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Abstract: This article proposes the application of a new mathematical model of spots for solving
inverse problems using a learning method, which is similar to using deep learning. In general,
the spots represent vague figures in abstract “information spaces” or crisp figures with a lack of
information about their shapes. However, crisp figures are regarded as a special and limiting
case of spots. A basic mathematical apparatus, based on L4 numbers, has been developed for the
representation and processing of qualitative information of elementary spatial relations between spots.
Moreover, we defined L4 vectors, L4 matrices, and mathematical operations on them. The developed
apparatus can be used in Artificial Intelligence, in particular, for knowledge representation and for
modeling qualitative reasoning and learning. Another application area is the solution of inverse
problems by learning. For example, this can be applied to image reconstruction using ultrasound,
X-ray, magnetic resonance, or radar scan data. The introduced apparatus was verified by solving
problems of reconstruction of images, utilizing only qualitative data of its elementary relations
with some scanning figures. This article also demonstrates the application of a spot-based inverse
Radon algorithm for binary image reconstruction. In both cases, the spot-based algorithms have
demonstrated an effective denoising property.

Keywords: inverse problems; image reconstruction; vague figures; mental images; artificial intelligence

1. Introduction

Imaging based on the scan data of the object under study, and the processing of scat-
tered signals received by sensors, refers to inverse problems. Relevant direct problems are
the modeling of wave signals scattered from an object with a known distribution of material
properties within it. [1,2]. In particular, medical devices that provide such imaging are CT,
MRI, microwave tomography, electrical resistance and capacitance tomography, ultrasound
imaging, and others [3]. There are other areas of application for such image reconstruction,
including radar, ground-penetrating radar, and through-the-wall radar. Geophysics also
uses visualization obtained by sounding the earth with the help of sound or electrical
impulses, etc. [1,4]. Imaging in all these areas, with the exception of MRI, is associated with
the solution of inverse scattering problems in one or another approximation [5].

The fundamental point here is that practically it is impossible to obtain a mathe-
matically exact solution to the inverse problem, however, it is possible to approximately
reconstruct an image with a finite spatial resolution. Generally speaking, inverse problems
relate to ill-posed mathematical problems, and such property can be explained by a lack of
information for an exact solution due to the noise and the finite amount of sensor signals.
Therefore, approximate solution methods are used that utilize regularization, filtering, in-
terpolation, and other approaches [3]. For example, this applies to CT, MRI, and ultrasound,
as well as to studies on microwave tomography [6–10].

Note that conventional approximate reconstruction methods such as filtered back-
projection in CT or simple inverse FFT in MRI are not always adequate and may lead to arti-
facts. Therefore, new methods based on appropriate models have been developed that more
strictly take into account the physics of objects and the real properties of sensors [11–14].
In a rigorous formulation, the inverse problem is considered a nonlinear optimization with

Sensors 2023, 23, 1247. https://doi.org/10.3390/s23031247 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5523-2907
https://doi.org/10.3390/s23031247
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031247?type=check_update&version=3


Sensors 2023, 23, 1247 2 of 19

the regularization to find the minimum of the residual error (the norm of deviation of the
received and calculated sensor data). Its solution is sought by the iterative method, where
the direct problem is solved and the current residual error is calculated at each iteration
step [5]. This rigorous approach is especially relevant for microwave tomography, where
one has to solve the nonlinear inverse problem of electromagnetic scattering. Unfortunately,
using simple and approximate reconstruction methods is inadequate here, since microwave
scanning of a part of the body is performed in the near-field area of antennas; furthermore,
multi-pass scattering effects are significant [6–10]. A big issue is that iterative solutions,
especially for electromagnetic scattering, require a long execution time and consume large
computer resources [7].

In recent years, much attention has been paid to solving nonlinear inverse problems
using the artificial intelligence (AI) approach, applying neural networks of deep learn-
ing [15–21]. The idea of this method is that if the neural network is successfully trained on
examples, then when new scattering signals are fed to the input of the network, the trained
system can create the desired image directly on the basis of the acquired knowledge, with-
out solving the complex inverse scattering problem. Another area of application of learning
neural networks is their use for image recognition, classification, and segmentation [22–24].

However, many authors point out the disadvantage of the traditional model of artificial
neurons in neural networks, which consists of excessive computational accuracy and an
excessive number of adjustable system parameters [25]. Indeed, if the apparatus of 32-
bit floating-point numbers are utilized in learning algorithms for input signals, weight
coefficients, activation, and loss functions, then a lot of the training operations lead to
large consumption of computer resources and a long execution time. For example, the
training time for image recognition (which is a simple task for humans) can be on the order
of several weeks even in high-performance systems [26]. It cannot be implemented on
compact devices with limited resources and limited power consumption.

Therefore, intensive research is currently underway to develop algorithms using
reduced bit width of numbers: 8 bits, 4 bits, 2 bits, and even 1 bit. This provides a rough
approximation for all the network parameters and such optimized neural networks are
called binarized [25]. It should be noted that deep learning networks, which are used,
for example, for image recognition tasks, usually operate with 32-bit numbers, while it is
obvious that high accuracy is not required for such an image classification [26].

A new mathematical model of spots is proposed in [27,28] for the representation and
processing of incomplete, inaccurate, or qualitative information. In particular, it allows
for the creation of algorithms of a new type for AI and building neuromorphic systems,
which operate in a way that is close to human thinking. Instead of real numbers, the
proposed model introduces logical L4 numbers, L4 vectors, and L4 matrices. The spot
model allows one to represent mental images and semantic content of information, as
well as make classification and fragmentation. A new approach to machine learning has
also been suggested, which is applicable for solving inverse problems. In addition, a new
architecture of neural networks is proposed, consisting of layers that are modeled by L4
matrices, input and output data are L4 vectors, and weight coefficients are L4 numbers [27].

Thus, in the spots model, information representation, storage, and processing are
carried out using 4-bit logical L4 numbers, rather than 32-bit numbers that can significantly
reduce the consumption of machine resources. Behind this, the developed learning algo-
rithm does not use such complex calculations and iterations as in the backpropagation
algorithm for learning from examples [29].

The main idea of the spot theory is that the synthesis of a large amount of even
insignificant information allows one to extract detailed and even quantitative information
about the object of interest. Since the ill-posedness of inverse problems leads to indefinite,
fuzzy, and ambiguous solutions, the application of the spot apparatus seems to be quite
adequate.

The proposed model turned out to be ideologically close to the research areas of
mereotopology and qualitative geometry [30–47], the idea of which was laid down by
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Whitehead in 1929 [30]. On the other hand, the basic ideas of the spots model are also close
to the rough set theory [48–55], the formal concept analysis [52,56–58], and the fuzzy set
theory [59], including fuzzy geometry [60,61]. Moreover, the suggested concept is in good
agreement with the ideology of granular computing [62–68].

Instead of points, mereotopology uses regions of space as primitive spatial entities and
utilizes qualitative information about their relations. Among other areas, it has been applied
to geographical information science, and image analysis [38]. One of the important fields of
mereotopology is region connection calculus (RCC) [34–36], which has two variants. RCC-8
defines eight relations between regions, including overlapping, disconnection, external
connection, and connections (touch) of the region’s boundaries. Bennett [42], as well as
Jonsson and Drakengren [43] considered a shortened version of these relations—RCC-5,
which does not consider the boundaries connection. A feature of RCC-5 is the uncertainty
of boundaries, since here it is impossible to distinguish internal points from boundary ones.

Although most authors considered spatial relations as logical values, Egenhofer
et al. [44,45] encoded them in form of logical tables. Namely, they introduced the concepts
of 4-intersection [44] and 9-intersection [45] matrixes, which are logical matrices that encode
the spatial relations between spatial regions. Notice that these matrixes are similar but differ
from the L4 numbers proposed in [27,28] because authors of [44,45] also consider relations
with the boundaries. Clementini et al. [46] generalized 9-intersection matrixes, replacing
intersections for the crisp boundary with intersections for broad boundaries. Stell [47] also
considered the way of representation for spatial relations using 3× 1 logical vectors created
on the base of notions part and compliment only. Finally, Butenkov et al. [69] introduced
2× 2 logic tables for Cartesian granules, which are equivalent to L4 numbers for spots, and
applied them for spatial data mining algorithms.

The rough set theory suggested by Zdzisław Pawlak [48,50] is a mathematical ap-
proach to the representation of the vagueness. One of the main advantages of the rough set
approach is the fact that it does not need any preliminary or additional information about
data, such as probability in statistics, or membership in the fuzzy set theory. This theory
regards sets with incomplete information that does not allow to distinguish elements in
some of their subsets, which are called granules. Pawlak’s theory introduced such notions
as the lower and upper approximations of rough sets, the boundary region, and even the
membership function for elements, which is similar to that for the fuzzy sets.

A general formulation and consideration of granules, including the problem of infor-
mation granulation, which was later called the concept of granular computing, were first
carried out by Zadeh in [62]. His definition of granules: “the information may be said to be
granular in the sense that the data points within a granule have to be dealt with as a whole
rather than individually” corresponds to the equivalence classes of the universe. Zadeh
regards both crisp and fuzzy granules and “considers granular computing as a basis for
computing with words” [63]. The elements of a granule are indiscernible that “depends on
available knowledge” [65]. The importance of the application of granulation and granular
computing relates to the fact that such approximation can lead to simplification in solving
practical problems.

The graph is a mathematical model convenient for the representation of the structure of
links (labeled edges) between elements (nodes or vertexes) of the system under study [70].
Nowadays, the apparatus of graphs is well suited for the analysis and processing of
digital images in digital geometry [71], and the analysis and metrics of the structure
of the physical connection of brain neurons [72]. On the other hand, graph theory is
actively used in AI to model semantic networks in the knowledge bases, which are called
knowledge graphs [73–77]. Note that, unlike spots, the graph is only an abstraction for the
representation of a structure of the relations between the entities, rather than a spatial object.
However, recent works utilize graphs embedded in some continuous space to reduce the
dimension of the graph when processing its data [75–77].

Despite the ideological closeness to these theories, the proposed model of spots has
a significantly different nature, since spots are not based on sets or fuzzy set concepts,
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and spot elements do not define. Instead of the elements, a spot can have a structure
inside that is determined from spatial relations with other spots. Having elementary spatial
properties, spots combine the concepts of discreteness and continuity, while graphs are
discrete mathematical objects. Generally, the presence of similar mathematical models
allows us to use some approaches and ideas from them.

2. Definition of Spots and the Apparatus of L4 Numbers

Spots are mathematical objects with elementary spatial properties, for which their
inner region, outer region (environment), and a logical connection between these regions
for any two spots are defined. The logical connection ab of two spots a, b is determined by
two axioms [31,35]

∀a, aa = 1 (logical) (1)

∀a∀b, ab = ba (2)

Environments ã, b̃ of spots a, b are also considered to be spots, therefore, a logical
connection is also defined for them, satisfying the axioms (1) and (2). Axiomatically, we
regard spots do not connect their environments, that is

aã = 0, bb̃ = 0 (3)

In general, the “shape” of spots and the properties of their environment, such as
dimension and curvature of space, are not predetermined but can be evaluated from
qualitative information about their elementary spatial relations (ER) to other spots, such as
separation, intersection, inclusion, indistinguishability, etc. We consider crisp geometric
figures as a special limiting case of spots.

Note that the connection can be defined not only in the case of the existence of a
common region of space between two spots but also in a more general sense. For example,
two geometric figures can be considered indistinguishable if they can be precisely coincided
by a rigid movement. In general, any spot mapping can be defined with help of ER.

2.1. Definition of L4 Numbers

The elementary relations can be formalized using logical L4 numbers [27]. For spots
a, b and their environments ã, b̃ the L4 number 〈a|b〉 is defined as a table

〈a|b〉 =
[

ab ab̃
ãb ãb̃

]
(4)

where ab, ab̃ . . . denote the logical connections. Such L4 numbers, in general, permit distin-
guishing up to 16 different ER between spots. Examples of the ER and their corresponding
L4 numbers are shown in Table 1.

Table 1. Some ER of spots.

Elementary Relations L4 Number

intersection, a >< b
[

1 1
1 1

]
separation, a <> b

[
0 1
1 1

]
inclusion (more), a > b

[
1 1
0 1

]
inclusion (less), a < b

[
1 0
1 1

]
indiscernibility, a ≈ b

[
1 0
0 1

]
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We call these spatial relations as elementary relations because they carry the lowest-
level qualitative information about spots. However, a large amount of such qualitative data
allows for extracting higher-level qualitative information and even numerical information.

The mathematical apparatus of the spot model is based on the L4 numbers, rather
than on real numbers. As far as the basis of this apparatus is described in more detail in
the previous works [27,28], here we will briefly outline the main content and reveal the
meanings of the concepts introduced there.

In [27,28], the basis of spots is defined as a collection of “known” spots that can be in
some mutual ER. The representation of a spot by their ER on the basis of spots is a mapping
or imaging of the spot on this basis. Note that the system of basis spots is analogous to the
numerical basis functions, and the orthogonality of the base functions is analogous to the
separated basis spots, which we call orthogonal spots. Let us call the collection of spots with
a certain ER between them the structure of spots. The structure of the basis spots included
in a spot a will also be called the structure of the spot a.

Note that spot mapping is generally similar to the concept of projection for crisp figures.
Consequently, the spot is analogous to some volumetric object, which is determined by its
projections on different planes. Hence, one can improve knowledge about the structure of
the spot by fusion its mappings on different bases into a “volumetric” image.

Let us define the operations union ∨ and the intersection ∧ for the spots, which
permits the creation of new spots. We suggest the following definitions, which are similar
but different from those of the set theory:

c = a ∨ b ↔ ∀x (cx = ax + bx)
d = a ∧ b ↔ ∀x

(
d̃x = ãx + b̃x

) (5)

Here, the symbol + denotes the logical disjunction operation. Note that, in contrast to
the sets, (5) does not define the images of spots c, d absolutely, because they depend on the
spots’ basis {xi}. Following the equality cc̃ = 0, see (3), it is possible, for example, to derive
the following equations from (5):

c = ∨
i
xi, xi :

(
ãxi + b̃xi = 0

)
(6)

The definitions (5) also permit to derive simple properties for zero spots ∅:

a ∨∅ = a, a ∧∅ = ∅ (7)

and express intersection parts A, B, C, and D of spots a and b in Figure 1, using the
operation ∧:

A = a ∧ b̃, B = ã ∧ b, C = a ∧ b, D = ã ∧ b̃ (8)
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2.2. Definition and Geometric Meaning of L4 Vectors and L4 Matrices

As mentioned earlier, information about any spot can be defined by its mapping on
some basis. Then it can be encoded as a vector with coordinates, corresponding to its ER
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with basis spots. Such a vector of L4 numbers is called an L4 vector. For example, the L4
column vector aX [27] of the spot a, represented on the base X = {xi}, is

aX ≡ [〈a|x1〉; 〈a|x2〉; . . . ; 〈a|xn〉] (9)

where n is the number of spots in the basis X. L4 vector (9) is similar to a numerical vector
but its elements are L4 numbers. On the other hand, mapping (9) is also similar to the
projection of a 3D body on some plane, which, can only represent partial information about
the body.

Papers [27,28] introduce the idealized concept of atomic basis and atomic spots, which
do not intersect each other and other spots. Note that the atomic spots are similar to points,
pixels, voxels, or elements of sets. Another useful notion is orthogonal spots, for which their
mutual ER is separated. For example, intersection parts of spots are orthogonal and can be
regarded as some approximation for the atomic basis.

The L4 matrix A = 〈Y|X〉 defines ER between the spots of two bases, X = {xi} and
Y =

{
yj
}

and formalizes the mapping from X basis to Y basis:

〈Y|X〉 ≡
[〈

yj
∣∣xi
〉]

=
[
(y1)X ; (y2)X ; . . . ; (yn)X

]
(10)

Here,
(

yj

)
X

are row L4 vectors of spot yj, represented on the basis X. Note that the
L4 matrix can be used to transform the L4 vector from one to another basis [27] which is
similar to the mapping function in topology and geometry. Formally, it can be represented
in the form of

aY = 〈Y|X〉 aX

however, there is no simple solution to define the rules for such a product, and we will
address this issue in the next section. The exception is the special case of the L4-matrix,
which we call the indistinguishability matrix that is similar to the numerical identity matrix.
The indiscernibility matrix I has diagonal elements corresponding to the indiscernibility
and all other elements—to separation. Then multiplication of the L4 matrix I and any L4
vector a corresponds to an identity transformation:

a = I a

There is a special case when all the spots of two bases are separated that is analogous
to orthogonal coordinates in geometry. It is obvious that in this case, it is impossible to
obtain a mapping transformation using the product of an L4 matrix and L4 vector, and it is
necessary to obtain additional independent data.

2.3. Multiplication Rules for L4 Vectors and L4 Matrixes

First, consider the simplest case of an atomic basis A = {ui}, where basis spots are
orthogonal and do not intersect other spots [27,28]. For it, one can define an ER 〈a|b〉A
between the spots a and b with respect to the basis A and the “scalar” product of vectors
(aA, bA) according to the rule

〈a|b〉A = (aA, bA) =


n
∑

i=1
aui·bui

n
∑

i=1
aui·b̃ui

n
∑

i=1
ãui·bui

n
∑

i=1
ãui·b̃ui

 (11)

where the symbol “·” denotes a logical conjunction. We will apply the same rule for an
orthogonal basis U = {ui}, consisting of separated spots.
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Let us regard a spot a, basis B = {bi} and an atomic basis A = {ui}. We suppose that
a and all bi spots can be mapped on the atomic basis A. Then the rule for the product of the
L4 matrix 〈B|A〉 (10) and L4 vector aA (9) can be defined as the following:

aB = 〈B|A〉 aA = [〈a|bi〉A] (12)

where L4 number 〈a|bi〉A is defined in (11). Note that Equation (12) defines the transforma-
tion of the mapping of the spot a from basis A to basis B.

For an arbitrary basis X = {xi}, when spots xi can be intersected, the definition of
〈a|b〉X is more complicated. First, let us consider the orthogonal basis U = {ui} of all
intersections of the spots in X and find the vectors aU = [〈a|uk〉] and bU = [〈b|uk〉] on the
basis U. Then, we define the following equality for calculation 〈a|b〉X :

〈a|b〉X = (aU , bU) = 〈a|b〉U

and apply the rule (11). We define the vectors aU and bU using the following formal matrix
equations:

aU = 〈U|X〉 aX ,
bU = 〈U|X〉 bX

(13)

where 〈U|X〉 is the L4 matrix that consists on
〈
ui
∣∣xj
〉

elements and is used for mapping
vectors from basis X to basis U.

To determine the transformation rule for (13), we first apply a convenient method of
numbering the intersections {uk} of spots {xi}, using a binary code. Namely, generalizing
(8), each uk can be defined in terms of the spots xi or x̃j connected by operator ∧. For
example, the binary index k = 101 . . . 02 corresponds to the following spot uk [28]:

uk = x1 ∧ x̃2 ∧ x3 . . . ∧ x̃n (14)

ER 〈a|uk〉 for any spot a and for uk (14) can be found using the following approximate
equation [28]

〈a|uk〉 =
[

ax1·ax̃2· . . . ·ax̃n ax̃1 + ax2 + · · ·+ axn
ãx1·ãx̃2· . . . ·ãx̃n ãx̃1 + ãx2 + · · ·+ ãxn

]
(15)

which defines the rule for the product 〈U|X〉 aX in (13). A similar equation can be written
for the spot b to determine the product 〈U|X〉 bX in (13).

Equation (15) was tested in [28] when solving the problem of reconstruction of the
shape of plane figures, processing its ER data with basis figures (Figures 4–6 in [28]). It
turned out that (15) gives uncertainty in the form of a blurred boundary. However, it is
possible to eliminate it if to apply additional rules, correcting ER 〈a|uk〉 in (15):

if
{
∀xj : axj = 0, ukxj = 0

}
then a > uk

if
{
∀xj : ãxj = 0, ukxj = 0

}
then a <> uk

(16)

where the symbols <> and > denote the separation and inclusion (more) relations, respec-
tively (see Table 1).

Equations (15) and (16) help to determine the general rule for multiplying an arbitrary
L4 vector aX and an L4 matrix A = 〈Y|X〉 defined on the basis X = {xi} and Y =

{
yj
}

.
We can write this rule in the following form:

aY = 〈Y|X〉 aX = 〈Y|V〉·〈V|W〉·〈W|U〉·〈U|X〉 aX (17)

Here the basis U = {ui} consists of the intersections of the points xi, V = {vi} is the
basis of the intersections of the spots

{
yj
}

, and W = {wi} is the basis of the intersections
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of the spots of U and V basis. Note that Equation (17) should be considered as a series of
transformations from one basis to another, namely

aU = 〈U|X〉aX , aW = 〈W|U〉aU , aV = 〈V|W〉aW , aY = 〈Y|V〉aV (18)

Product 〈U|X〉 aX can be calculated, using (15) and (16), but the vectors 〈V|W〉 aW
and 〈Y|V〉 aV—using (11), (12), regarding V, W as an atomic basis. Finally, let us use the
following natural rule for calculating the product 〈W|U〉 aU :

if wk < ui then 〈a|wk〉 = 〈a|ui〉 (19)

where symbols < denotes relation inclusion (less) (see Table 1). Note that rule (19) is also
approximate.

3. General Approach to Inverse Problems and Learning Using L4 Matrices
3.1. Solution of Inverse Problems

It follows from the definition of L4 matrices 〈Y|X〉 (10) that its inverse matrix 〈X|Y〉 is
equal to

〈Y|X〉−1 ≡ 〈X|Y〉 =
[〈

xi
∣∣yj
〉]

(20)

and hence it must always exist and be equal to the transposed matrix 〈Y|X〉with additional
transposed elements (L4 numbers). Therefore, as it following from (17) and (20), formally
the solution of the equation aY = 〈Y|X〉 aX can be represented as

âX = 〈X|Y〉 aY = 〈X|U〉·〈U|W〉·〈W|V〉·〈V|Y〉 aY (21)

where, as in (17), the basis U consists of intersections of the spots in X, the basis V—
intersections of the spots in Y and W—intersections of the spots of U and V basis. Con-
sidering that Equations (15), (17), and (19) are approximate, we can conclude that in the
general case, the inverse solution (21) is also approximate:

aX ∼= âX = 〈Y|X〉−1 aY

3.2. Solving Inverse Problems Using L4 Matrices by Learning Method

As mentioned in the introduction, the practical application of solving inverse problems,
especially electromagnetic inverse scattering, requires a large amount of computation time
and resources. Alternative approaches involve the use of neural networks to train a solving
system, which, after training, can make an inverse solution for newly measured data. In
the spots model, this has an analogy with the situation when the matrix A = 〈Y|X〉 in (17)
is unknown and it is wanted to be determined on training examples. Let us evaluate an
unknown L4 matrix A on the basis of a set of training examples {xi, yi}, using the equality

yi = Axi (22)

We can regard xi, yi as L4 vectors for spots xi and yi that form the basis X = {xi} and
Y = {yi} of the training data. Then, we can compose an L4 matrix 〈Y|X〉 and represent the
matrix A in (22) as:

A = 〈BY|Y〉·〈Y|X〉·〈X|BX〉 (23)

where BX and BY are atomic bases for L4 vectors xi and yi, correspondingly. Obviously, for
the testing set {xi, yi} the matrix 〈Y|X〉 is equal to the indistinguishability matrix I. Note
that Equation (23) is a schematic interpretation of the learning process [29].

Let us consider the application (23) of the learning system to obtain the inverse solution
of the following equation:

b = 〈BY|Y〉·〈Y|X〉·〈X|BX〉 a
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To do this, we can use the transformation of the matrix A (23), similar to (21), to
represent the inverse solution in the following general form:

a ∼= â = 〈BX |X〉·〈X|Y〉·〈Y|BY〉 b (24)

We should especially consider the case when input data c and/or output data d
are numeric. Then, instead of matrixes 〈Y|BY〉 or 〈BX |X〉 in (24) we have to apply the
corresponding operators BX and BY that transforms L4 data to numerical data or vice versa.
Then, the forward problem has the form of

d = BY(cY)·〈Y|X〉·BX(c)

and its inverse solution instead of (24) can be represented in the following form:

c ∼= B−1
X (dX)·〈X|Y〉·B−1

Y (d) (25)

where B−1
X and B−1

Y are the inverse operators.

3.3. Image Reconstruction by Processing Qualitative Data

Although the proposed theory is developed for spots, which in general correspond
to vague figures, it is convenient to verify its mathematical apparatus on crisp figures,
which are the limiting case of spots. Let us consider the figure under test as a conditionally
unknown spot, and the figures, which are used for mapping this spot (or “sampling”) as
the known basis of spots [28]. More specifically, we consider the shape reconstruction of a
crisp plane figure, utilizing the only qualitative information of its ER with the bases figures
without additional details about these relations. However, it is possible to infinitely refine
the reconstructed shape of the unknown figure by increasing the number of samplings
and processing all the ER data. It may seem surprising, but it is theoretically possible, to
reconstruct the shape of an object with absolute precision. This is a consequence of the
following theorem.

Theorem 1. In order for two figures to be pointwise equal, it is necessary and sufficient that their
elementary relations with any other figure of finite size be the same.

Proof. Necessity. As can be seen from the diagram in Figure 2, the condition of equality
of figures a and b is equivalent to the equality of both their intersection parts A and B to
the zero figure ∅. Let us suppose there is a figure c that has different ER with a and b,
i.e., different connection values with these figures. For example, ac = 0, bc = 1 (Figure 2).
Then {∃E = b ∧ c : aE = 0} → E ⊂ B = ã ∧ b→ B 6= ∅ . Therefore, a 6= b, which proves
the necessity condition.
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Sufficiency. Let us prove this by contradiction. Assume that for two figures a and b
their ER is equal with any finite figure, but a 6= b. Then, (A 6= ∅) ∨ (B 6= ∅) (see Figure 2).
If, for example, B 6= ∅, then ∃c : {ac = 0, Bc = 1} → bc = 1 that contradicts the condition
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of equality ER with any finite figure. Therefore, the assumption a 6= b is false, which proves
the sufficiency condition. �

It follows from Theorem 1 that all information about the shape of each figure is con-
tained in the infinite set of its ER with all other figures of finite size. Therefore, in principle,
it is possible to reconstruct this shape using such qualitative information. However, due to
the incomplete, finite amount of ER data, figure shape reconstruction can only be approxi-
mate. This corresponds to the fact that the result of such a reconstruction corresponds to a
blurry figure, that is, to a spot.

Note that the shape’s reconstruction, by processing qualitative data, refers to inverse
problems. Indeed, its forward problems can be formulated as

aX = 〈X|P〉 aP (26)

where P is a basis for atomic spots—pixels or voxels, X = {xi} is a basis for scanning
figures for testing, aX—L4 vector of ER data for the reconstruction of the figure under test
aP. Following (21), the reconstructed figure âP is the inverse solution of (26) that, similar to
(21), can be represented in the form of the equation

âP = 〈P|X〉 aX = 〈P|U〉·〈U|X〉 aX (27)

where U is the basis of intersections of spots {xi}. The mapping aU = 〈U|X〉 aX can be
found using (15) and (16).

3.4. Inverse Radon Algorithm for Binary Figures

Let us consider scanning figures–squares as the basis X = {xi}, and use the calculated
sinograms (projections) S of these squares as training data, which we will assign to the
basis Y = {yi}. As before, {xi, yi} will be considered training data for the learning system,
and we will determine an algorithm for the inverse solution by learning.

The forward problem is the Radon transform Sec. 8.7.3 of [2] that can be written in the
form of

s = R(aP) (28)

where P is the basis of pixels, R is the Radon transform operator, s is the sinograms of the
aP image. Following (25), the inverse Radon solution of (28) can be represented as

âP = 〈P|U〉·〈U|X〉·〈X|Y〉·B−1
Y (s) (29)

where U is the basis of intersections of {xi}. Note, the operator B−1
Y depends on the training

sinograms data S and matrix 〈Y|X〉 is the indiscernibility matrix I for solving by learning
methods, as it was mentioned before. Therefore,

âP = 〈P|U〉·〈U|X〉 aX ; aX = aY = B−1
Y (s) (30)

Let us find rules for calculation aY (30), defining such ER between sinograms that
are presented in Figure 3. Here, small spiking sinograms (continue lines) correspond to
relatively small basis squares xi and oval-type sinograms (dashed lines) correspond to
ellipse figure aP (see Section 4.3).
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The main idea of suggesting an algorithm is that if the basis figure xi has such ER with
the figure under test a as separation or intersection, then there are projection angles for
which their sinograms are separated or intersected. However, if xi is included in a then all
their sinograms have ER inclusion as well. Hence, we can define the following rules for ER
of projections sX(i, j, k) and sa(i, j, k), which are converted to logical values:

aX(i) = 〈a|xi〉 =
[

axi 1
ãxi 1

]
axi = ∑k ∑j sa(i, j, k)·sX(i, j, k)

ãxi = ∑k ∑j ¬sa(i, j, k)·sX(i, j, k)

(31)

Here, ¬ is the logical negation, i-index corresponds to that of xi square, j-index
corresponds to the projection coordinate ξ(j) and k-index corresponds to the projection
angle α0(k) Sec. 8.7.3 of [2]. Using (30) and (31) we get a spot-based inverse Radon
algorithm for the reconstruction of binary images.

4. Results of Image Reconstruction

To illustrate the suggested theory, MATLAB programs were written that provide
processing of ER data between the figure under test and basis spots (crisp figures) xi,
which are scanning (or basis) squares. To obtain a better resolution, we utilize quite tight
distribution of the basis spots that makes the intersections uk (14) to be relatively small. We
used a computer with an AMD Ryzen 7 2700 X processor, 8 cores, 3.70 GHz, 32GB RAM,
and no GPU.

4.1. Reconstruction of Binary Images

The ER data were obtained using scanning of 4× 4 pixels squares with the scan period
1 pixel and processed them using (27) and algorithm (15), (16). The number of basis squares
was approx. 20,000, and the calculation time was about 9 min in all cases.

To compare the original and reconstructed binary images we calculated the misfit
error mer

mer =
|NOI − NRI |

NOI
(32)

where NOI and NRI are numbers of pixels that correspond to the inner regions of the
original (noise-free) and the reconstructed images, correspondingly.

Figure 4 represents the reconstruction of images of a five-pointed star without and
with strong noise, utilizing only data from its ER with scanning squares. Note that Figure 4d
demonstrates the effective denoising capability of the algorithm (15), (16), (27). The image
sizes were 128× 128 pixels, and the misfit errors for the reconstructed images are mer = 0.1%
for Figure 4b, and mer = 3.1% for Figure 4d.

Figure 5 demonstrates the reconstruction of hand-mask images—noise-free and strongly
noisy, using similar ER data and rules. Note that Figure 5d also demonstrates the effective
denoising capability of the algorithm (15), (16), (27). The image sizes were 120× 120 pixels
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and the misfit errors for the reconstructed images are mer = 3.1% (for Figure 5b), and mer =
4.7% (for Figure 5d).
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Figure 5. Results of reconstruction of a hand-mask image based on qualitative data. (a) Original
image; (b) Reconstructed image; (c) Original strong noisy image; (d) Reconstructed noisy image.

4.2. Reconstruction of Gray Scale Images

To be able to apply the developed reconstruction algorithm (15), (16), (27) to grayscale
images, it is necessary to add a new dimension to 2D spots corresponding to their intensity
value. In order for this numerical coordinate to be consistent with the general spot ideology,
we represent the intensity axes as a linear structure, a chain of intersected spots (Figure 6).
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For example, these spots can be numerical intervals, and hence we can split the
grayscale image into flat layers, corresponding to these intervals. Then one can recon-
struct images in the layers independently and combine them again into the entire image.
Results of the reconstruction are demonstrated in Figures 7–10, where the intensity axes
of 128× 128 pixels images were divided into 20 layers. The number of basis squares was
about 20,000, and the calculation times were 6–9 min.

As before, the ER data were obtained using 4× 4 pixels squares that were scanned
in each of 20 layers, and their scan period was 1 pixel. The SNR, which is defined for an
average image intensity, is 9.7 dB (for Figure 9c), 23.3 dB (for Figure 10c), and 9.3 dB (for
Figure 10e). Note that Figures 9d and 10d,f also demonstrate the noise reduction ability of
the reconstruction algorithm (15), (16), (27).
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Figure 8. Reconstruction of Shepp-Logan image based on qualitative data. (a) Original image;
(b) Reconstructed image.
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(b) Reconstructed image; (c) Original noisy image; (d) Reconstructed noisy image.
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4.3. Inverse Radon Image Reconstruction

We compared a conventional back-projection and a spot-based (31) algorithm for the
reconstruction of binary images, which used under-sampled parallel-beam sinograms for
6, 9, and 18 projection angles only. Figures 11 and 12 show the results of this comparison
for the 128× 128 pixels image reconstruction. The sinograms are calculated using the
Radon transform, but they imitate the real experimental sinograms of X-ray transmission
through the body in a CT system with parallel-beam geometry [3]. Note that typically a CT
scanner collects projection signals in approximately 1◦ increments, and hence the simulated
examples in Figures 11 and 12 are indeed highly under-sampled.
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Figure 12. Reconstruction of two ellipses, using their different under-sampled sinograms. (a) Original
ellipse; (b–d) Reconstructed images for 18, 9, and 6 projection angles, correspondingly; (e) Original
strong noisy ellipse; (f–h) Reconstructed images for 18, 9, and 6 projection angles, correspondingly.

Application of the back-projection algorithm with Hann filter is demonstrated in
Figure 11 for two images of the ellipse: noise-free (Figure 11a) and strong noisy (Figure 11e).
It is clear that the results of the noisy image reconstruction in Figure 11f–h demonstrate
significant blurring for the reconstructed image.

Figure 12 shows the results of the same image reconstructions, using the spot-based
algorithms (30) and (31) with 5× 5 pixels square and 1 pixel scan period. The number
of basis squares was about 20,000, and the calculation times were about 6 min. These
results of the reconstruction demonstrate the fact that the suggested algorithm allows the
reconstruction of unblurred images even for a small number of projection angles. Images
in Figure 12f–h also demonstrate a strong denoising effect for the spot-based algorithm, in
contrast to the filtered back-projection algorithm. The misfit errors mer (32) were 3.6% (for
Figure 12b,f), 4.8% (for Figure 12c,g), and 5.6% (for Figure 12d,h).

5. Discussion

In [27], the use of the apparatus of the spots model for creating neural networks of a
new type is considered, in which each layer corresponds to an L4 matrix and L4 numbers
are used instead of real numbers. Here, the L4 vectors play the role of input and output
signals for each layer, and the L4 matrix of each layer plays the role of the weight matrix.
For example, Equations (21) and (23) can be implemented using such a neural network,
which consists of 4 and 3 layers, respectively. In addition, it is possible to create a neural
network in the form of a neuromorphic electronic device built on solid-state elements such
as field-effect transistors (FETs), FeFETs, or memristors [27].

The potential advantage of the proposed neural networks over conventional ones
is, in particular, that the L4 matrix apparatus does not use real numbers with complex
calculations during iterations in the backpropagation algorithm of learning by examples.
Instead, Equation (24) uses the inverse matrix product. Although the proposed algorithms
are approximate, they are adequate to the fact that it is almost always impossible to obtain
an exact solution to inverse problems due to the finite number of measured signals. In
addition, the tasks of recognition and classification, in principle, do not belong to the class
of tasks that require accurate calculations.
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The reconstructed images in Figures 4,5 and Figures 7–12 demonstrate a good de-
noising ability of the proposed algorithm. This property relates to the fact that scanning
squares of 4× 4 or 5× 5 pixels plays the role of a spatial filter and averages the sampled
data. However, the spatial resolution of the reconstructed image is determined by the scan
period of 1 pixel. This can be explained using Formulas (15) and (27), from which it follows
that the resolution corresponds to the intersections size of 1 × 1 pixels.

An imaging algorithm using the spot-based inverse Radon transformation (Equation (31)
and Figure 12) illustrates the processing of qualitative data for solving by learning. Indeed,
sampling figures are basis spots and also relates to the training set, whereas the figure
under test corresponds to the test example in the machine learning paradigm [29]. Finally,
the reconstructed image, which is mapped on the basis of the intersections, corresponds to
the solution of the trained system.

As it was noted in the Introduction, we can draw a general conclusion about the
ideological proximity of the models of the spots and rough sets [48–52], although they have
a fundamental difference. In addition, there are several close concepts between the spot
model and the rough set theory (see Table 2).

Table 2. Analogies between the concepts of rough sets and spots.

Concepts of the Rough Set Theory Concepts of the Spots Model

elements of the universe atomic basis
granules spots
attributes basis of spots

attributes values L4 numbers
boundary region boundary

lower approximation inner region
upper approximation inner region + boundary

As it is shown in Table 2, spots are similar to granules, which is also the main concept
in the granular computing (GC) research area [62–68]. A comparison of the spot and
granule concepts in GC allows us to conclude that both models are also very close in many
aspects.

The suggested spots model can be used for the theory of qualitative geometry (QG).
For this application, it is necessary to introduce new concepts that are low-level analogies of
the notion in the geometry and topology, including line, surface, dimensionality, curvature
of space, etc. Based on the CG, one can introduce the concept of a semantic information
space, which is an analogue of an information system characterized by an information table
and is used, for example, in the theory of rough sets [50,52].

6. Conclusions

This article is devoted to the description of the concept and the basis of the apparatus of
new mathematical objects–spots, which are introduced to represent and process qualitative
data. It can be used to model human mental images, perceptions, and reasoning in AI.
Furthermore, this paper demonstrates another application of the developed apparatus—for
solving inverse problems by the learning method.

The proposed model uses such qualitative information about spots as elementary
relations between them and introduces L4 logical numbers that encode these relations.
Based on L4 numbers, the theory introduces L4 vectors and L4 matrices using the analogy
with numerical matrix algebra. Although L4 numbers correspond to an elementary level
of qualitative data, fusing a large number of them allows you to extract a higher level of
information, including numerical.

Equations have been derived for reconstructing an image using only qualitative
information about its elementary relations with a set of base figures. A general scheme
for solving inverse problems for L4 and numerical data is proposed, including a learning
method for solving.
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The introduced apparatus was tested by solving image reconstruction problems using
only qualitative data of its elementary relations with the scan figures. The application of
spot-based inverse Radon’s algorithm for the reconstruction of a binary image was also
demonstrated.

Further research in the field of the proposed theory involves the development of algo-
rithms for solving various inverse problems, including inverse electromagnetic scattering.
Another goal of the work is to design neural networks based on the proposed spots model,
where each layer corresponds to the L4 matrix.
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