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Abstract

We apply the MHD energy principle to the stability of a magnetized
atmosphere which is bounded below by much denser fluid, as is the solar
corona., We treat the two fluids as ideal; the approximatioen which is
consistent with the energy principle, and use the dynamical conditions that
must hold at a fluid-fluid interface to show that if vertical displacements of
the lower boundary are permitted, then the lower atmosphere must be perturbed
as well. However, displacements which do not perturb the coronal boundary can

be properly treated as isolated perturbations of the corona alone,
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I. INTRODUCTION N
 Stvdies of the equilibrium and stebility of magnetized plasma in a
gravitational field are important to many areas of amtrophysice, inecluding
solar and stellar physics (reviewed by Priest, 1982, and Rosner et al,, ;
1984), The stability of structures in the soclar corcna is relevant to

understanding the onset of eruptive activity, as well as the necessary

Ad
L

conditions for equilibrium, pecause =2ven the gimplest models of corenal
features are spufficiently inhomogeneous that solving the full mode problem is l[

very difficult, many studies of coronal MHD stability have used the energy I

l

principle method of Bernstein et al. (1958; hereafter BFXX) to determine I
stability without calculating the modes themselves.

Coronal magnetic fieldlines are thought to be connected to the lower

solar atmosphere {chromosphere and photosphere}, which is much denser than the
corona, and Altimately to extend into the solar interior. Rather ‘than
considering the stability of the composite system consisting of hot gess and
cooler undt;r.‘f,ying material, most studles of coronal MHD stability. have imposed
a bowndary at the coronal base and have treated tha lower atmosphere only
through its influence on the boundary conditions.

Several different assumptions about the boundary conditions on I, the

component of the fluid displacement ¢ parailel to the magnetic field ﬁ, have

been made in the literature, Schindler et al, (1983) chose t = 0, as if the o

photosphere were a rigid boundary, Einauwdi and van Hoven (1981) imposed

parity constraints on £y _thut allow & ¥ 0, Hood (1984a,b) Aid not explicitly

restrict £ at all. ™
In this paper, we discuse the influvence of the photospheric boundary

condition on stability by assuming that both the upper and lower atmosphere

are ideal fluids, It is clear that material i;p -the molar avposphere does not o




always behave adiabatically. Radiative processes, thermal conduction, and some

form of heatiny all play roles in the astructure. Mass flow is often present.
The upper and lower fluid treatment in this paper 1s an idealization, but it is
an idealization which is consistent with the MHD energy principle, and should be
a good approximatfion as long as the MHD time-scales are rapid rcompared to the
timescale on which mass exchange occurs between the two fluids. Equilibria with
flows, and non-ad:l.abat;ic pecturbations, cannot be etudied with the ideal MHD
energy primciple.

We find that for coronal stability problems in which gravitational
stratification is included, the effect of nonzero §y is to force the lower
atmosphere to be perturbed. This arises in a natural way from the conditions at
the boundary between the two fluids. Therefore, in order to derive necessary
and sufficient conditions for the stabiliir.y of the corona as an isolated system,
£y must vanish on the lower boundary.

In Sect'l.on- II, we use the MAD energy principle to demonstrate the
existence of a surface integral and a perturbation of the lower atmosphere
wvhen ) is not zero at .the boundary, In Section III, we discuss the effect of
the boundary terms on various results in the literature, Section 1V is a

discussion together with conclusions.

II. BOUNDARY CONDITIONS AND ENERGY PRINCYPLE ANALYSIS
¥e first describe the equilibrium noéel.. including the conditions which
must be fulfilled at the coronal base. We then derive the corresponding
conditions in the presence of small perturbations. Finally, we usz the MHD
energy principle of BFK.K'to assegs the effect of the boundary conditions on
gtability. Ideal MHD (adiabatie, inviscid, infinite electrical conductivity)

is assumed to hold throughout.
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a) Boundary conditions

the equation of mechanical equilibrium in a stratified atmosphere is

Ve[ [BB-%(p+522)] +p8m0 - (1)

where P, E, ff; and E are the gas pressure, magnetic field, gas density, and
gravitational acceleration, respectively, For a surface of discontinuity with

normal direction ;; in the £luid, it follows from V * B = 0 and from equation

(1) that
<B > =0 (2a)
<B B> =0 (2b)
<(B§ - B:J/z -p)=0 (2¢)

vhere the notation <S> refers to the Jjump in quantity 8 across the
discontinuity and the subscripts n and t refer to normal! and tangent
directions to the surface, respectively, Note that if B, = 0, B, may be

discontinuous, but if B, # 0, B

¢ By, and P are each continuous separately,

These conditions are discussed, e.g. by Roberts (1967).
Now consider a s=small displacement T of the fluid. The Eulerian

perturbationns of P, B, and p are (BFKK)
Spm-yp Vel -Fw (3a)

B=vx (Ex8) = (3b)

)




§p mw= Vo pf (3c)
Faraday's law implies that, to itirst order in &,
<nx(ExB)>mo., : (4)

Furthemore, En must be continuous,

Conditions for the perturbed system analogous to equations (2) were
derived by BFKX for a fluid-vacuun interface tangent to ﬁ, and by Goedbloed
(1979) for a fluid-fluid interface, again with B * n = 0, while Roberts (1967)
gives conditions for B « n ¥ 0. Pquations (2) must be linearized and satisfied
at the' perturbed boundary, with reference to the perturbed normal. The
relevant perturbations of the fiuid wvariables here are the Lagrangian
perturbations, which follow the boundary elements to their new positions. The
Lagrangian perturbations 4P, Aﬁ, and Ap can be obtained from their Fulerian

counterparts (3a,b,c) by the usual relationship for any quantity
As-ﬁs-c-fo.‘?s. {5)
As Roberts (1967) shows in detail, for the case B . r‘; ¥ 0,
-+ .
<AB> = <AP> = 0 (6)
Bgquation (6) 4is the analog of eguations (2} above; the Lagrangian
perturbations of P and £ as well as P and ﬁ themaselveg ire continuous across

the interface,

b) Energy principle

*

T R s R T e e e ,w..z;cmvv-kﬂ-‘:wnfwm'awmwamt
« .
D



oo s T F e TS e e A b T S R e e D R A T o e L R R e R S e S T A e e o
e . -

¥ a3 1 “.',- oL e R
W g . o P St . -

2
o 8 3ty ()
ot
whara
;(33 = ﬁ(YPV cE+E ) + (V x 6] X B + (v = §) x 5 - a v epf (8)

and it is assumed that 3 is produced by external sources and remains
constant. The perturbéd potential energy is

ﬁw(z,f) " --% f a3x . E(g) (9)
where the integral extends over the volume of the fluid. 1In the general case,
both the photospheric and coronal fluids cratribute to éw,

BFKK proved (see also Freidberg 1982) that the system is unstable if and
only if Gw(t,t) is n;gative for a displacement vector ¥ which satisfies
appropriate boundary conditions. In the most restricted sense, f must satisfy
continuity conditions such as equations (4) and (6) and continuity of £ at an
interface. However, BFKK proved an extended energy principle for the plasma-
vacuum problem with B n = 0. They showed that ! need not satisfy the
lagrangian force-balance condition (equation (2.32) in their paper; eguation
{€) here) by proving tha£ it is possible to correct £ in a thin layer near the
interface in a way which enables ® to satisfy the pressure balance
condition., In their construction [see also Roberts (1967)), ! is augmented by

a2 vector €1 which goes to zeroc within a distance € from the boundary. Then,

*
the normal gradient of n is of order 3’1, and the contribution of e to ﬁwF is

.~

i

Lt
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of order €. ‘The extended energy principle makes it possible to choose trial
functions £ for 6W which do not satisfy the force balance condition, Roberts
(1967) discusses the extended energy principle in cases where B ¥ 0.
Since the Lagrangian forxrce balance c¢undition invelves both T and its
derivatives, and takes some care to satisfy, the extended energy principle is
easier to work with and is used in most applicatioens,

when the extended energy principle is written in its usual form (BFKK;
By. 3.16), nurface' integrals involving the pressure balance condition
appear, These integrals are related to the change in plasma potential energy

caused by the PAV work done at its surface. We now consider the role of these

boundary terms., Mccording to equations (8) and (9),

26w (E,8) = —fa¥s [E-0(revet « Bovp) 4 Eo (Dxd)ed + & (Bud)xd - B3 vopl]

(10)

Integrating by parts, t'his can be written

26w (E, £) =280 + 284

28ae [ a%[(V-F) (v vF « Bev) + 07 - Ee (B )d + B3 vepl)

260 = - [ a%x ((;'E) (yp VeE 4 EeVp) + 0 (;: x (Eﬁ))) (11}
The surface integral Gws is taken over the boundary between the upper and

lower atmosphere, plus terms at infinity, which we assume vanish. If the

horizontal extent of the structure is finite, we can impoge horizontal

- periodic boundary conditions. The volume integraxl GWF containg contributions



from poth fluids, ,

Proceeding similarly to BFKK {see also Roberts, 1967) we rewrite the
surface integral in equation (17) using the boundary conditions satisfied by
'E. Mote that even if we use the extended energy principle, so that we allow
trisl functions in the volume integral .GWF which do not satisfy the boundary

conditions (6), we must evaluate OW, assuming that these conditions are
satisfied, This has not always been done in the literature,

According to eguation {4), x; x (¢ x §) is continuous at the interface,
Using equations (5) and (6), AP and ﬁ + L « 98 are continuous as well, as

is 'E . ;':. These repults enable us to write

260 = - § a2x{(nk) [E:9(p + 8%2)] - (n-B) (E-¥8)-E))
Using the equation of mechanical eguilibrium, this becomes

260 = § a%x((ne8) [(B+8):E + of+3) - (n'3) (B-98)-E).

.

or

26w = - § a’x{(n-E)(E3)o+ [nx(ExB)-v8]-E)

Evidently, the second term involves only tangential derivatives of B at the
interface. But the ta:;gential derivatives of B are continuous; this term is

therefore zero. If we take 5 = yg and let thv. boundary lie in the x-z plane,

then Gws takes the final form

2
280 = | dxdzEyg[Pl ~e) - (12)
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where pp and p,, denote the dengities in the lower and upper atmosphere,

respectively.

Pquation (12) 4is exactly what is expected when one considers the
Rayleigh-Taylor 4instal ility between tweo media of different density {e.q.

Chandrasekhar, 1961). Since py >> p, in the problem considered here, the

surface term is positive. Thus we have shown that for nonzero g, the presence
of flow acress the unperturbed f£fluid boundary (nonzero -‘.'|) tends to be
stabilizing, The surface term given in equation (12) arises naturally from

the dynamics of the problem, and must be included in any evaluation of 6w,

We can write

i é é
60 = WFC o+ GwFL + ws

-

where GHFC and GWFL are the contribution of the corona and the lower

atmosphere to GWF as given in equatien {11), and GWS 16 the surface term given

in equation (12),.

It is clear that Lf the problem of the stability of isolated coronal
structures has any meaning we must be able to make GWFL vanishingly small.

T™is requires in general, that t be nonzeroc only in an infinitesimally
thin layer below the bourdary, Can the argument used in deriving the extended
energy principle be applied to this situation? That is, is there always a
digplacement t of the lower atmosphere which satisfies the interface
conditions but which makes éWpy, arbitrarily small in wagnitude?

In general, there in not. Recall from the discussion of the extended
energy principle following eguation (9) that the correction ~§ector to E is
assumed to be of order £ and localized to 2 layer of width E. Its

contribution to GWF is then of order €, But in the present case, if t *n is

¢
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of order 1 at the interface, and t i again localized to a layer of order ¢,
GWFL will be order &', we cannot always make 6"PL negligibly small.

The case § * n = 0 is an exception. In this case, ¥ can be zero on the
boundary and of order £ in a layer of width c. For example, take y = 0 to be
the surface; y + ~% with depth. ‘Take the lagrangian pressure and magnetic
field perturbations APS(x,z), Aﬁs(x,ﬁ) to be prescribed by the displacement of
the upper atmosphere. Then, for y € 0, let

p_Ap
o) = - i (b - B 1-e/")

:APE

— eY/‘[1—.-_Y/°]

Ey(prrz) -

B_AP
z € >
S ixiyez) = - :" (Ast - "_Y_Pi)ew (1-e¥/%),

y
wvhere the functions multiplying the exponentials are evaluated at y = 0. This
choice of % gives GwF-of order € fur y < 0,

These arguments have the following implications for MHD stability
analysis of the solar corcna, If we restrict ourselves to displacements
with? * n = 0, then &W, and OW; can “oth be made zero, and it is both
necessary and sufficient for the stability of the "isolated" coronal modes
that &W ., » 0. If we consider displacements with t. n ¥ 0, the positive
definite term &wg (cf., equation 12) must be added to §Wp.. In addition, SWpy,
must alsc be minimized. This reguires an explicit model of the lower
atmosphere, but none of the presantly available coronal equilibrium models
include the lower atmosphere. Thus, the stability of modes with t. ; ¥ 0 is
indeterminate. In summary, it is sufficient but not necessary for the stability

of the isclated ('E *» n = 0) displacements that 8W;y. is positive when minimized

-

B ey g . o ey e o it - — B e i ety " WmE Y )
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vith unrentricted'f * n., Modes with £ » n ¢ O cannot properly be tested for

stability without a model of the lowar atmosphere.

111, EFFECT OF SURFACE TERMS ON CORONAL STABILITY

In this mection, we discuss the relevance of the term &wg lnnd W peo
derived in Gection IXI to a nmumber of studiep of coronal MHD stability in the
literature in which different lower boundary conditions were assumed. We
first consider the conditions originally used by Einaudi and Van Hoven (1981)
and then dimcuss the conditions used by Schindler et al. (1983). Finally, we
treat the work of Hood ‘(1984a,b), for which the necessary analysis is somewhat
more dinvolved, In all the papers we will treat, the components of E
parpendicular to the magnetic f£ield tre agsumed to vanish at the base of the

atmosphere, The physical motivation for this is that the £fieldlineg are

assumed to be fixed in dense, infinitely conducting photospheric gas,

a) Line Tying with Flow at Lower Boundary

Einaudi and van ;bven (1981) studied the stability of coronal loops
idealized as cylinders of finite length with twisted magnetic £ields., They
did not include gravitational stratification, an approximation which applies
when the thermal scale height much exceeds the size of the system. the

conditions they imposed at the ends of the cylinder are
E.L =0 at z = 4L
g, (-L) = E (L) (13)

(] da
rry Ez(-L) =4 Ez(L)
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where z is along the axis of the cylinder and &; and | are the components-of
15 parallel and perpendicular to B. These conditions have also been used by
Miglivolo et al. (9%84), Einavdi and Vvan Hoven, (1983)' and references
therein, Since ¥ 0;; ¥ 0 in thelr model, they can derive mufficient but not
necessary stability conditions for the isolated modes,
b} Rigid Boundary Ccmditi'on

Schindler et al. (1983) used the condition ¥ = 0 on the lower boundary,
which corresponds to treating the photosphere as a rigid, perfectly conducting
wall., It is clear :Ln‘thin case that GWS and MFC vanish. Thus, none of the
stability results arising from ‘their minimirzation of 6WF are affected by
addition of the corresponding &Wg orfipne In a sense, the t = 0 boundary
condition is a limiting case of the two fluid analysis for py *+ *. If py + =,

éWy becomes large unless £, + 0. One must also impose £ = 0,

¢) Line Tying with Unrestricted £,

Hood  (1983a) t:.‘lerived a form of 64 including gravitational
stratification. He used the lower boundary condition ?ox B = 0, although only
in the approximate sense described below, and did not restrict £;. Although
his formulation {as does that of Schindler et al.) extends to systems in which
the magnetic fields have three spatial components, the anaiysis here is

restricted ¢o aystems in which the fieldlines lie in parallel, ver: .1

planes, such that ' .
-+ ~ 3n ~ 3A
B =+ x-s-y- -y -5; {(14)

All the equilibrium quantities are functions of x and y only, and the magnetic

[ S ———— N — e St B e b e bmee L o
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fieldlines are aspumed to form loops which are symmetric in x. ‘These systems
resemble solar magnatic arcades. Defining A, as t . Vaand uasing (14}, Hood's
boundary condition becomen Ay = 0 on the hzundary. Using only this boundary

condition, he writes dch as

3 2
y 2J LA 2 2

9E Va*¥a_ +Jn

[B gg2 - ——g— 2 + p[(v=1)(V « B)? & &/H(v e B/ )

Here, 7 1is the ‘current dengity, N i the thermal scale height,
and 3/32 = 1/B % ¢ ¥ is the derivative along a fieldline.

To derive stability criteria, Hood assumes that the perturbations are
isothermal (Y = 1) and minimizes with respect to aEz/Bz and V o(Be~Y/H), mis

resulis in the copditions

E
vekaY . (16)
ot VYasVa_ +JA7
z 179
e () “an

B

Equation (16) is a generalization of the incompresgibility condition that
results from minimizing 6W in plasmas that are not gravitatiowally stratified
(e.g. Preidberg, 1982). Equations (16) and (17), taken together, imply that the
total (gas plus magnetic) pressure perturbation is zero, and thus eliminates the
stabilizing restoring force due to a pressure perturbation.

Hood then takes the 1limit of 4infinitely large wavenumber in the Z
direction, ky + =. Since condition (17) requires that the product kzf, be

finite, the magnetic tension term (B-VEZ)2 in 6&W, which corresponds to
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bending the fieldlines out of their equilibrium plane, becomes negligible. (sre

r

Gilmsn 1970, Aséeo et al,1980, Zweibel 1981). Thus, 6W is reduced to the form

200w Jenl gt eloneoila 225 - 30 07, | v

which is considerably simpler than equation (15), since only the perturbation
variable A, and its derivative along a fieldline appear. When &W in the form

{(18) is minimized subject to the normalization condition Jadx A12

= 1, the
resulting Fuler equation for Ay, is an eigenvalue equation. The solution of
the eigenvalue problem is the basis of Hood's stability analysis (Hood 1984b)
of the Zweibel and Bundhausen (1982) aquilibrium solutions.

The minimizing conditions (16) and (17), together with the assumption that
¥y = 1 and {L = (0 at the lower boundary, guarantee that 8Wg as it appears In
equation (11) vanishes. That is, Hood's dinplacements have a nonzero Lagrangian
pressure perturbation on the lower boundary. As we showed in Section II, the
appropriate form of §Wg is really Egq. (12), because of the Lagranglan force
balance condition. Since §; 18 unrestricted, 6Wg will generally not vanish,
and SWpy, cannot vanish either.

We should also mote that when 3Ez/az is given by equation (17), &, will
not vanish on the lower boundary {(because VA, does not). Therefore, the
condition £ = 0 is technicallv violated. However, since &, is small {see the
discuesion following equation (17)) it appears consistent to neglect £, on the
boundary when dropping (B °* VEZ)Z from Gwpc.

Suppose that when €W as given by equation {18) is minimized over Ry, the
resulting E {(vhich can be calculated from A, using conditions (16) and (17),
as we do below) satisfies £ o ; = 0, In this case, SWp, itself will be a true

pinimum. @i the other hand, if t * nyo 0, the minimization is unacceptable

because Gws and 6Wp; must be included,

o h. . o B cdn mmwm cimmi - B b BB e s Shg  ——— - - -
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We now discuss the conditions under which the minimizaticn of equation
(18) will permit % - "o 0. since &Wpo in equation (18} only contains
derivatives of A, along a fieldline, we can consider perturbations which are
localized to a single flux-tube., To solve for t. ; in terms of any given a,,
we eliminate 3 _/9z between conditions (16) and (17) to give
pZ¢

(E'vE)';-(ﬁ'VS)'E-——H—x- (19)

Then, £, may be written in terms of A; and EY and elimipated from (19), The

result is a first order differential equation for Ey as a function of Ry, with

solution
A én B A
- y/H o de' -y'/B( 1 _x _"xd 1
£, (8) =5 (n)e J’c e (BBY = " a ay) (20)

We assume here that B, does not vanish anywhere on the field line, so & iB &
single valued functioa of ;3 the fieldlines Hood studied have these
properties. Let the fieldline end at isg. Then, if EY vanishes at the

endpoints, equation (20) implies that

*0 a5 -y'/BB' .
e (n—a?i};’ii;wJ” 121)

%o
Bince, in the geometry assumed, B, and BY are even and odd functions of x (or
5), respectively, equation (21) will be satisfied only if A, is an odd
function of X,

We now consider Hood's study of the 2Zweibel and Hundhausen (1982)
equilibria {Hood 1984h). These equilibria form a one parameter family in
which the parameter measures the volume electric current, or distortitsn of the
fieldlines from a potential field at the base of the atmosphere., The only
previous stability analysis of these equilibria was a local analysis (Zweibel
1981) which showed that some portion of all the ZH equilibria were locally

unstable, However, this analysis did not consider the stabilizing effect of

magne tic tension. MNMood found that instebility along an entire fieldline only
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. exists Lf the parameter 20H which measures the current exceeds a certain .
threghold, His solutions for Ay are even , rather thian odd, functions of x,
Mcording to the arguments above, the stability boundary for isolated coronal 4
modes should be at a larger value of the current parameter than that found by
Hood) The stability boundary for these modes can ba found by solving the

EBuler equation for the integral (18) with A; = O at the end and apex of a

9
fieldline. Within the framework of the present analysis, Hood has found a
sufficient, but not necessary, stability cond'tion.
IV, DISCUSSION AND CONCLUSIONS
In this paper, we have considered t¢he Jlower boundary condition for
corcnal MHD stability problems., These systems are characterired by magnetic Y

fieldlines which connect the corona to a much denser, underlying atmosphere,
Thelr ideal MHD stability has been studied using the BFKK energy principle,

The lower atmosphere has simply been modeled as a rigid, conducting wall in
some previocus treatments {e.g. Schindler et al. 1983) on which the fluid
displacement E vanighes. Other studies have allowed a non-vanishing fluid
displacement parallel to the magnetic field at the lower boundary, but required
the perpendicular components §, to vanish.

In order to understand the effect of different boundary conditiouns, we
considered the boundary as & contact surface between two ideal £fluids of .
different temperatures and densitiec., We reviewed the boundary conditionms which
apply to & fluid-fluid interface and pointed out that these boundary conditions
lead to surface integrals in thz perturbed potential energy ¢W which represent Yy
PAV work done at the interface between the fluids. These terms (Eq. 12) can be
written in & form which involves the density contrast between the two fluilds,

and is the same term one derives in an apalysis of the Rayleigh Taylor )

1 After this paper was sccepted for publication, we became aware of a recent

study by Hood (1984c) which is consistent with this.




instability at an interface between unmagnetized f£lulds. Since the lower

atmosphere is much denser than the upper atmosphere, the surface term is
strongly stabilizing. It vanighes when the displactment normal to the boundary
vanishes.

We alsc found that OWp, cannot be ignored for displacements with
t . ;#0. Thus, there are two types of displacements; the isolated coxonal.
modes, with £ » ﬁ = 0, for wnhich Gws and GWFC can legitimately be set equal to
zero, and the displacements with t . l‘; ¥ 0. For the latter, the stability
problem consists of jointly minimizing 6Wp., GWFL, and Wg, This is not only
impractical, in view of the lack of available equilibrium models, but is counter
to the concept of an isolated coronmal MHD iretability. Virtually alil papers on
the subject have been concerned with isolated coronal instabilities, whether or
not they treated the lower boundary condition in a way consistent with that
idea.

If the volume term G"Fc alone is minimized, as was done by Hoed (1984a,b)
the result can be uged to give a sufficient, but not necesgsary, condition for
stability of the isolated coronal modes., We showed that Hood's minimization
of GwFC for a psrticular set of equilibria (Hood 1984b) led to nonvanisghing
t . ;. tthe imposition of Eﬂ' n = 0 on the boundary requires that Hood's trial
functions Ay have odd parity. We would argue, therefore, that sgome of the
equilibria that Hood predicted are unstable are actually stable, acéording to
the upper and lower—fluid model.

The rigid boundary condition with t = 0 has a vanishing surface term.
Assuming the rigid@ boundary condition with E = 0 leads to a mself-consistent
problem in which 8W,, alone is minimized. This seems to be the nimplést

approach to treating the corona as an isolated system, The full problem,



involving thermal exchange and dynamical forcing by motions of the fieldline

endpoints, will have to be explored by other methods than the MHD energy

rrinciple.
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