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Abstract. While mapping vegetation and land cover using remotely sensed data
has a rich history of application at local scales, it is only recently that the
capability has evolved to allow the application of classi� cation models at regional,
continental and global scales. The development of a comprehensive training,
testing and validation site network for the globe to support supervised and
unsupervised classi� cation models is fraught with problems imposed by scale,
bioclimatic representativeness of the sites, availability of ancillary map and high
spatial resolution remote sensing data, landscape heterogeneity, and vegetation
variability. The System for Terrestrial Ecosystem Parameterization (STEP)—a
model for characterizing site biophysical, vegetation and landscape parameters
to be used for algorithm training and testing and validation—has been developed
to support supervised land cover mapping. This system was applied in Central
America using two classi� cation systems based on 428 sites. The results indicate
that: (1) it is possible to generate site data e� ciently at the regional scale;
(2) implementation of a supervised model using arti� cial neural network and
decision tree classi� cation algorithms is feasible at the regional level with classi-
� cation accuracies of 75–88%; and (3) the STEP site parameter model is e� ective
for generating multiple classi� cation systems and thus supporting the development
of global surface biophysical parameters.

1. Introduction
Maps of the distribution and status of the Earth’s vegetation and land cover are

critical for both parameterization of global climate and ecosystem process models
and characterization of the distribution and status of major land surface types for
environmental, ecological and natural resource applications at global and meso-
scale levels. The distribution of land surface parameters that are related to climate
must be prescribed as inputs to global models (Henderson-Sellers 1987 ). These land
surface biophysical parameters are closely linked to classi� cation systems as applied
to remotely sensed data, while mapped classi� cations are reliant on some level of
site-based characterization of surface and vegetation attributes for algorithm training,
testing and map product validation. The current approach to de� ning surface para-
meters in the absence of � eld-derived parameters is to use land cover, vegetation or
land surface classi� cation schemes. These schemes are generally derived from remote
sensing data of re� ectance, radiance and the Normalized Di� erence Vegetation Index
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(NDVI), and specify the relationship between the remote sensing observation and
derived land surface parameters (Sellers et al. 1996 ). In the context of regional
conservation and resource management, detailed maps of land cover, vegetation and
ecosystems derived from remotely sensed data are needed.

1.1. Regional and global land cover characterization
While there is a tremendous history of mapping, validation and generation of

reliable surface parameters based on mapping and � eld inventory at the local scale,
such as those derived by Sellers et al. (1989 ) for the Amazon tropical forest biome,
sheer size has precluded the development of training and test site data at regional,
continental and global scales. Current mapping of land cover at regional and global
scales has been based on National Oceanic and Atmospheric Administration
Advanced Very High Resolution Radiometer (NOAA AVHRR) data. As early as
1985, Tucker et al. developed a land cover map of Africa and Townshend et al.
(1987 ) created a map of South America based on multi-temporal AVHRR Global
Area Coverage (GAC) data. The land cover of Stone et al. (1994 ) for South America
was developed from multiple sources and resolutions of thematic maps and remote
sensing data. There are now numerous other studies that have applied land cover
systems regionally based on AVHRR data, for example those of Malingreau (1986 )
and Achard and Estreguil (1995 ).

Loveland et al. (1991, 1995 ) produced land cover maps using the International
Geosphere–Biosphere Program (IGBP) classi� cation and Seasonal Land Cover
Region (SLCR) classi� cation systems for North America. These e� orts were later
expanded to be the � rst global map of land cover based on 1 km multi-temporal
AVHRR Local Area Coverage (LAC) data (Belward and Loveland 1995 ). Global
land cover at a 1-degree resolution for 11 land cover classes has been achieved by
DeFries and Townshend (1994 ), Friedl and Brodley (1997 ), Friedl et al. (1999 ) and
Gopal et al. (1999 ). Other global maps and databases of land cover that have been
used to estimate and infer surface parameters include those of Matthews (1983 ),
Olson and co-workers (Olson and Watts 1982, Olson et al. 1983 ) and Wilson and
Hendersen-Sellers (1985 ).

The 1 degree AVHRR analyses of DeFries and Townshend (1994 ), Friedl and
Brodley (1997 ), Friedl et al. (1999 ) and Gopal et al. (1999 ) are based on the agreement
of the maps of Matthews (1983 ), Olson and co-workers (Olson and Watts 1982,
Olson et al. 1983 ) and Wilson and Hendersen-Sellers (1985 ) to de� ne training and
test data. While the global land cover of Loveland et al. (1995 ) is derived using an
unsupervised approach and is currently being validated, only the 1 degree and 8 km
maps of DeFries and Townshend (1994 ) have been based on site data for training
and validation. In this instance, training and test site data were based on delineating
polygons on Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM)
data and assigning them 11 categorical land cover labels. Site generation for classi-
� cation and mapping purposes has been somewhat ad hoc, and there has been no
formal global database strategy developed to support continuous generation of map
products that are scheduled to be produced from Moderate Resolution Imaging
Spectroradiometer (MODIS) data (Justice et al. 1998 ).

1.2. MODIS 1 km land cover and land cover change
The primary purpose of MODIS land cover characterization (Strahler et al.

1996 ) is to support global modelling either indirectly by providing inputs to MODIS
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algorithms that generate parameters including leaf area index/fraction of photo-
synthetically active radiation (LAI/FPAR), the bidirectional distribution function
(BRDF), vegetation indexes (VI) and surface temperature or directly as land cover
inputs to models. User-operated models then may translate the remote sensing
derived land cover to a model-speci� c classi� cation scheme and obtain needed
parameters using look-up tables.

Boston University will produce global land cover and land cover change products
globally at 1000 m and 0.25 degree resolutions quarter-annually using an annual
temporal sequence of multispectral and multi-resolution MODIS data as part of the
NASA-supported Earth Observing System (EOS) MODIS program. The principal
inputs to the quarterly land cover products are monthly BRDF, BRDF-corrected
nadir surface re� ectances, vegetation index, snow cover, land surface temperature
and spatial texture for a one-year sequence (Strahler et al. 1996 ). Several types of
decision tree (DT) and arti� cial neural network (ANN) classi� cation algorithms are
currently being evaluated for their utility for generating the global MODIS 1 km
land cover product. The DT algorithms include univariate DTs (e.g. Quinlan 1993 ),
multivariate DTs (Brodley and Utgo� 1995 ) and hybrid trees Brodley (1995 ). The
neural network (NN) algorithms that are being tested include the Fuzzy-ARTMAP
(Carpenter et al. 1991a, b, 1992 ) and Gaussian ARTMAP (Williamson et al. 1995 )
algorithms.

Evaluation of these di� erent NN and DT classi� cation algorithms using several
remote sensing data sets has shown that these algorithms produce comparable results
that are consistently superior to those produced by maximum likelihood classi� cation
(Gopal et al. 1999, Friedl and Brodley 1997 ). The � nal classi� cation algorithm will
therefore be either a univariate DT based on the C4.5 algorithm (Quinlan 1993 ),
supervised NN (Gopal et al. 1994, 1999 ), or a hybrid of these two classi� cation
models. While the primary system of land cover classi� cation to be employed is the
17-class IGBP classi� cation (Belward and Loveland 1995 ), a functional and e� cient
training and test site characterization approach must support other classi� cation
systems, and allow for direct estimation and inference of surface parameters.

1.3. Objectives
The purpose of this paper is to describe recent research in the development and

application of a supervised classi� cation approach to global land cover mapping
that will be based on MODIS data. This experience results from the development
of a training, testing and validation model and database, the System for Terrestrial
Ecosystem Parameterization (STEP), and its application in Central America to
mapping multiple land cover and vegetation classi� cation systems and parameters
using arti� cial NN and DT algorithms.

A major objective and component of this e� ort to characterize the regional
vegetation and land cover of Central America is to expand rapid ecological assess-
ment (REA) (Muchoney et al. 1991 ) approaches to using remote sensing data to
support vegetation and ecosystem characterization from the site and macrosite level
to the regional level. The mapping and description of the vegetation and land cover
of Central America developed for this study employs multistage sampling based on
remote sensing at both the site and regional levels. Current characterizations of the
vegetation and land cover are needed to support biodiversity conservation and
management of protected areas, especially the development of the Meso-American
Biodiversity Corridor. A parallel objective is to develop and test a methodology for
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supervised classi� cation that can be implemented globally using MODIS data, hence
the need to apply multiple land cover classi� cation systems simultaneously.

This paper describes the generation of a classi� cation system and map from a
plot-based land surface parameter database for Central America. The analysis
employed multi-temporal NOAA-AVHRR satellite data, and plot/site data obtained
through feature extraction at 428 sites based on Landsat TM, Satellite pour
l’Observation de la Terre (SPOT), AVHRR, and existing vegetation and land cover
data. These data were used to apply supervised classi� cations based on ANN, DT
and maximum-likelihood classi� cation algorithms. This study produced (1 ) a new
classi� cation system of vegetation and land cover; (2) maps of the vegetation and
land cover and IGBP systems based on supervised classi� cation of the AVHRR and
ancillary data; and (3) a site parameter database for Central America.

2. Site and data
2.1. Site

The dimensions of the study area are 1169 Ö 1813 1 km AVHRR pixels, bounded
by 6 ß to 9 ß north latitude and 77.22 ß to 93 ß west longitude (� gure 1). The study area
comprises southern Mexico, Guatemala, Belize, Honduras, El Salvador, Nicaragua,
Costa Rica and Panama. Central America includes a diverse array of natural and
human-modi� ed landscapes including broadleaf evergreen, deciduous and semi-
deciduous forests, pine savanna and woodlands, swamp and mangrove forests,
herbaceous wetlands, and agriculture.

2.2. Remotely sensed data
The primary remotely sensed data used in this study were monthly composited

AVHRR NDVI data provided by the US Geological Survey EROS Data Center

Figure 1. Site distribution map.
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(USGS-EDC) (Eidenshink and Faundeen 1994 ), in lieu of MODIS data which will
be used for generating global 1 km land cover following its launch on the EOS-AM
platform in 1999. The NDVI is based on the relationship of re� ected red and near-
infrared re� ectance which is highly correlated with both LAI and biomass. The
monthly data provide an indication of overall greenness of the vegetation, and can
be used to characterize the phenology of vegetation. The AVHRR data were monthly
composited using maximum NDVI values to remove cloud and topographic e� ects
and extreme o� -nadir pixels (Holben 1986, Eidenshink and Faundeen 1994 ), as well
as scan angle dependence of radiance (Duggin et al. 1982 ).

The use of the monthly-composited AVHRR data may be problematic (Holben
1986 ). An analysis by Zhu and Yang (1996 ) determined that compositing was biased
towards selecting o� -nadir pixels, especially in forward-scanning views in winter
months in the Northern Hemisphere. As with any large-area projection, they also
found that the e� ective mapping unit was geographically variable, in this case due
to Goode’s homolosine projection system and resampling methods (Zhu andYang
1996 ). Lack of sensor calibration confuses the temporal trajectory of the multi-
temporal NDVI signal (Cihlar 1996 ). Temporal smoothing or generalization might
enhance the meaning of the temporal signal (Van Dijk et al. 1987 ), but this technique
was not applied to the data set used in this study.

While 1 km AVHRR NDVI data lack the spectral resolution, radiometric calib-
ration and locational accuracy qualities of MODIS data, they do provide a regional,
multi-temporal dataset, and maximum value NDVI monthly compositing removed
many of the atmospheric e� ects evident in the daily or 10-day composite data for
the same period. A land/sea mask was applied to the AVHRR data as part of the
processing. In some cases, such as in the region of Mosquitia in Honduras and
Nicaragua, there was not a good coincidence with the actual coastline based on
comparison with geo-coded TM data. This problem, however, does not signi� cantly
impact the analysis as water-contaminated sites were screened from the operational
site database.

2.3. T he ST EP model and site database
To meet the requirements for multivariable site model and database for training,

testing and validation, the STEP was developed. STEP is a multivariable site data-
base framework for describing site vegetation, environment and other biophysical
parameters (Muchoney et al. 1999 ). STEP is a formal model that relates multisource
remote sensing, � eld and thematic data to landscape biogeophysical attributes to
permit training, testing, parameterization and validation. It provides for continuous
acquisition and update of plot-level data that can be applied to classi� cation algo-
rithm training, testing and validation, as well as to more comprehensive ecological/
environmental description. It is a classi� cation-free approach that is appropriate at
multiple scales and for multiple landscape classi� cations that utilize physiognomic,
functional, structural and phenologic criteria. The STEP allows for training and
testing of classi� cation algorithms, and validating map product accuracy.

STEP is being used to create a global database of land cover test sites and associated
parameters which can also be applied to direct generation of multiple classi� cation
systems and speci� c biophysical parameters. Feature extraction and parameterizing the
STEP database involves assigning labels to appropriate categories of a suite of para-
meters. STEP provides explicit descriptions of the structural, functional and composi-
tional components of the vegetation and landscape tied to speci� c sites and plots
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(table 1). Its primary purpose is to provide a comprehensive model of the land surface
that can be used to train and test algorithms and to validate land surface products.
Formal sites are established and described based on high resolution remote sensing,
ancillary and � eld plot data. STEP can be used to translate multiple classi� cation
systems as an alternative to commonly used look-up table approaches. This accommod-
ates the wide array of classi� cations used by various models to parameterize biophysical
processes such as those of Biosphere–Atmosphere Transfer Scheme (BATS) (Dickinson
et al. 1993 ), Biome-BGC (Running et al. 1994, 1995, Nemani and Running 1996, 1997,
Myneni et al. 1997), the Land Surface Model (LSM) (Bonan 1996) and Simple Biosphere
models (SiB, Sellers et al. 1986; SiB2, Sellers et al. 1996 ).

Table 1. STEP site parameters.

Vegetation parameters
physiognomy
phenology
periodicity
horizontal structure: cover fraction at each strata for two seasons, distribution
vertical structure: strata, strata height
canopy: base height, height, cover fraction for two seasons
canopy radiative properties

Leaf parameters
morphology
LAI
LAD
leaf photosynthetic surface

Optical properties
leaf optical properties
re� ectance
bidirectional re� ectance
VI
texture

Physical site and landscape parameters
elevation
slope aspect
slope angle
location
continentality
patch perimeter
patch area
snow cover
surface temperature

Soil and hydrologic parameters
soil type
soil moisture
soil texture
soil color
hydrologic regime

A priori classi� cation systems
global ecosystems (Boston University)
IGBP
physiognomic-structural (Boston University)
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2.4. Classi� cation systems
For Central America, there are a number of classi� cation systems that have been

developed for local and country-wide use; only a small number has been applied to
the whole of Central America, and even fewer applied using current remote sensing
data. Remote sensing based maps include those produced for the IGBP (Belward
and Loveland 1995, Loveland et al. 1995 ) and the land cover map of Stone et al.
(1994 ). Maps not based on remote sensing but on climate and other data include
the terrestrial ecoregions of Dinerstein et al. (1995 ) and the maps of Diego-Gomez
(1985 ). The bio-climatic Holdridge Life Zone System (Holdridge 1967 ) is also
employed widely throughout the region (Holdridge 1962 a,b, 1975a, b).

The STEP database includes attributes for several classi� cation systems that can
either be directly attributed to a site, or derived from more basic site data on
physiognomy, structure, site and � oristics. These classi� cation systems include the
IGBP system, which was used in this study. In addition to IGBP, a new Vegetation
and Land Cover (VLC) classi� cation system was developed by a working group for
application to the region to support the development of a Meso-American biodivers-
ity corridor. VLC is intended to be used with multi-temporal 1 km AVHRR data
and, ultimately, MODIS data. It is primarily related to vegetation physiognomy,
phenology, periodicity, morphology, and horizontal and vertical structure.

2.5. Site database development
The data for training and testing the supervised classi� cation algorithms were

developed by Boston University, the Stanford University Center for Conservation
Biology, The Nature Conservancy and the Central America Vegetation Working
Group which was established to support vegetation mapping and monitoring in
Central America. The Working Group comprised two vegetation experts for each
country in the study area. Pairs of analysts delineated sites on TM, SPOT and
AVHRR data, and populated the database based on � eld, plot and ancillary map
data at two workshops held in Guatemala and Nicaragua.

A total of 450 sites were distributed among the 25 VLC classes and extracted
from 18 TM and 2 SPOT scenes (� gure 1). The criteria used for site selection were
that the site must be at least 2 km Ö 2 km in area and regionally representative of
the VLC classes. The site polygons were also de� ned to be within larger patches of
classes, with at least a 1 km bu� er from the polygon boundary to the patch boundary.
This was to ensure that misregistration and mislocation of the AVHRR data and

the co-referenced TM or SPOT data would not permit a training polygon to actually
represent land cover outside of the patch. After a quality assurance check was
performed to ensure that the site data labels were correct, 22 sites were removed
from the database because they were either obviously mislabelled or did not meet

the minimum site size criteria.
From the remaining 428 sites, subsets of train (80%) and test (20%) pixels were

randomly generated by random sampling to allow for independent training and
accuracy assessment. In this approach, the algorithm trains on 80% of the total site

pixels, and its accuracy is assessed for the remaining 20% of pixels, which are unseen.
Since results are sometimes dependent on the actual random selection of pixels, the
subsampling procedure was repeated � ve times, thus providing � ve sets of training
and testing pixels to the classi� cation and accuracy assessment process. The use of
the 80/20 train to test ratio was based on the need to provide as many training data
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examples to the classi� cation algorithms, and its appropriateness was con� rmed by
empirical testing of other train to test ratios.

3. Analytical approach
Four supervised classi� cation algorithms, comprising two arti� cial NNs, a univar-

iate DT and a maximum-likelihood Bayesian (MLC) classi� cation algorithm were
applied to the classi� cation of the AVHRR data. Both the ANN and DT algorithms
have been shown to be improvements over traditional maximum-likelihood decision
rules based on their ability to partition data in nonlinear and non-parametric fashions
(Gopal et al. 1994, 1996 ). The MLC algorithm was applied as a benchmark for the
performance of the NN and DT classi� cation algorithms.

Neural nets are complex and dense systems of nonlinear computational elements
that are patterned after bio-neurological systems that are composed of computational
nodes linked by adaptive weights (Lippmann 1989 ). The neural nets used in this
analysis are from the class of Adaptive Resonance Theory (ART) (Carpenter et al.
1991 a) networks, including Fuzzy ARTMAP (Carpenter et al. 1991 b, 1992 ) and
Gaussian ART (Williamson 1995 ). ART NNs process inputs into categories, with
the category formation being governed by a set of parameters including a vigilance
parameter (r) which regulates how broad a category might be, the choice function
(a) which determines that category to which any input might belong, and the match
function which determines if a selected category is su� ciently appropriate to meet
the vigilance criteria (Williamson 1995 ). These categories are related to speci� c
output classes in such a way that they represent multiple, nonlinear partitions of
feature space that map to output classes.

Gaussian ARTMAP is a supervised (and unsupervised ) NN based on ART that
uses Gaussian-de� ned receptive � elds. Its internal categories model a local density
of the input space and map an output class prediction. Each category’s receptive
� eld is a Gaussian distribution parameterized by mean, standard deviation and
scalar that represents the amount of training data for which each node has received
credit (a priori probability). Gaussian ARTMAP, like maximum-likelihood, is based
on the assumption that the input channels are normally distributed and that the
training data statistics for each class, which can be thought of as samples, are also
normally distributed. In a supervised mode, Gaussian ARTMAP chooses an output
class with the maximum probability estimate for a given input. In an unsupervised
mode, Gaussian ARTMAP distinguishes clusters based on Gaussian distributions in
the input data.

Fuzzy ARTMAP uses a choice function (a) based on fuzzy logic, while for
Gaussian ARTMAP the choice function (c) is based on de� ning each ART category
by one or more separable Gaussian distributions. The choice function picks the most
likely prediction of a class based on this distribution. For both Fuzzy ARTMAP
and Gaussian ARTMAP, inputs are generalized through unsupervised clustering
� rst, while the vigilance (r) and match tracking parameters in� uence the generation
of new categories and ultimately to what degree the classi� cation algorithm general-
izes or � ts inputs to outputs. For Gaussian ARTMAP, high vigilance (r) means that
more internal categories are created by the network to match input data to output
categories; i.e. the categories are less broad. For Fuzzy ARTMAP, small choice
parameter values (a) generate large categories in feature space, while high values of
a promote the generation of small categories (Williamson 1995 ).

A DT is de� ned as a classi� cation procedure that recursively partitions a data
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set into more uniform subdivisions based on tests de� ned at each branch (or node)
in the tree (see, for example, Quinlan 1993 ). A DT is composed of a root node (i.e.
all of the data), a set of internal nodes (splits) and a set of terminal nodes ( leaves).
Each internal node in a DT has one parent node and two or more descendant nodes.
Using this framework, a data set is classi� ed according to the decision surfaces
de� ned by the tree, and class labels are assigned to each observation according to
the leaf node into which the observation falls.

Boosting is a recent technique developed in the machine learning community
that has been shown to signi� cantly improve the performance of DT classi� cation
algorithms (e.g. Quinlan 1996 ). The goal of boosting is to improve the classi� cation
accuracy of a given base classi� cation algorithm (Shapire 1990 ). To do this, boosting
algorithms estimate multiple classi� cations in an iterative fashion using the base
classi� cation algorithm (e.g. a DT). At each iteration, a weight is assigned to each
training observation, where those observations that were misclassi� ed in the previous
iteration are assigned a heavier weight in the current iteration. This forces the
classi� cation algorithm to concentrate on those observations that are more di� cult
to classify. Friedl et al. (1999 ) have recently tested boosting using DTs to classify
AVHRR data and have shown that boosting consistently improves classi� cation
results.

The MLC calculates the probability that a pixel belongs to one of the set of
possible classes based on the mean measurement vector for each class and the
covariance matrix for each class by band. The probability that a pixel belongs to a
class is based on the distance between the pixel and a scaled and variance/covariance-
corrected class mean (Strahler 1980 ). The pixel is then assigned to that class to
which the weighted distance is the lowest. The principal assumptions of the MLC
are that the input channels are Gaussian (normally) distributed and that the training
data statistics for each class, which can be thought of as samples, are also normally
distributed. It also assumes that the probabilities are equal for each class unless this
assumption is modi� ed by adjusting the prior probabilities.

3.1. Supervised Vegetation and L and Cover classi� cation
The distinct classi� cation system requirements of partner organizations allowed

the testing of regional classi� cation using both the IGBP and VLC classi� cation
systems. This provided the opportunity to test the classi� cation algorithm perform-
ance and the utility of the STEP model and database for providing data to train,
test and validate di� erent classi� cations systems. First, supervised classi� cation based
on each of the � ve IGBP random train and test subset splits was performed using
the Gaussian ARTMAP, Fuzzy ARTMAP, DT and MLC algorithms. This method
allows for robust estimation of classi� cation accuracy. Second, based on the results
of this exercise, Gaussian ARTMAP was applied to the � ve sets of train and test
data for the VLC system to map that classi� cation system. All supervised algorithms
were applied to the Central America STEP site data by training and testing on
the monthly-composited NOAA AVHRR data for 12 months of 1992 and 1993
(Eidenshink and Faundeen 1994 ). The monthly data are the inputs to the various
classi� cation algorithms.

3.1.1. Regional supervised IGBP classi� cation
The STEP IGBP labels for the � ve train and test splits of the 428 sites were

applied to the Gaussian ARTMAP, Fuzzy ARTMAP, DT, and MLC algorithms.
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For all approaches, the error rates were similar for all � ve of the train–test pixel
splits (table 2). For the Fuzzy ARTMAP classi� cation, the choice parameter a was
applied thorough its range of 0.01–0.99 to determine the optimum value based on
the classi� cation accuracy of unseen test pixels. An a value of 0.95 was selected, and
applied to the � ve train–test data splits. The mean overall accuracy for the Fuzzy
ARTMAP runs is 79.30% . The mean accuracy of the DT applied without boosting
was 74.79%, while boosting improved the mean accuracy to 88.16%.

The MLC algorithm was applied without prior probabilities (Strahler 1980 ). The
mean overall accuracy of the MLC was poor in comparison to the other algorithms
with accuracies ranging from approximately 49–53%. The mean accuracies of the
� ve Gaussian ARTMAP iterations is 82.77%. An example contingency table taken
from Gaussian ARTMAP run 1 is presented as table 3 to describe the per-class
errors and inter-class confusion. As tables 2 and 3 indicate, the primary forest classes
(Classes 1 and 2) were mapped well by all algorithms, while closed shrubland and
savanna (Classes 6 and 9) were particularly problematic for the DT and Gaussian
ARTMAP algorithms.

3.1.2. VL C classi� cation system
Table 4 presents the class names and distribution by size class by VLC class of

the STEP training, testing and validation sites. For mapping the VLC classi� cation
using Gaussian ARTMAP, parameter values of r=0.6 and a variance of 30 were
selected to train each of the � ve train and test iterations based on exploring the
relationship of the vigilance parameter to training. This vigilance value is a comprom-
ise between using a high vigilance which tends to � t the training data (exemplars)
well to the output classes and the need to generalize training data to the output
classes. The accuracies for the Gaussian ARTMAP runs are reported in table 5. Both
the per-class and overall accuracy were relatively stable for each of the � ve train–test
iterations (range =80.92–83.86%, SD=0.945 ), and the mean overall accuracy for the
VLC Gaussian classi� cations is 82.23%.

The � nal VLC map for Central America was based on the supervised Gaussian
ARTMAP, although as with the IGBP classi� cation test, the Fuzzy ARTMAP and
DT algorithms provided similar results. The � nal VLC map was produced by using
all of the train and test site data since the accuracy was already established and it
was assumed that this would improve the overall accuracy slightly (� gure 2). Spatial
� ltering was employed using a 3 Ö 3 low-pass � lter to remove isolated, individual
pixels. Filtering improved the overall accuracy of the VLC map by approximately
2%. Area statistics on the distribution of the Central America Vegetation and Land
cover classes were then generated (table 5). The largest classes of vegetation and
land cover are tropical broadleaf evergreen forest (38%) and agriculture (29%), and
the total forested area is estimated to be approximately 54%.

The distribution of the VLC classes coincides with what might be expected based
on previous mapping studies, although this study represents the most detailed and
comprehensive assessment to date of Central America. The accuracy contingency
table of this map is reported in table 6, not as the true independent accuracy
assessment (table 5), but to depict the nature of misclassi� cation among classes.
Analysis of the classi� cation error rates indicates that while closed forests were
generally mapped reliably, open vegetation had a higher error rate. The nature of
the classi� cation systems, the vegetation and land cover types and the AVHRR
spatial resolution are all problematic, as it is di� cult both to de� ne sites and map
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Table 4. VLC classi� cation system and site distribution.

Mean
Pixels area

Class VLC class name Sites (km2 ) (km2)

1 Needleleaf evergreen forest 36 1294 35.94
2 Broadleaf evergreen forest 115 2989 25.99
3 Mixed broadleaf/needleleaf evergreen forest 17 609 35.82
4 Broadleaf deciduous forest 16 355 22.19
5 Swamp forest 12 227 18.92
6 Palm forest 6 229 38.17
7 Mangroves 20 174 8.70
8 Needleleaf evergreen woodland 8 271 33.88
9 Broadleaf evergreen woodland 6 196 32.67

10 Broadleaf deciduous woodland 2 70 35.00
11 Mixed broadleaf/needleleaf woodland 7 208 29.71
12 Broadleaf evergreen savanna 3 112 37.33
13 Needleleaf evergreen savanna 5 386 77.20
14 Broadleaf evergreen scrub/shrub 7 171 24.43
15 Cactus/thorn scrub 5 168 33.60
16 Swamp scrub/shrub 12 293 24.42
17 Perennial graminoid grassland 15 371 24.73
18 Herbaceous wetland 7 93 13.29
19 Barren rock, sand, and soil 3 33 11.00
20 Marine 12 914 76.17
21 Limnic 9 316 35.11
22 Disturbed forest complex 4 107 26.75
23 Mixed urban/vegetation complex 7 241 34.43
24 Agriculture 75 2930 39.07
25 Urban/industrial 19 244 12.94

Mean 428 13 001 30.38

small and linear patch vegetation such as riparian and mangrove forests. The size
of the train and test samples did not necessarily in� uence accuracy. Regression
analysis of sample size on accuracy resulted in an r2 of 0.52, which is most likely
skewed based on the several large classes with high accuracy (agriculture and broad-
leaf evergreen forest ). While the deciduous and mixed woodland classes were under-
sampled and had poor accuracy, evergreen woodland and urban/industrial classes
were both small but of high accuracy.

3.2. Comparative analyses
Two comparative analyses were performed to evaluate the relative accuracy and

performance of the classi� cation systems and approaches. These comprised compar-
ison of this study’s supervised regional and the existing global IGBP maps, and this
study’s derived VLC map with an existing ecoregion map.

3.2.1. Regional and global IGBP classi� cations
A global map of the IGBP using the same AVHRR NDVI data used in this

study had previously been produced and distributed by the USGS-EROS Data
Center (Belward and Loveland 1995 ). This 1 km IGBP classi� cation, derived using
unsupervised classi� cation, was the subset for the study area from the global map
for use in a comparative analysis of land cover distribution. Contingency table
analysis of this study’s supervised regional and the existing unsupervised global
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Table 5. VLC G-ART accuracy and areal estimates.

Mean
Test accuracy Area

pixels (% pixel estimate % area
Class Vegetation and landcover type (1 km2) agreement) (km2) estimate

1 Tropical needleleaf evergreen forest 205 81.07 46 345 7.49
2 Tropical broadleaf evergreen forest 637 91.02 234 911 37.95
3 Tropical broadleaf/needleleaf 139 71.22 12 139 1.96

evergreen forest
4 Tropical broadleaf deciduous forest 71 63.94 22 713 3.67
5 Tropical swamp forest 43 46.98 11 228 1.81
6 Palm forest 45 84.44 2477 0.40
7 Mangroves 34 24.71 4721 0.76
8 Tropical needleleaf evergreen 42 68.57 3436 0.56

woodland
9 Tropical broadleaf evergreen 40 81.50 7756 1.25

woodland
10 Tropical broadleaf deciduous 14 92.86 1782 0.29

woodland
11 Tropical broadleaf/needleleaf 20 76.00 2531 0.41

woodland
12 Tropical broadleaf evergreen savanna 15 84.00 1044 0.17
13 Tropical needleleaf evergreen savanna 85 93.18 7190 1.16
14 Tropical broadleaf evergreen 35 73.14 5081 0.82

scrub/shrub
15 Tropical cactus/thorn scrub 34 79.41 3379 0.55
16 Tropical swamp scrub/shrub 47 59.15 12 366 2.00
17 Tropical perennial graminoid 74 62.70 20 589 3.33

grassland
18 Tropical herbaceous wetland 29 51.72 5082 0.82
19 Barren rock, sand, and soil 10 26.00 316 0.05
20 Marine 48 100.00 1854 0.30
21 Inland water ( limnic) 81 96.54 13 655 2.21
22 Forest-woodland-agriculture 22 34.55 12 977 2.10

complex
23 Urban/vegetation complex 49 74.69 4669 0.75
24 Agriculture 585 89.40 179 730 29.03
25 Urban/industrial 49 83.67 1077 0.17
Total 2453 82.23 619 048 100.00

classi� cation maps indicated a disparity of agreement in cover classes both in regional
estimates and spatial agreement (table 7). The wetland and closed shrub categories
of both the global unsupervised and regional supervised IGBP are especially prob-
lematic in terms of accuracy based on the site database, though it is to be expected
that the overall accuracy of the regional classi� cation would be better, given the
di� erent levels of mapping intensity. The global IGBP map is also a preliminary
map which is currently undergoing revision and validation. Both IGBP classi� cation
systems compared well for closed forests, especially evergreen broadleaf forest which
is the dominant forest cover type of the region. The IGBP agreement was poorest
for savannas (Class 9), and for the barren/sparsely vegetated class (Class 16). This
may largely be due to the small sampling size of these classes.

The area estimates of the global and regional IGBP land cover are generally in
agreement (table 6). These two maps are not in agreement locationally however. The
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kappa coe� cient, used as a pair-wise indicator of agreement where random agree-
ment is discounted (Congalton et al. 1983, Congalton 1991 ), suggests that the
estimates of land cover are signi� cantly di� erent at the 95% con� dence level. Because
the same data and classi� cation systems were used, these results indicate that area
estimates of land cover are a function of the classi� cation model used to ascribe site
data to the regional landscape using remote sensing data.

3.2.2. Ecoregional analyses
Ecoregional classi� cation systems are de� ned based on a number of criteria.

Some of these approach landscape classi� cation systems (e.g. Omernik 1987 ) while
others are more bioregional (e.g. Dinerstein et al. 1995 ). The most prominent eco-
regional systems are those of Bailey (1980 ) and Omernik (1987 ), although neither
system has been applied in any detail to Central America. A terrestrial ecoregion
map for Latin America was compiled from existing maps and expert opinion by The
World Bank and World Wildlife Fund (WB/WWF) (Dinerstein et al. 1995 ). The
WB/WWF classi� cation system is based on a three-level hierarchy of ecosystem
type, habitat type and ecoregion. At the top level, � ve Major Ecosystem Types are
de� ned primarily on the minimal area that is relevant to ecological processes and
conservation management, response characteristics to major disturbance, and similar
levels of beta diversity within types, de� ned as the rate of turnover of species along
environmental gradients. The Major Ecosystem Types are tropical broadleaf
forests, conifer/temperate broadleaf forests, grasslands/savannas/shrublands, xeric
formations, and mangroves.

At the second level, eleven habitat types are based on structure, climate regime,
ecological processes, and a beta diversity species turnover-to-distance criterion. At
the third (� nest) level, ecoregions are de� ned as units of geographically discrete
habitat types or assemblages of natural communities that share a majority of their
species, ecological dynamics, and environmental conditions that can be mosaics of
speci� c, individual habitat types (Dinerstein et al. 1995 ). The distribution of the
24 WB/WWF Ecoregions found within the study area is summarized in table 8.

The WB/WWF ecoregions provide a useful context for relating the historical
distribution of ecoregions within Central America to their current distribution as
determined in this study. The distribution of VLC classes within WB/WWF eco-
regions was calculated based on the intersection of the two maps in raster format at
1 km spatial resolution. Table 9 is a class-by-class assessment of the distribution of
IGBP classes within the WB/WWF ecoregions. The important considerations are
that while the WB/WWF ecoregions represent potential or historical distributions
of a set of ecoregions, the VLC classi� cation map provides a remote sensing based
depiction of the actual landscape. The analysis of the distribution of the VLC classes
in relation to the WB/WWF ecoregions indicates that there is generally agreement
on where vegetation and land cover types are located within ecoregions, that is,
VLC maps pine forests within pine forest ecosystems.

A signi� cant � nding of this study is the distribution of modi� ed types within
ecoregions. At least 31% of the landscape of Central America is anthropogenic in
nature, while the percentage of anthropogenic types within speci� c classes is variable
and class-speci� c. The estimate of the remaining forest within the Dry Forest
Ecoregion is only 16%. Some 59% of the Belizean Swamp Forest and 57% of the
Belizean Pine Forest Ecoregions are considered to be agricultural lands. The analysis
indicates that 33% of the Choco-Darien Forests of Panama is in agriculture, while
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Table 8. WB/WWF ecoregion classi� cation and distribution.

Class Ecoregion Area (km2 ) % Area

5 Mangrove 4556 0.77
8 Tehuantepec moist forests 99 372 16.76
9 Yucatan moist forests 46 308 7.81

10 Sierra Madre moist forests 6419 1.08
11 Central American montane forests 7726 1.30
12 Belizean swamp forests 4230 0.71
13 Central American Atlantic moist forests 156 879 26.46
14 Costa Rican seasonal moist forests 10 567 1.78
15 Isthmian-Paci� c moist forests 28 480 4.80
16 Talamancan montane forests 16 301 2.75
39 Choco-Darien moist forests 13 477 2.27
40 Eastern Panamanian montane forests 2276 0.38
68 Balsas dry forests 3315 0.56
71 Yucatan dry forests 1074 0.18
72 Central American Paci� c dry forests 46 580 7.86
73 Panamanian dry forests 5088 0.86

102 Central American pine-oak forests 113 984 19.22
103 Belizean pine forests 2821 0.48
104 Miskito pine forests 15 508 2.62
108 Tabasco/Veracruz savannas 3278 0.55
109 Tehuantepec savannas 1227 0.21
126 Veracruz palm savannas 120 0.02
127 Quintano Roo wetlands 917 0.15
136 Costa Rican paramo 30 0.01
166 Motagua Valley thornscrub 2394 0.40
Total 592 927 100.00

some 59% is forested. The distribution of actual vegetation and land cover with-
in the WB/WWF ecoregions underlines the importance of remote sensing based
mapping to quantify the current status of the landscape, providing quantitative
descriptions of the patterns of human modi� cation of the landscape.

4. Conclusions
This research has demonstrated the feasibility of rapidly generating regional test

sites from high resolution satellite data, ancillary information and expert knowledge.
These site data can be applied to moderate resolution, regional satellite data to map
multiple land cover and vegetation classi� cations with good statistical results. The
research indicates that map accuracy is a function of the classi� cation system and
categories, as well as the input data. Estimates of land cover are equally a function
of both the source data used to derive them and the classi� cation model used to
ascribe site data to the regional landscape using remote sensing data. The analysis
demonstrates that mapping at regional scales is feasible, with classi� cation accuracy
associated with the map estimated at upwards of 85%. Applying the IGBP classi� ca-
tion system, the DT averaged almost 88%, Gaussian ART almost 83%, and Fuzzy
ART NN 79%. Comparison with existing ecoregion maps indicates that using remote
sensing data provides a much more realistic assessment of the true nature of the
distribution of vegetation and land cover.

Research in testing the NN and DT algorithms is ongoing. A signi� cant hurdle
is the development of the global site network needed to train, test and validate global
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land cover maps and biophysical parameters. Continuing e� orts to develop a global
database of sites using the STEP model have been expanded to North America.
Given the positive results of testing this methodology regionally using AVHRR data,
signi� cant improvements using MODIS data can be expected considering the
improved spectral and radiometeric resolution and locational accuracy of the
MODIS system.
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