. This may give rise to some localized modes of lattice vi

bration even if one starts from the plane wave approximation as in ( 4 · 1) . 

When we compare two electronic states l' and l" as regards the equilibrium positions 

and vibrational frequencies, we have 

Ll;= (u;1flln-uw1,) jwf, 

trace F= 2"2]. {"'2."lu;11, 12/ (c\n -c~ 0 >) - "2].' lu411, 12/ (cW> -c}0>)}. 
i I I 

(4 ·12) 

(4·13) 

* Although the neglection of terms quadratic in Q/s is not satisfactory when one discusses the higher 

order terms in uJ as in § 5, thete seems to be no reliable way of estimating the order of magnitude of their 

coefficients at present. 
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168 R. Kubo and Y. Toyozawa 

The transition dipole moment between these states is expanded as 

and for the non-radiative transition we have 

M(Q) + Uj/ll M(O) )Q 
Ill c(O) c(O) Ill l j1 

cz, -cl 

S _ "-.!2 1 ( c(O) EJ(Ol) 
;- -lrt Ujllll' Ctf - Ill • 

§ 5. The shape of an optieal absorption band 

(4·14) 

(4·15) 

We discuss here the shape of an optical absorption band by making use of the gene

rating function {M (A.) obtained in § 3. We begin with the most simple and important 

case. 

(i) /l. 9= 0, .!2'=.!2", M(Q) =const. This approximation, which takes into account 

only the difference in equilibrium position, corresponds to the first order perturbation, that 

is, the energy is approximated to the first order, and the wave function to the zero-th 

order. Inserting (3 ·18) we have 

fv (A.) = M* M exp (- J.c0) exp {-A. 8/ ( 8/ + 8/1) - 18/1 Jj.} 

=M*M exp[ -J.c 0 -112~ ·Jj.i2' {sinh (M.!J') +coth (f31ii2' 12) (1-cosh M . .!J')} A.] 
(5 ·1) 

from which we can calculate the semi-invariants : 

A1 =co+ (112) Jj.i212 Jj. =E. 

A,.= (1/'-112) Jj..!J""+l Jj., 

A,.= (n"-112) Jj.!J'"+1 coth (f3n!J'I2)Jj.. 

(n: odd,> 1) 

(n: even) 

(5 ·2) 

For the special case where there is only one frequency w ( !J' = wl), we can calculate 

explicitly the inverse transform (2 · 16) of the generating function (5 ·1), leading to Huang's 

formula5l as was already shown by Lax. 'J Even when the frequencies distribute over a 

certain range, as is the case for acoustical modes, we can expect qualitatively a similar 

temperature dependence of the absorption curve to the above mentioned simplest case. We 

see, for instance, that the peak of the absorption band (. ·E=A1) does not shift with 

temperature, and the dispersion ( {E-E) 2} 1/ 2 =A2
112) or breadth of the band is proportional 

to -VT at high temperatures, retaining the shape of the band which tends to a Gaussian 

form with increasing temperature. The last statement can be proved as follows. Trans

forming the energy measure E through 

(E-E) I v A2=E', 

we have a distribution function of F Jt (E) =F M' (E') with E' as a variable, the average E' 

being zero and the dispersion (E'- E') 2 = 1. Since the semi-invariants in the new system 

are given by 
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Application of the Method of Generating Function to Radiati'Ye etc. 169 

A,.'= A,. A2 -n/2 ' (n> 1) 

they all tend to zero with increasing temperature, leaving A/= 1 alone, which means that 

F M' (E') tends to a Gaussian distribution. 

(ii) A =f: 0, !J'=f:!J", M=const. In this case, we expand the expressions in the 

exponents of (3 ·14) and (3 ·15) into power series in .A, using (3 ·18) and (3 ·19). 

Each of {JJ. and {r contributes to the semi-invariants additively ; the results up to the third 

moment are as follows. 

E=A1 =c0 +1/2·A!J112A+n/4 trace {!JI-1 coth ({31i!J'j2)F}, 

(E-E) 2=A2=n/2· A!J"2 QH coth ({31i!J'j2)!2112 A 

+1i2j8 trace [{!JI-1 coth ({31i!J1j2)r} 2], (5·3) 

(E-E) 3 =A3 =1i2/2 · A!J'12 {1 +3/2 .QI-1 coth ({3n!J1 /2) F!JI-1 coth ({3-A.!J' /2)} 

!J112A+n3/4 trace{!JH coth({j1i!J'j2)r} +1i3j8 trace[ {!JI-1 

coth ({3-A.!J' /2) r} 3]. 

(iii) A=f:O, !2' =!211, M~const. To take into account the Q-dependence of the transi

tion dipole moment, we expand it at the equilibrium position Q' of the initial electronic 

state: 

M(Q) =M(Q') + (Q-Q') · (aMjaQ)Q,=M+ (Q-Q') ·M'· (5·4) 

According to ( 3 · 8) , this is equivalent to 

MJC exp (iK ·Q') =Ma(K) +io'(K) M'. 

Inserting (5·41) and (3·18) in (3·16), we have 

gM (.l) =M*M+ (1/2) fiM'*!JI-1 coth ({31i!J' /2) M' 

- (1/2) .Afi[- (M* M' + M M'*) !J' coth ({31i!J' /2) A+ liM' M'*] 

+ (1/4) A2n2[- (M* M' + M M'*) !J'2A + IM'!J' coth ({11i!J'j2) Al 2 

+liM'*!!' coth ({1 !J' /2) M']+ ···. 

The expression for [o (J.) is the same as in case (ii). 

(5. 41) 

(5 ·5) 

(iv) Order estimation of the moments. According to the linear approximation dis

cussed in § 4, the order of magnitude of the electron-lattice interaction in bound electronic 

states is chatacterized by the matrix elements u 411,. We denote it symbolically 

uw = 0 (u). (5 ·6) 

In a similar way we write 

!J=O(lo), (5 ·7) 

where co is an appropriate average of the frequencies of the normal modes which interact 

effectively with the trapped electron. According to (4·12) and (4·13) we have 

(5 ·8) 
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170 R. :Kubo and Y. Toyozawa 

(5 ·9) 

Let us introduce a dimensionless quantity r, which characterizes the interaction strength, 

by the definition 

(5 ·10) 

In the first approximation discussed in (i) of this section, the peak and the breadth of the 

absorption band at high temperatures are given by 

respectively, and therefore, the two quantities c0 and A!J'2A can be estimated from the 

observed adsorption curve if available.* The values of r thus determined from the F-bands 

in alkali-halides range from 0.6 to 1. r can also be estimated theoretically if an appro

priate Hamiltonian and electron wave functions are used. In non-polar crystals such as 

silicon and germanium, an electron (or a hole) can be trapped in the neighborhood of an 

impurity atom with a shielded potential - t? j tc0r. If we take the Hamiltonian ( 4 · 2) and 

consider the 1s~2p transition, r can be estimated by the formula 

Inserting the values of teo, c, Mt?, Vo and m*, we have r ranging from 0.2 to 0.4 for 

these substances, the values for holes being larger than those for electrons. 

If the value of r is known, we can estimate the order of magnitude of each term in 

the moment expressions. Let us discuss the results (5 · 3) obtained in case (ii) of this 

section. In the first equation for the absorption peak, the second term amounts to c0 {r /2 
± 0 (/) }, by ( 5 · 9) and ( 3 · 21) . (Here and in the following discussions we use ± to 

show that we cannot tell about the sign of the quantity considered.) This term corre

sponds to the fact that the adiabatic energy difference in the equilibrium lattice configura

tion of the ground state is larger than c0 by A!J"2 A/2 because of the difference A in the 

equilibrium positions for the two states. The third term causes the peak shift with tem

perature ; at high temperatures it amounts to ± 0 (r) k T. * * 

In the second equation of (5 · 3), the first and second terms are {r ± 0 (r2)} c0 kT and 

±0(/) (kT) 2, respectively. The ratio of the latter to the former, O(r)kTjc0, is at most 

* Physically 2J!J1 J/2 is the polarization or redistribution energy which means the amount of energy 

liberated into lattice vibration when the electron excitation ocrurs at the equilibrium configuration of the ground 

state. Thus r is twice the ratio of the polarization energy to Eo (see Fig. 1), and the breadth of the absor

ption band is given by 

V TEo kT -{r/(1+r/2)}112Vh11kT 

which is to be compared with the estimation due to Mott and Gurney.!> 

** The terms ±O(r)kT for the peak shift and A3 for the asymmetry have effects on the shape of the 

absorption band with the same order of magnitude as the factor 11 in the absorption formula (2.6) has. Note 

that our discussion applies, strictly speaking, to k(11)j11, not to k(~), itself. 
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Application of the Method of Generating Function to RadiatiYe etc. 171 

of the order of 1/10 for highest temperatures in ionic crystals where r is large. Thus 

-VT.law of the breadth of the absorption band is expected to be fairly good. 

The asymmetry of the absorption curve is characterized by the third expression of (5 · 3) 

in which the magnitudes of the four terms are 

respectively. At high tempertures the second term is expected to be dominant, and the 

normalized (see (i) of this section) asymmetry is estimated to be 

A3jA2812= ±0 { (rkT /80)} 112} 

which may in some cases be appreciable. This asymmetry is of course due to the difference 

in the frequency tensor !2 ; !J' = !J" leads to a symmetric Gaussian distribution at high 

temperatures as was shown in (i). 

In the same way we can discuss the effect of the Q-dependence of M ( Q) on the 

absorption band. Making use of (4.14) we have 

M'=O(Mu/80). (5 ·11) 

from which the contribution of gM (A), (5 · 5), to the peak shift is estimated to be 

(M*M'+MM'*/M*M) ·A kT= ±O(r)kT. 

This is of the same order of magnitude as the contribution from the difference of fre

quencies. For the second and third moments the effect of gM (A) is essentially the same as 

that of {r (A) discussed above.* 

In case of the F-bands in alkali-halides it seems more plausible to relate the tempera

ture shift of the peak with thermal expansion of lattice or asymmetry of the vibrational 

potentiaPl because the observed shift is several times of kT which is too large to be related 

with the difference of frequencies or non-constancy of the transition dipole moment. 

(v) Forbidden transitions. There is an interesting case where the Q-dependence of 

M(Q) is of primary importance. When an impurity atom, in a crystal with high sym

mtry, occupies a symmetrical site, the surrounding lattice will displace from its normal posi

tion in the symmetrical manner. Thus some of the transitions of the atom which are 

forbidden in free state would still remain forbidden after introduced in the crystal, were it 

not for the lattice vibration. Actually, the transitions are possible even at absolute zero of 

of temperature, owing to the zero-point vibration. 

In this case we can set M(Q') =M=O at the equilibrium lattice configuration Q' 

in the ground state, while M' is expected to be of the same order of magnitude as in 

an allowed transition, that is, its order of magnitude is given by (5 ·11) with M for an 

allowed one. Making use of ( 5 • 5) we can derive the following properties of the absorp

tion band. 

* The higher order terms neglected in the expansion (5.4) of course have some influence upon these 

moments, but the qualitative conclusions presented here are not altered. 
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172 R. Kubo and Y. Toyozawa 

(a) The total intensity of the absorption band is determined by 

(fil2) M'*!JI-1 coth ({jft!J'/2) M' 

instead of M* M. Thus it is proportional to T at high temperatures, and tends to a certain 

value at T = 0 ° K. The order of magnitude, compared with an allowed transition, is 

0 (rk T I c0) or 0 (rfiliJ I c0) 

at high or low temperatures, respectively; numerically it is to-! or less. 

(b) The Q-dependence of M(Q) does not contribute to the peak shift primarily. 

(c) It contributes, however, to the square of dispersion through the expression 

nJM'!J' coth ({j1i!J'I2)Ai 2IM'!JI-1 coth ({j1i!J'I2)M', 

which is 0 (rc0kT) at high temperatures, being of the same order of magnitude as the most 

important term of dispersion in (5 · 7). We can conclude, on the basis of (i) and (ii), 

that both the peak intensity and the breadth increases as v'T at high temperatures. 

A typical example for this case is the weak absorption band observed in NaCl : Cu 

cited by Seitz.13J It is interpreted to correspond to the transition d10-d9s of Cu. The 

intensity and temperature dependence of the absorption band are in qualitative agreement 

with the above results. The observed oscillator strength is of the order of 0.001. This 

may be associated with a small value of r, which would be naturally expected since the 

transition takes place inside the cuprous ion. 

§ 6. Non·radiatiative transition 

(i) General features. As was already discussed, the non-radiative transition from one 

electronic state 11 to another [11 can be calculated through the generating function ( 3 · 12) . 

For simplicity, we confine ourselves to the special but most important case of d =F 0 and 

!2' =!2" throughout this section. Then, the expression (3 ·17) can easily be calculated, 

leading to 

where 

gn, (..l) = IS!J' {coth ({jn!J' 12) (1-cosh ..lfi.Q) +sinh ..lfi!J'} Al2nj 2 

+ S*!J' {coth ({jli!J' 12) cosh M!J'- sinh ..lfi!J'} Sl21i 

= J~ (liJ; S4 d.112h) { (2n.1+ 1) -n4 exp (..l1iliJ4) - (n.1+ 1) exp ( -lA.liJ.1)} j2 

.1 

+ :L;(liJ.1jS4j2 l21i) {n4 exp (AnliJ4) + (n4+ 1) exp ( -A1iliJ4) L (6 ·1) 

is the average number of phonons for the j-th mode of vibration. The inverse transform 

G8 , (E) of (6 ·1) is nothing but the summation of IJ-functions such as a (E), a (E ±1io1.1), 

and a(E±filiJ;±fioJ4,); that is, the function Gn,(E) is different from zero within 21ioJ on 

both sides of E = 0. Thus gn, (A) causes at most two phonon processes : the many phonon 
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Application of the Method of Generating Function to RadiatiYe etc. 173 

process is made possible only through [o (A). By the convolution theoremR> we can write 

(6·2) 

Making use of the property of Gn, (E) stated above, we see that the value of F0 (E) near 

E=O, that is, the optical absorption intensity at zero frequency, is important in determin

ing the non-radiative transition. If we neglect the variation of F0 (E) in the range 0 (.liw) 

near E=O, we have 

(6·2 1) 

At high temperatures where the higher order semi-invariants A,. of fo (.A) are not im

portant in comparison with A2 as was discussed in (i) of § 5, F0 (E) is approximately of 

Gaussian form : 

(6·3) 

Inserting the high temperature approximations for gn, (0), A1 and A2 ·into (6 • 3) and 

( 6 · 2 ') , one can derive the formula 

(6·4) 

where the activation energy 

corresponds to the point of minimum energy along the intersection of the two adiabatic 

energy surfaces represented by ( 3 · 4) , as one can prove by a simple tensor algebra. 

For very low temperatures where fJ ltJ ~ 1, we can use the expansion 

coth (fJ.Ii!l'/2). "1+2 exp (-fJfdl'). 

After substituting A=fJ+x into (5 ·1), we have 

fo(.A) =exp ( -fJc0) exp[ -xc0 - AQ' {1-exp (xfiQ')} .A/21i] 

Xexp[- ,AQ' exp ( -{Jh.Q') {2-exp( -xh.Q') -exp( -xh.Q' -{JtzQ')} .A/2h.]. 

When the integration on the complex plane of x is carried out along such a line that 

IRe(x) I <{{J, we can equate the third factor to unity because of the relation fJ!iw~ 1. Put

ting F0 (0), which is thus obtained from fo (A), and the low temperature approximation for 

gm (0), into (6 · 21), we get 

W=nfi-2 (S*Q'S) exp ( -fJc0) 

(6·6) 

At low temperatures, therefore, the activation energy is c0 itself, in contrast with c* (> c0) 

at high temperatures. In order to get a deeper insight into the mechanism, let us consider 
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174 R. Kubo and Y. Toyozawa 

the shape of the absorption band at absolute zero of temperature, which is obtained by 

equating roth in (5 ·1) to unity and transforming it: 

If we replace i! by - x, the intensity at E = 2c0 is given by the same integral as in ( 6 · 6). 

Being at absolute zero of temperature, the system is initially in the lowest vibrational state 

belonging to the ground electronic state, and the optical absorption of energy 2c0 corres

ponds to the transition to the vibrational state A" B" of the excited state as is shown in 

8'' Fig. 1. F0 (2c0) is nothing but the square 

-------r-----~-- of the overlap integral of wave functions for 

these two vibrational states. Because of !l' = 
!l", this quantity is the same for the vibra

tional states A' B' of the ground state and the 

lowest vibrational state of the excited state. 

Thus, we see that non-radiative transition at 

low temperatures takes place mainly by tunnel

ing of the lattice through the points A' or 

Q' B' to Q''· The probability that the vibra

tional energy is excited to A' B' is proportional 

Fig. 1 to the factor exp (- {1c0) which appears in 

(6 ·6). At high temperatures the excitation to higher vibrational states occurs frequently, 

and the system prefers the classical path through C to the tunneling course A'Q" or. B'Q" 

which is rather difficult. This feature of a non-radiative transition, which seems to be 

valid quite generally, was first pointed out by one of the authors6> for a special case. In 

§ 7, we shall give a proof of the high temperature feature for the most general adiabatic 

potential. 

(ii) Case of a single frequency. Assuming !l' =fl" =(I)[, we can easily derive the 

formula which was already derived by Huang and Rhys5> 

where 

W= (2njn)n-3(I)IBI2( { (n+ 1j2)2+n(n+ 1) /2} Rp-n(n+ 1/2)Rr.+t 

- (n+1) (n+1/2)l?.p_1 +n2Rr>+2/4+ (n+1) 2Rr.-2/4] 

+ (2tr/n) n-2C2j2[nl?.p+l + (n+ 1)Rr,-l]. 

Rp=exp[- (2n+ 1)D] (n+ 1)P12n-P12 IP(2DVn(n+ 1) ), 

p= -S0jn(l), n= 1/ {exp ({11i(l)) -1}. 

B=S·A.. C2=S*·S, D=(I)A.·A./2n, 

and IP is the Bessel's [-function of the order p. Making use of the relations14> 

I_p=Ir» 
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Application of the Method of Generating Function to Ratdiative ect. 175 

"lz,(z:.)--(z:./2)"/p!, (,p>O, z:<{p) 

I,(z:)--(27rz:)-1' 2 exp (z:-p2/2z:), (p2?1, z:?!pJ) 

we have, at low temperatures ({1fiw? 1), 

R_,-...exp(-/1c0) exp(-D) D 1"1/IPI! (p<O, c0>0; excitation), 

R,-...exp (-D) D" /p! (p> O, c0 <O: de-excitation), 

and at high temperatures (n-...1//1-Aw';J> 1, n?p/D), 

R,-- ( 4nDn) -t/2 exp[ -{1 (p-D) 21iwf (4D) ]. 

It is easy to show that the activation energy 

fiw (p-D) 2/ (4D) 

is equal to c* or c*-c0 in Fig. 1 according as p <O or p> 0. Thus the low and high 

temperature features have again been established for this special case. 

In case of ionic crystals, where the Hamiltonian is given by ( 4 · 1), the high tem

perature formula for the probability of the excitation (!'~/") becomes 

while at low temperatures we have 

W= .Vnj8 (tiwfco) 112 {r/2 exp (1-r/2)} Eo/litu[ (2/r-1) 2r"2+4/f. (rr' -r"2) tiwfc0] 

X w exp (-{1c0). 

The interaction constant r is given by 

and the other constants r' and r" are defined by the corresponding expressions where the 

integrand is replaced by E 2t'll' or E 1,ll'· (E1,-Ew). E 1,, E 1" and E 1rw are the electric 

fields due to the charge distributions -ef[J/, -elp1rl and -ef[J1, f{J111, respectively. In the 

latter formula the factor { } Eo/liw is very sensitive to the value of r since c0 ';;> fiw for the 

usual cases. The expression in the bracket is always smaller than unity, the equality cor

responding to r = 2 which means that Q" coincides with A' in Fig. 1. Thus the transi

tion probability at low temperatures depends sensitively on the distance Q" A' through which 

the lattice co-ordinate must tunnel. 

(iii) The probability of thermal ionization and retrapping of electrons and holes in 

non-polar crystals. In silicon and germanium, the electrons and holes are occasionally trap

ped at impurities. Owing to the large dielectric constant "o• the wave function of the 

trapped electron or the hole is spread over many atoms and it is a fairly good approxima

tion to take the trapping potential in a Coulomb form15l 

V(r) = -z/' /IC0T, 

where z: is the difference between the valence number of the impurity atom and that of 

Si or Ge. The 1s wave function can be written 
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176 R. Kubo and Y. Toyozawa 

tfo= (a8j1t) 112 exp ( -ar), a= (zj~e 0 ) (m* /m) (1/aH), 

-80=- (zj~e 0 ) 2 (m*jm)8H. 

For the final state we take an ionized state with wave number k : 

t/J,.=V-112 exp (ik·r), 

(6·7) 

In the latter state the displacement of the equilibrium lattice position is infinitesimal, and 

we have, 

r,.=A!J' 2 A/(Bo+B~:) = (181t)- 1 (z/~e 0 ) C2j(8HMt?) · (m*/m) 2 • (vofaH8) 

Xa2j(a2+r). (6·8) 

To calculate the probability for thermal ionization of the electron or the hole, we have 

only to carry out the summation of the probabilities for (o~k) processes over all k. We 

have calculated the probability only for high temperature region by applying (6·4), with 

the following result 

W,=2 ../2 (m*t?jn)r2 (kTj80) 2 exp ( -8*/kT) 

=1J0 (kTj80) 2 exp ( -8*/kT), 

where 8* is given by (6·5) and (6·8), r being the value of r" for k=O. 

(6·9) 

In thermal equilibrium the ionization process is in balance with the reverse process in 

Table 1. Calculated values of the probability w~ for the thermal ionization of trapped electrons 

(holes) and the cross section trt of impurities for thermally trapping free electrons (holes) in Si and 

Ge, with use of the formulae (6.9) and (6.10). 

density 

c (em/sec) 12) 

xo 

Eo(ev. observed) 

m*/m 

C(ev.) 

r 

llo(1010/sec) 

tro(1o-tscm2) 

E*(ev) 

E*-Eo(ev) 

electron 

0.05 

0.58 

19.3 

0.15 

3 

0.9 

0.18 

0.13 

3X108 

5xw-ts 

silicon 

2.33 

0.93X10s 

12.5 

hole 

0.08 

0.93 

18.6 

0.36 

30 

2.0 

0.13 

0.05 

4X109 

6X10-t7 

germanium 

5.35 

0.54X106 

18.5 

electron 

O.ol 

0.25 

14.0 

0.13 

1 

6 

0.04 

0.03 

1X1010 

2XI0-16 

hole 

0.01 

0.25 

19.8 

0.26 

4 

23 

0.02 

0.01 

3X10IO 

1 X 10-15 
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Application of the Method of Generating Function to Racliati'Ve etc. 177 

which the electrons or holes become trapped at impurities without radiation. Thus, the 

cross section for the latter precess is calculated as 

cre=2v2 :lt(ncjc0) 2r2 exp [- (c*-80) jkT]=cr0 exp[- (c*-c0) jkT] (6·10) 

Since c*-c0> 0, the cross section for thermal trapping increases with temperature. fu 

1J0jc0
2 and cr0 is proportional to z-2, and c* and c*-c0 increase with z, both of the 

thermal processes are more effective for shallow traps. 

At present there are still left ambiguities about the values of m* and C although 

a number of accurate measurements have been carried out on the cyclotron resonances and 

the mobilities of electrons and holes in semiconductors. For the sake of consistency, we 

have determined m* from (6 · 7), using measured values of ~ 0 and 80• Correspondingly 

the usual C values must be multiplied by (mjm*)5f4 because the mobility is proportional 

to C2 m*5' 2• We have listed in Table 1 the values of the parameters for electrons and 

holes in Si and Ge. The high temperature approximations ( 6 · 9) and ( 6 · 10) which we 

have used, give correct order of magnitude down to the temperatures shown in the examples 

in the table, in each case. For lower temperatures the more exact calculation gives values 

larger than (6 ·9) and (6 ·10). 

§ 7. High temperature approximation 

If we confine ourselves to high temperature region, we can discuss radiative and non· 

radiative transitions for a general form of the adiabatic potential. Normalizing the lattice 

co-ordinates in such a way that the kinetic energy is written in the form ( 3 · 2) , we can 

write down the high temperature approximation of the density matrix for an arbitrary 

adiabatic potenial U ( Q) as follows : 

One can derive this formula by carrying out the integration 

which is valid when the temperature is so high that the variation of U within the average 

de Broglie wave length nfl112 of atomic motion (note that masses are normalized to unity) 

is negligible compared with thermal energy 1/fl, that is, 

(7 ·2) 

Inserting U' (Q) and U" (Q) in (7 ·1) for the two electronic states l' and l", res· 

pectively, and then carrying out calculations of the traces in (2 ·14) with new co-ordinates 

(Q+Q)/2=x, Q-Q=y, 

we get the generating function for the optical absorption in the form 

{M (..l) =M*M~exp[ -flU' (X) -..l {U'' (X)- U' (X)}] ax 

+ jexp[-fJU' (X)] Jx, 

(7 ·3) 

(7 ·4) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/1

3
/2

/1
6
0
/1

9
0
4
3
0
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



178 R. Kubo and Y. Toyozawa 

under the assumption that M(Q) =const. =M. The inverse formula (2 ·16) gives at once 

the absorption intensity curve : 

F M (E) =M*M{exp { -fdU' (X)} a {E- U" (x) + U' (X)} dx 

+ {exp { -fdU' (x)} dx. (7·5) 

This is nothing but the mathematical expression of the Franck-Condon principle in its 

crudest form. 

The generating function for non-radiative transition turns out to be 

[n, (J.) = ({dn2) -l S*S{exp[ -(dU' (x) -J. {U'' (x)- U'(x)} ]dx 

+ {exp {-{jU'(x)} Jx, (7·6) 

from which one can easily derive the probablity : 

W=21r ({jh3) - 1 S* · S {exp { -(dU' (X)} a {U'' (X) - U' (X)} dx 

+ {exp { -(dU' (x)} dx. (7 ·7) 

This formula provides the most comprehensive proof of the fact that at high temperatures 

the non-radiative transition takes place through the activated states where the two adiabatic 

potential surfaces intersect one another (U' (X) = U'' (X)). One can easily verify the formula 

( 6 • 4) by inserting the harmonic potentials ( 3 · 4) in (7 · 7) . 

In order to bring (7 · 7) into comparison with the conventional formula for a rate 

process, it is convenient to introduce a new set of orthogonal curvilinear co-ordinates (x, x') 

instead of the original set (X) in such a way that x=O represents the (N-1)-dimensional 

surface of activated states: U' (X)= U'' (X), the other (N-1) co-ordinates being denoted 

by x'. Carrying out the integration of the numerator in (7 ·7) over x, and then multiply

ing both the numerator and the denominator by a quantity suggested by the following, we 

have 

{exp { -(dU' (X)} a {U'' (X)- U' (X)} dx/Jexp { -(dU' (X)} dx 

=exp (-{dF*) (21rkT /h2) 112[1/jgrad (U'- U") l]...cv.(t''-U") 

where F*, defined by 

2N-2 

exp ( -{dF*) =h-(N-l) i i ... iexp[ -{j { P'2/2+ U' (o, x')}] dx' dp' 

(7·8) 

is to be interpreted as the free energy for the activation. By comparing W with the formula 

for a rate processW 

W=tc(kTjh) exp (-{jF*), (7·9) 

we see that the transmission coefficient tc is given by 

tc=47r2n-25* · 5 (21rkT /h2) 112[ 1/jgrad (U'- CJ'') ]...cv (UI-UII) (7 ·10) 
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Application of the Method of Generating Function to Radiati'Ye etc. 

§ 8. Miscellaneous problems related with degeneracy 

of electronic states 

179 

The foregoing discussions, which were based on the adiabatic approximation, have to be 

modified when the energies of the two electronic states degenerate or come close to each 

other. In this section we take up two typical problems related with radiative and non· 

radiative transitions. 

(i) Resonance effect in non-radiative transition. As we have shown in §§ 6 and 7, 

the non-radiative transition at high temperatures proceeds mainly through the activated 

states where the two adiabatic potentials intersect each other. One may well ask the ap· 

plicability of the adiabatic approximation for such a case. Actually, however, the two energy 

surfaces are expected generally to repulse each other before they intersect, owing to the re

sonance interaction (see Fig. 2). If we assume this repulsion effect mainly responsible for 

the non-radiative transition, the following formulation would be appropriate. 

Denoting the electron wave functions for the two states by rp1 and rp2, in which neither 

the Q-dependence nor the resonance effect is taken into account, we can write the adiabatic 

potentials as 

(i=1, 2) 

in the first approximation. We introduce a new set of lattice co-ordinates (x, x') in the 

same way as in § 7, that is, x=O at the intersection H 11 (Q) =H22 (Q). The resonance 

effect can be taken into account by solving the secular equation 

u 

X' 

Fig. 2. 

H 11 -U H 12 

=0. (8 ·1) 
H 22-U 

In the neighborhood of x=O for a fixed x', we can 

set H12 equal to a constant while the difference of Hu 

and H 22 is proportional to x (see Fig. 2). By a suitable 

choice of the unit of x one can write 

.dH=Hu (x, x') -H22(x, x') =2IH12(x') Jx. 
(8·2) 

The difference of the two solutions of (8 ·1) is given 

by 

(8·3) 

with wave functions 

rp' = z-112[ {1-x(1 +Xl) -112} 112rp1- {1 +x(1 +Xl) -112} t/2rp2] 

rp" =z-112[ {1 +x(1 +Xl) -112} 112rp1 + {1-x(1 +Xl) -1/2} 112rp2] (8·4) 

As assumed above, we take account of the Q-dependence of the wave functions only 

through these coefficients of linear combinations, and consequently we have 
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180 R. Kubo and Y. Toyozawa 

S(Q) =-i~ 2 (axjaQ) iso"*(ajax)so' dr=in 2 T 1 (1+~)- 1 (axjaQ), (8·5) 

which is no longer constant*. In calculating the high temperature formula for [w (A) in 

the same way as in § 7, using (x, x') and (y, y') defined by (7 · 3), we make use of 

the approximation 

n-45 (x+ (y/2)) · S* (x- (y/2)) =4-1 {1 + (x+ (y/2)) 2} - 1 {1 + (x- (r/2) ) 2} - 1JaxjaQJ 2 

=4 -1(1 +~) - 2exp[ -y/ (1 +~) 2 ]jaxjaQj 2 (8 ·6) 

and then integrate with respect to y and y', The result is : 

fw ().) = 1/4 · i i (n2jM.,{3) (1 +~) -2 {1 + (n 2jMj1) 2). ((1-).) (1 +~) -2} -3/2 

Xexp[ -{dU' (x) -). . .JU(x) ]clx dx'+ Hexp[ -{1U' (x) ]dx, (8 ·7) 

where we have introduced the mass 

as a result of normalization of x through (8 · 2). 

If we assume 

we have 

(tl{3JM,) 112 ={3(Jif1! 12 Jgrad dHJ) j (2jH12lf1) ~ 1, 

and consequently the expression { } -s/2 in (8 · 7) can be approximated by 

{1- ().J..lo)2} -3/2, 

where the absolute value ..l0 of the two branch points is given by 

Ao= (M.,{1j2Ji2)112(1+~). 

Because of (8·11), (8·9), (8·10) and (8·3), the inequality 

A0L1U? 1 

is valid for all values of x, and we can carry out the integration 

(2ni) - 1 i ::~: {1- (..lj ..l0) 2} -S/2 exp ( -..lL1U) cV.. 

,....6-1n-1/2.,jo (..lo L1U) 1/2 exp ( -AoL1U) 

with the method of the steepest descent. 

(8·8) 

(8·9) 

(8 ·10) 

(8·11) 

In integrating over x, too, one can take advantage of (8 · 9) and (8 ·10), and finally 

one gets the result 

W= (nj6) 3' 2(2nM.,{3) - 112 iexp {- (2M"{1jn2) 112 jH12 j} exp { -{dU' (0, X)} dx' 

+ i iexp[ -{1U' (x, x') ]clx dx', (8 ·12) 

* Correspondingly we should also take account of S in (3.9), but this contributes only a small term 

at high temperatures. 
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Application of the Method of Generating Function to Radiative etc. 181 

which again is written in an alternative form 

W= (tr/6) 312[exp {- (2M,fljn2) 112 jH12 j} ]A••-<z-o) X (kTjh)exp( -{3F*). (8·13) 

where F* is defined by (7 • 7) . Owing to ( 8 • 9) and ( 8 · 10) the transmission coefficient 

is much smaller than unity, and the factor (3:'2 is expected to cause a temperature depen· 

clcnce which is considerably different from the usual exponential law. 

(ii) On the breadth of the absorption band when the electronic states are degenerate 

When the absorbing center is of high symmetry, it is possible that two or more of excited 

states are degenerate in the equilibrium lattice configuration of the ground state. For example 

the F-center in alkali-halide, which is of cubic symmetry, has the single ground state (A111) 

and triply degenerate excited states (F1,.) in the equilibrium lattice configuration of the 

former. As the lattice vibrates around this point, the degeneracy is removed, and one may 

well expect that this splitting is responsible for a part of the absorption breadth. Let us 

discuss this effect by treating the lattice motion classically, for the sake of simplicity. 

Assuming the harmonic model and linear approximation as in ( 4 · 4) and ( 4 · 5) , we 

take the equilibrium lattice position in the ground state as the origin of each co-ordinate 

Q;, we have 

~=0, en/ Q;1/2=kTj2. (8 ·14) 

Denoting the energies and wave functions of the ground state, and a set of degenerate ex· 

cited states of H.(r) by c0, lfo and c1, lfj (i=1, 2,···,g), we define the matrix elements 

ilfj*(r)HJ(r, Q)ip,.(r)dr==H'u,(Q) (i, k=O, 1, 2,-··, g) (8 ·15) 

which are linear in Q/s. Because of the above assumption we have H 00' (Q) =0. For the 

excited states we have to solve the secular equation 

The eigenvalues of H.+ H1, therefore, can be written as 

E0=c0+co', E1=c1 +cl (!= 1, z, ... , g) 

{8 ·16) 

{8 ·17) 

where c/ is the /-th root of (8 ·16). Assuming that the oscillator strength of the transi

tion from the ground state to any of the excited states is equal to one another, as is the 

case for the F-absorption, we can calculate the second moment of the absorption band : 

{8 ·18) 

where we have used {8 ·14) and (8 ·16). The first term corresponds to the absorption 

breadth due to the difference in equilibrium positions already discussed in § 5, whereas the 

second term represents the effect of splitting of degenerate states due tq the lattice vibration. 

Both terms are proportional to T as is evident from (8 ·14). In case of the F-center, 

the Hamiltonian ( 4 · 1) gives the result 
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182 R. Kubo andY. Toyozawa 

where E., E .. and E""ll denote the electric fields due to the charge distributions: -e¢/, 
-ecf,_.2 and -e¢,, cf,v, respectively. The second integral, i.e., the effect of the degeneracy 

is estimated to be about 1/10 of the first integral. It is possible, however, that the de

generacy of the excited states plays an important role in some other cases. 
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