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Abstract

1

We	 apply	 the	 MHD	 energy principle	 to	 the	 stability of a	 magnetized

(i
j

atmosphere which is	 bounded	 below by much denser	 fluid,	 as	 is the	 solar 1
1

corona.	 Fla	 treat	 the	 two	 fluids	 as	 ideal=	 the	 approximation	 which	 is

consistent with the energy principle, and use the dynamical conditions that {(

must hold at a fluid-fluid interface to show that if vertical displacements of f

the lower boundary are permitted, then the lower atmosphere must be perturbed {

I'h	 l bb displacements which do not perturb the coronaounyas well.	 However,	 candar
P ^	 y

be properly treated as isolated perturbations of the corona alone.
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I. INTRODUCTION	 r
r

Studies of the equilibrium and stability of magnetized plasma in a

gravitational field are important to many areas of astrophysics, including

solar and stellar physics (reviewed by Priest, 1982, and Rosner at al.,

1984). 4he stability of structures in the solar corona is relevant to

understanding the onset of eruptive activity, as well as the necessary

conditions for equilibrium. 	 Because even the simplest models of coronal

features are sufficiently inhomogeneous that solving the full mode problem is

very difficult, many studies of coronal MM stability have used the energy 	
P

principle method of Bernstein et al. 	 (1958; hereafter BFKK) to determine

stability without calculating the modes themselves.

Coronal magnetic fieldlines are thought to be connected to the lower
r,

solar atmosphere (chromosphere and photosphere), which is much denser than the

corona, and ;ultimately to extend into the solar interior. Rather than

considering the stability of the composite system consisting of hot gas and

cooler underlying material, most studies of coronal MHD stability have imposed
I

a boundary at the coronal base and have treated the lower atmosphere only

through its influence on the boundary conditions.

Several different assumptions about the boundary conditions on ; 1 , the

component of the fluid displacement t parallel to the magnetic field, have

been made in the literature. Schindler et al. (1983) chose t = 0, as if the	 i

photosphere were a rigid boundary. Einaudi and van Boven (1981) imposed

parity constraints on E, that allow & I f 0. Hood (1984a,b) did not explicitly

restrict E I at all.

In this ,paper, we discuss the influence of the photospheric boundary

condition on stability by assuming that both the upper and lower atmosphere

are ideal fluids. It is clear that material in the solar al.•Aosphere does not
1.
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always behave adiabatically. Radiative processes, thermal conduction, and some

(1	 form of heatin( all play roles in the structure. Mass flow is often present.

The upper and lower fluid treatment in this paper is an idealization, but it is

an idealization wh;Lch is consistent with the MUD energy principle, and should be

(^,,	 a good approximat.1= as long as the MHD time-scales are rapid compared to the

timescale on which mass exchange occurs between the two fluids. Equilibria with i

flows, and non-adl.abntic perturbations, cannot be studied with the ideal MHD

PJ	 energy principle.

We find that for coronal stability problems in which gravitational

i'
stratification is included, the effect of nonzero E1 is to force the lower

i!

atmosphere to be perturbed. This arises in a natural way from the conditions at

the boundary between the two fluids. Therefore, in order to derive necessary

and sufficient conditions for the stability of the corona as an isolated system,

Ei must vanish on the lower boundary.

In Section II, we use the MHD energy )principle to demonstrate the

existence of a surface integral and a perturbation of the lower atmosphere

p	 when 6 1 is not zero at the boundary, in Section III, we discuss the effect of

the boundary terms on various results in the literature. Section IV is a

discussion together with conclusions.

II. BOUNDARY CONDITIONS AND ENERGY PRINCIPLE ANALYSIS 	 4+

We first describe the equilibrium model, including the conditions which	 1,

must be fulfilled at the coronal base. We then derive, the corresponding

conditions in the presence of small perturbations. Finally, we use: the MHD

energy principle of BFKK to assess the effect of the boundary conditions on
I

stability. Ideal MHD (adiabatic, inviscid, infinite electrical conductivity)

is assumed to hold throughout.,,

4
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a) Boundary conditions

The equation of mechanical equilibrium in a stratified atmosphere is

V • [B B - Y (p + B2/2)] + Pg M 0	 (1 )

where P, B, P, and q are the gas pressure, magnetic field, gas density, and

gravitational acceleration, respectively. For a surface of discontinuity with

normal direction n in the fluid, it follows from V • B - 0 and from equation

(1) that

<Bn> - 0 (2a)

<BnB t> - 0 (2b)

(( B2 - Bt)/2 - P) - 0 (2 c)

where	 the	 notation	 <S>	 refers	 to	 the jump	 in	 quantity S	 across	 the

discontinuity	 and the	 subscripts	 n	 and t	 refer	 to	 normal and	 tangent

directions to the surface,	 respectively. Note	 that if Bn - 0,	 Bt may be

discontinuous, but if Bn # 0,	 En ,	 Bt ,	 and P are each continuous separately.

these conditions are discussed, e.g. by Roberts (1967).

Now	 consider a	 small	 displacement t	 of	 the	 fluid. The	 Eulerian

perturbations of P,, and P are (BFKK)

dP - - YP V - t 	 VP (3a)

dB - V x (t x B) e g (3b)

rt

I
'	 1

i

e!

r^

I,	 ,

Ii
I

h4

0
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(4)<n x (C x B)>-0.
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(3c)

Faraday's law implies that, to first order in E,

Furthermore, En must be continuous.

(	 Conditions for the perturbed system analogous to equations ( 2) were

derived by BFKK for a fluid-vacuum interface tangent to 9, and by Goedbloed

(1979) for a fluid-fluid interface, again with 9 • n - 0, while Roberts (1967)
C.	gives conditions for	 0. Equations (2) must be linearized and satisfied

at the perturbed boundary, with reference to the perturbed normal. 	 The

relevant perturbations of the fluid variables here are the Lagrangian

(7 perturbations, which follow the boundary elements to their new positions. The

Lagrangian perturbations AP, At, and AP can be obtained from their Eulerian

counterparts ( 3a,b,c) by the usual relationship for any quantity

C^

6s-6s + 	 Vs	 (5)

(	 As Roberts (1967) shows in detail, for the case H - n y 0,

<AB> - <&P> - 0	 (6)

Equation (6) is the analog of equations ( 2) above; the Lagrangian

perturbations of P and A as well as P and 9 themselves are continuous across

the interface.

b) Energy principle

C)
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The linearized equation of motion for the displacement vector ( is

2	 `^P a R F(E) r	 (7)

	

8t2 	t

where

FO °^(YPV • q+E • VP) +(V xu) x 8+(V xB') x 4- g0 'PS	 (8)

and it is assumed that q is produced by external sources and remains

constant. The perturbed potential energy is

	

}}	
i

dW^rk^ "' — 2 J d 3X E	 F(E)	 (9)

	where the integral extends over the volume of the fluid. In the general case, 	 j

both the photospheric and coronal fluids crntribute to 6W.

	

BFKK proved (see also Freidber g 1982) that the system is unstable if and 	 I

only if dW(t,t) is negative for a displacement vector t which satisfies

t(
t

	

appropriate boundary conditions. In the most restricted sense, t must satisfy 	 I

continuity conditions such as equations (A) and (6) and continuity of E n at an

interface. However, BFKK proved an extended energy principle for the plasma-

vacuum problem with	 n	 0. They showed that t need not satisfy the

IAgrangian force-balance condition (equation (2.32) in their paper; equation

(6) here) by proving that it is possible to correct t in a thin layer near the

interface in a way which enables t to satisfy the pressure balance

condition. In their construction [see also Roberts (1967)), t is augmented by

a vector En which goes to zero within a distance E from the boundary. Then,

the normal gradient of n is of order E -1 , and the contribution of Erb to 6WF is

r,
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7

of order c. The extended energy principle makes it possible to choose trial
functions t for 6W which do not satisfy the force balance condition. Roberts

(1967) discusses the extended energy principle in cases where 	 n f 0.

Since the Lagrangian force balance condition involves both 	 and its

derivatives, and takes some care to satisfy, the extended energy )principle is

easier to work with and is used in most applications.

When the extended energy principle is written in its usual form (BFKKI

Eq. 3.16), surface integrals involving the pressure balance condition

appear. These integrals are related to the change in plasma potential energy

caused by the FdV work done at its surface. We now consider the role of these

boundary terms. According to equations ( B) and (9),

26W(t,E) - -jd 3x [4'V (YPV•'E + Q• VP) + 9+• (VxQ)xB + t•($XP XQ - t • 9 V•PE)

(10)

Integrating by parts, this can be written

26W(t,Q) -26WF + 26W6

26W,,- J d3x [ (V '1 ) (Yp V•E + k •vp ) + Q2 - C • (VXBB)XQ + t . 9 V-41

26WS - J a2  ((n•E) (Yp V • E +E•Vp) + Q • (n x (axe)))
	

(11)

f	

^	 r

The surface integral 6WS is taken over the boundary between the upper and

loves atmosphere, plus terms at infinity, which we assume vanish. If the

horizontal extent of the structure is finite, we can impose horizontal

periodic boundary conditions. The volume integral 6WF contains contributions
!•
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from moth fluids. f.

Proceeding similarly to	 BFKK	 ( see also	 Roberts,	 1967)	 we	 rewrite	 the l
,I

surface integral in equation	 ( 11)	 using the boundary conditions satisfied by

Note that even if we use the extended energy principle, no that we allow

trial functions in the volume integral 6WF which do not satisfy the boundary

conditions	 ( 6), we	 must evaluate	 6WS assuming	 that	 these	 conditions	 are
;y

satisfied.	 This has not always been done in the literature.

According to equation 	 (4),	 n x	 ( x )	 is continuous at the interface.

using equations ( 5)	 and	 (6),	 AP	 and +	 vt are continuous as well, 	 as

is t • n.	 These results enable us to write

taws - -	 dZx (( n• ) [t•v ( p + B 2/2)] - (n• e) ( C •ae)•$)	 ?:

Using the equation of mechanical equilibrium, this becomes

26W S 	Y d2x (( n 'E) [(B ' vA ) • E + PE '9] - (n'$)	 (E' DB )'E )•

or

t	 + + +	 + + ++)
2 6WS	- P d2x ^(n•E)(E•g)P+ [nx(ExB)'vB]•e)

Evidently, the second term involves only tangential derivatives of t at the
i

interface. But the tangential derivatives of 9 are continuous; this term is
therefore zero. If we take g - yg and let th+. boundary lie in the x -z plane,

then 6WS takes the final form

26WS	! dxdzC2g (PL - Pu )	 (12)

^: I
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t , where pA and P. denote the densities in the lower and upper atmosphere,

respectively.

Equation ( 12) is nxautly what is expected when one considers the

Rayleigh-Taylor instal i lity, between two media of different density (e.g.

t	 Chandrasekhar, 1961). 	 since PL >> pu in the problem considered here, the

Usurface term is positive. Thus we have shown that for nonzero g, the presence

`	 of flow across the unperturbed fluid boundary ( nonzero & I ) tends to be

I tj,^ 	 stabilizing. The surface term given in equation (12) arises naturally from

r	 the dynamics of the problem, and must be included in any evaluation of 6W.

Ij
j	 We can write

^I c

67 . 
awrc 

+ 6w FL + 6W 

where 6WFC and 6WFL are the contribution of the corona and the lower
!I

atmosphere to aWF as given in equation (11), and 6W S 1s the surface term given

f' in equation (12).

It is clear that if the problem of the stability of isolated coronal

structures has any meaning we must be able to make 6WFL vanishingly small.

This requires in general, that t be nonzero only in an infinitesimally

thin layer below the boundary. Can the argument used in deriving the extended

energy principle be applied to this situation? That is, is there always a

displacement t of the lower atmosphere which satisfies the interface
("c

conditions but which makes 6W FL arbitrarily small in magnitude?

In general, there in not. Recall from the discussion of the extended
+

energy principle following equation (9) that the correction vector to E is
er

assumed to be of order z and localized to a layer of width c.	 Its

contribution to 6WF is then of order C. But in the present case, if 	 4 is
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of order 1 at the interface, and t is again localized to a layer of order c,

6WFL will be order s -1 : We cannot always make 6WFL negligibly small.

The case t • n - 0 is an exception. in this case, t can be zero on the

boundary and of order c in a layer of width C. For example, take y - 0 to be

the surfacer y + -O with depth. Take the m9rangian pressure and magnetic

field perturbations AP,(x,z), eb^(u,$) to be prescribed by the displacement of

the upper atmosphere. Then, for y 4 0, let

B APEx (x, y,z) . - B (ABxa 	 YP
2)eY1E(1-ey/c)

Y

Fry (x,Y,L) - 
CAPa 

ey/E(1-ay/t)

8 AP
Ez ( x ,Y, z )	 - B ' ^egzs - u^p ^eY

/E;1-eY/E^,

Y

i
where the functions multiplying the exponentials are evaluated at y - 0. This

choice of t gives 6W F •of order E f" y < 0.

i
These arguments have the following implications for MHD stability

analysis of the solar corona.	 If we restrict ourselves to displacements

with t • n - 0, then 6WS and 6WFL can both be made zero, and it is both

necessary and sufficient for the stability of the "isolated" coronal modes

that 6WFL > 0. if we consider displacements with t • n V 0, the positive

definite term 6WS (cf. equation 12) must be added to 6WFL. in addition, 6WFL

must also be minimized. This requires an explicit model of the lower

atmosphere, but none of the presently available coronal equilibrium models

include the lower atmosphere. Thus, the stability of modes with 	 n f 0 is

indeterminate. I

i

n summary, it is sufficient but not necessary for the stability

of the isolated ( p n 0) displacements that 6WpC is positive when minimized

t
li

i^

l}

t

ryi
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with unrestricted E	 n. Modes with C	 n 0 0 cannot properly be tested for

stability without a model of the lower atmosphere.

III. EFFECT OF SURFACE TERMS ON CORONAL STABILITY

in this section, we discuss the relevance of the term 6WS and 6WFC

derived in Section II to a number of studies of coron;l MHD stability in the

literature in which different lower boundary conditions were assumed. We

first consider the conditions originally used by Einaudi and Van Hoven (1981)

and then discuss the conditions used by Schindler et al. (1983). Finally, we
G'

treat the work of Hood 0 984a,b), for which the necessary analysis is somewhat

O	 stare involved.	 In all the papers we will treat, the components of E	 [
6

parpendlcular to the magnetic fU vle, are assumed to vanish at the base of the

atmosphere.	 The physical motivation for this is that the fieldlines are 	 i!

ij	 assumed to be fixed in dense, infini"ly conducting photospheric gas. 	 (^

a) Line Tying with Flow at Lower Boundary

	

Einaudi and Van Hoven (1981) studied the stability of coronal loops 	 j

idealized as cylinders of finite length with twisted magnetic fields. They	 4

• did not include gravitational stratification, an approximation which applies

when the thermal scale height much exceeds the size of the system. the

conditions they imposed at the ends of the cylinder are

V,

(k'	 E1^0 atz •• tL	 n

E^( —L) 	 E^ (L)	 (13)

dz Ez(—L) dz Ez(L)

i
i

p	 ij
^^ 1
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$
FI

where r. is along the axis of the cylinder and E 1 and Ci are the components-of

parallel and perpendicular 	 to A..	 These conditions have also been used by
r

Higliuolo	 at	 al.	 ('104),	 Einaudi	 and	 van	 Boven,	 ( 1983)	 and	 references t

therein.	 Since t •n e 0 in their model,	 they can derive sufficient but not
999

j

necessary stability conditions for the isolated modes.

b) Rigid Boundary Condition „t

Schindler at al.	 ( 1983) used the condition	 w 0 on the lower boundary,

which corresponds to treating the photosphere as a rigid, perfectly conducting

d
wall.	 It is clear in this case that 6WS and 6WFC vanish.	 thus, none of the

stability results	 arising	 from	 their minimisation of 	 6WF are	 affected	 by i

addition of the corresponding 	 6WS or"FC .	 In a sense,	 the	 0 boundary
^I

condition is a limiting case of the two fluid analysis for p i + °,	 If Pj +
r.

6WS becomes large unless En + 0.	 One must also impose Ei ° 0, It

c) Line Tying with Unrestricted C1

Hood	 0 Me)	 derived	 a form	 of	 6W	 including	 gravitational

stratification.	 He used the Sower boundary condition t
}

x	 0, although only

in the approximate sense described below, and did not restrict C1• Although

his formulation ( as does that of Schindler at al.) extends to systems in which

the	 magnetic	 fields	 have	 three spatial	 components, the	 analysis here	 is

restricted	 to	 systems	 in	 which the	 fieldlines	 lie in	 parallel, ver ,	.1

planes, such that

+	 8A	 aA8	 +°xT-yTX— (14)

All the equilibrium quantities are functions of .x and y only, and the magnetic

e')

.. ^-. —..rte -• rr. r: ..-	 .	 ^...
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fieldlines are assumed to form loops which are symmetric in x. These systems

resemble solar magnetic arcades. Defining A l as	 VA and using ( 14), Hood's

boundary condition becomes A l - 0 on the %:iundary. using only this boundary

I	 '
j	 condition, he writes 6WFC as

l`r

26WF0 . 
fd3x (.1) 1 .+ [VA . Vt LT - 2J aA]A 1 2+ [8 • VE Z ] 2+

a&z VA -VA 1+JA 
2	 2	 2y/H	 a y/H 2

(-	 [H ^ -	
e	

] + P[[Y-1 ][V	 k] + e	 ^V	 Ee	 ) ]	 (15)

Here, J is the current density, O is the thermal scale height, 	 if

C	 and a/as - 1/8	 V is the derivative along a fieldline.

^t

To derive stability criteria, Hood assumes that the perturbations are

isothermal (Y •• 1) and minimizes with respect to aEz/az and V • (te'y/H). This
r

refiz5.t - in the conditions	 [ I

** E
VC^ HY
	(16)

aEZ	
VA•VA1+JA1	

(17)
3z [ B2	 ]

I

Equation ( 16) is a generalization of the incompressibility condition that

results from minimizing 6W in plasmas that are not gravitationally stratified

(e.g. Freidberg, 1982). Equations ( 16) and ( 17), taken together, imply that the

)?	 total (gas plus magnetic) pressure perturbation is zero, and thus eliminates the

stabilizing restoring force due to a pressure perturbation.
I

Hood then takes the limit of infinitely large wavenumber in the z
^f.

a	 direction, kz + -. 	 Since condition ( 17) requires that the product kzEz be

finite, the magnetic tension term (E • VEz) 2 in 6W, which corresponds to



I

bending the fieldlines out of their equilibrium plane, becomes negligible. (see

t
Gilman 1970, Asseo at 01,1980, Zweibel 1981). Thus, 6W is reduced to the form

	

3	
BA

i

26W . A xf(7— [ VA-V(J2)_ 2Z2 — A) Al2).	 (18)

	

7	 B	 B

	

M	 which is considerably simpler than equation (15), since only the perturbation

variable A l and its derivative along a fieldline appear. When 6W in the form

Of.0 is minimized subject to the normalization condition rd 3x A l 2 ° 1, the

resulting Fuler equation for A l is an eigenvalue equation. The solution of

the eigenvalue problem is the basis of Hood's stability analysis (Hood 1984b)

of the Zweibel and Huridhausen (1982) equilibrium solutions.

The minimizing conditions (16) and (17), together with the assumption that

y - 1 and E1 - 0 at the lower boundary, guarantee that 6WS as it appears in

equation (11) vanishes. That is, Hood's displacements have a nonzero Lagrangian

pressure perturbation on the lower boundary. As we showed in Section II, the

appropriate form of 6WS is really Eq. (12), because of the Lagrangian force

balance condition. Since C1 is unrestricted, 6W S will generally not vanish,

and 6WFL cannot vanish either.

We should also note that when OC z/8z is given by equation (17), Ez will

not vanish on the lower boundary (because VA1 does not).	 Therefore, the

condition E1 - 0 is technical: • violated. Fowever, since C. is small (see the

discue.gion following equation (17)) it appears consistent to neglect C. on the

boundary when dropping (B • VEz)2 from 6WFC'

Suppose that when 6WF as given by equation (18) is minimized over A l , the

resulting E (which can be calculated from A l using conditions (16) and (17),

as we do below) satisfies f • n . 0. In this case, 6WFC itself will be a true
minimum. On the other hand, if t • n V 0, the minimization is unacceptable
because 6WS and 6WFL must be included.

14

e ►
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We now discuss the conditions under which the minimization of equation

(18) will permit	 n	 0.	 Since dWFC in equation (18) only contains

derivatives of A l along a fieldline, we can consider perturbations which are

localized to a single flux-tube. To solve for	 • n In terms of any given A1,

we eliminate DE z/'z between conditions (16) and (17) to give
((

B2E
(B V6 • B - (8 • VI*	 t -i Hy	 (191

Then, Ex may be written in terms of A i and C  and eliminated from (19). The
c

result is a first order differential equation for C  as a function of A 1 , with

solution

E (s)	 !
 We y/H  a de' s-y'/H^A1 dB  - Bx d A1)	 (20)

y	 y	 c B	
Be ds B Bs By	 y

We assume here that Bx does not vanish anywhere on the field line, so s is a

single valued function of xt the fieldlines Hood studied have these

properties. Let the fieldline end at *so. Then, if 
C  

vanishes at the

endpoints, equation ( 20) implies that

1 -s0 	 Y	 y

Since, in the geometry assumed, N and By are even and odd functions of x (or

r	 m), respectively, equation ( 21) will be satisfied only if A l is an odd

function of x.

We now consider Hood's study of the Zweibel and Hundhausen (1982)

equilibria ( Hood 1984b). These equilibria form a one parameter family in

which the parameter measures the volume electric current, or distortion of the

fieldlines from a potential field at the base of the atmosphere. The only

previous stability analysis of these equilibria was a local analysis ( Zweibel

1981) which showed that some portion of all the ZH equilibria were locally

unstable. However, this analysis did not consider the stabilizing effect of

magnetic. tension. Mood found that instability along an entire fieldline only



t

exists if the parameter 2aH which measures the current exceeds a certain

threshold. His solutions for A, are even , rather than odd, functions of x.

According to the arguments above, the stability boundary for isolated coronal

modes should be at a larger value of the current parameter than that found by

Hood. l The stability boundary for these modes can be found by solving the

Suler equation for the integral (18) with A l - 0 at the end and apex of a

fieldline. Within the framework of the present analysis, Hood has found a

sufficient, but not necessary, stability condition.

r	 ,

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have considered the lower boundary condition for

coronal MHD stability problems. These systems are characterized -by magnetic

fieldlines which connect the corona to a much denser, underlying atmosphere.

Their ideal 6HD stability has been studied using the SFKK energy principle.

The lower atmosphere has simply been modeled as a rigid, conducting wall in

some previous treatments (e.g. Schindler et al. 1983) on which the fluid

displacement E vanishes.	 Other studies have allowed a non-vanishing fluid

displacement parallel to the magnetic field at the lower boundary, but required

the perpendicular components E1 to vanish.

In order to understand the effect of different boundary conditions, we

considered the boundary as a contact surface between two ideal fluids of

different temperatures and densities. We reviewed the boundary conditions which

apply to a fluid-fluid interface and pointed out that these boundary conditions

lead to surface integrals in the perturbed potential energy dW which represent

PdV work done at the interface between the fluids. These terms (Eq. 12) can be

written in a form which involves the density contrast between the two fluids,

and is the same term one derives in an analysis of the Rayleigh Taylor

1 After this paper was accepted for publication, we became aware of a recent

study by Hood (1984c) which is consistent with this.

i

i

h4
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I instability at an interface between unmagnetized fluids. Since the lower

atmosphere is much denser than the upper atmosphere, the surface term is

strongly stabilizing. It vanishes when the dfsplacoment normal to the boundary

	

I	 vanishes.

We also found that 6WF0 cannot be ignored for displacements with

	

n 'i	 n#0. 'thus, there are two types of displacements; the isolated coronal.

modes, with	 n 0, for which Ns and 6WF0 can legitimately be set equal to

zero, and the displacements with 	 n	 0. rbr the latter, the stability

problem consists of jointly minimizing 6W F0 , 6WFl , and 6W S .	 This is not only

impractical, in view of the lack of available equilibrium models, but is counter

	

t: f	
to the concept of an isolated coronal MHD instability. Virtually all papers on

r	 F
the subject have been concerned with isolated coronal instabilities, whether or

not they treated the lower boundary condition in a way consistent with that

idea.

If the volume term 6WFC alone is minimized, as was done by Hood (1984a,b)

the result can be used to give a sufficient, but not necessary, condition for

C
stability of the isolated coronal modes. We showed that Hood's minimization

of 6WFC for a peeticular set of equilibria (Hood 1984b) led to nonvanishing

t n. the imposition of 	 n F 0 on the boundary requires that Hood's trial
ff„

functions A l have odd parity. We would argue, therefore, that some of the

equilibria that Hood predicted are unstable are actually stable, according to

the upper and lower-fluid model.
i

The rigid boundary condition with 	 e 0 has a vanishing surface term.

Assuming the rigid boundary condition with E 0 leads to a self-consistent

(H' problem in which IWFC alone is minimized. 'his seems to be the simplest

approach to treating the corona as at., isolated system. The full problem,

e



•	 involving thermal exchange and dynamical forcing by motions of the fieldline
•,

endpoints, will have to be explored by other methods than the MHD energy

principle.
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