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Landslides are common but complex natural hazards. �ey occur on the Earth’s surface following a mass movement process. �is
study applies the multitype Strauss point process model to analyze the spatial distributions of small and large landslides along with
geoenvironmental covariates. It addresses landslides as a set of irregularly distributed point-type locations within a spatial region.
�eir intensity and spatial interactions are analyzed by means of the distance correlation functions, model 	tting, and simulation.
We use as a dataset the landslide occurrences for 28 years from a landslide prone road corridor in the Indian Himalayas. �e
landslides are investigated for their spatial character, that is, whether they show inhibition or occur as a regular or a clustered point
pattern, and for their interaction with landslides in the neighbourhood. Results show that the covariates lithology, land cover, road
bu�er, drainage density, and terrain units signi	cantly improved model 	tting. A comparison of the output made with logistic
regression model output showed a superior prediction performance for the multitype Strauss model. We compared results of this
model with the multitype/hard core Strauss point process model that further improved the modeling. Results from the study can
be used to generate landslide susceptibility scenarios. �e paper concludes that a multitype Strauss point process model enriches
the set of statistical tools that can comprehensively analyze landslide data.

1. Introduction

Landslides are de	ned as the movement of a mass of rock,
debris, or soil along a downward slope, due to gravitational
pull. �e inherent properties of the Earth material, encom-
passing various geoenvironmental factors, can make a par-
ticular area susceptible to landslides. Landslides are among
the most common natural hazards. �ey exhibit themselves
in di�erent mass movement processes and are considered
as complex natural hazards occurring on the Earth’s surface
[1]. Although individual landslides are not as spectacular or
damaging as earthquakes, �oods, and hurricanes, they are
widespread and frequently occurring. Over the years they
have caused great loss of life and property and their e�ects on
the economy are growing at a rapid pace in many countries.

Spatial zonation of landslide occurrences, also known as
landslide susceptibility mapping, aims to di�erentiate a land

surface into homogeneous areas according to their degree
of failure caused by mass movement at speci	c locations
[2]. It relies on understanding complex mass movement
processes and their controlling factors [3]. Approaches to
the spatial modeling of landslides can broadly be divided
into two groups [4]. �e 	rst approach consists of deter-
ministic, dynamic modeling of the physical mechanisms
that control slope failure, using mathematical methods. �is
approach is highly localized because of the detailed data
requirements.�e second approach uses the relation between
the locations of previous landslides and geoenvironmental
variables, to predict areas of di�erent landslide susceptibility,
using heuristic or statistical methods. �e statistical meth-
ods used successfully in landslide susceptibility mapping
to date include discriminant analysis [5, 6], multivariate
statistics [7], likelihood ratio [8], information value method
[9], and logistic regression methods [10]. �ese methods
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allow the analysis of geoenvironmental variables controlling
landslide occurrence with respect to previous landslides
without looking at the mutual interactions of landslides and
their distribution patterns. Commonly applied generalized
linear modeling uses a maximum likelihood estimation that
results into point parameter estimates with standard errors
[11]. As individual landslides cover only a small fraction of
an unstable area, landsliding can be considered as a spatial
point process that is controlled by a number of surface and
subsurface spatial variables.

A spatial point process underlies a pattern of spatial point
data within a region. Spatial point patterns are characterized
by the 1st- and 2nd-order e�ects of a point process [12],
specifying the intensity and point interactions, respectively.
Nearest neighbor functions between pairs of points com-
monly model the 2nd-order e�ects as a function of positions
of points and their distances. Such functions usually consider
the relative position of two points in a bounded region and
are taken as a function of distance only [13]. Spatial point
processes play a fundamental role in spatial statistics and
exhibit an active area of research. Disciplinary applications
occur in forestry addressing positions of trees in a forest
and log-landing sites [13–15], ecology addressing locations
of bird’s nests [13], seismology addressing earthquake epi-
centres [16, 17], astrophysics addressing locations of stars in
a constellation [18], and environmental modeling for peak
concentrations of a pollutant in a geographical region [19].
In this study we use a spatial point process model to analyze
the landslide data for inferring properties of the spatial
distribution pattern.

�e objective of this study was to identify signi	cant
factors for landslide susceptibility by applying a multitype
Strauss point model. In this way the landslide occurrence
patterns could be better understood.�e point processmodel
used information at the level of detail o�ered by the landslide
data.�at informationwas combinedwith geoenvironmental
covariates to explain the underlying process for determining
landslide susceptibility within an area.�emodel output was
compared with the output of logistic regression model. �e
study was applied to a landslide prone area in the northern
Himalayas, India.

2. Methods

A landslide distribution pattern can be considered as a
collection of � point data spread irregularly in an essentially
planar region. A basic assumption for the analysis is that the
data can be regarded as a realization of a stochastic point
process [13]. �is process is characterized by the intensity at
location �,�(�), de	ned as

�(�) = lim
��→0

{� (� (��))|��| } , (1)

where |��| is the area of a small region ��, � is expectation
operator, and �(��) is number of points in the region ��.

Landslide occurrences, considered as a spatial point
pattern, show variation in the relative frequency as a function
of the distance between positions

	 (��, ��) = lim
��� ,���

{� (� (���) � (���))����������� ������������� } . (2)

Assuming stationarity, (2) depends only upon the relative
position of the two landslides between positions �� and��, that is, on their distance [13]. A landslide process is
second-order stationary if its intensity is independent upon
translation over �, so that�(��) = � and the second-order
intensity

	 (��, ��) = 	 (��� − ���) = 	 (�) (3)

depends only upon the distance vector � between �� and ��
and not on their locations.

2.1. Conditional Intensity and theGibbsModel. For a landslide
process that exhibits inter-landslide interaction the pairwise
interaction models de	ne the intensity in the form of proba-
bility densities:

� (�) = �[�(�)∏
�=1
� (��)][[

∏
�<�
� (��, ��)]]

, (4)

where � is a normalizing constant, �(�), � ∈ � is the
intensity or the 	rst-order term, and �(��, ��), ��, �� ∈ �, is
the pairwise interaction or second-order term in a bounded
window �. Pairwise interaction models are a special case
of Markov point process, called Gibbs point process models.
Analysis of a Gibbs point process model is based on its
conditional intensity [20]. �e probability of the occurrence
of a landslide �(�) at location � is determined by the
conditional intensity de	ned by �(�, �). For a landslide
process in a bounded area � the conditional intensity is
related to the probability density � by

�(�, �) = � (� ∪ {�})� (�) . (5)

For the general pairwise interaction process the conditional
intensity is

�(�, �) = � (�) �(�)∏
�=1
� (��, �) . (6)

Landslides of a particular zone with a speci	ed radius of
in�uence, however, might have a homogeneity condition
with respect to each other. A Strauss process emphasizes
such homogeneity conditions for deriving the relationship
among the events. For the Strauss process, a simple model of
dependence between landslides has the conditional intensity

�(�, �) = !		(�,�), (7)

where "(�, �) is the number of points of the landslides �
that lie within a distance # of the location �. �e conditional
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intensity is useful in modelling because the two distinct
components in the functional form represent the interaction
of landslides that can be interpreted in a straightforward way,
following Baddeley [20].

Amajor restriction ofGibbsmodels is that the parameters
cannot be estimated using maximum likelihood estimation,
and hence a maximum pseudolikelihood is returned for each
model [20]. �e unknown scaling factor � is intractable;
hence the calculated pseudolikelihood does not involve any
unknown factor and it is easier to use when estimating the
parameters.

2.2. Nearest Neighbour $-Function. Methods based upon the
distances between landslides can be used for investigating
inter-landslide interactions, for example, to identify second-
order e�ects of the landslide pattern data. �ese second-
order properties are speci	ed by the pair correlation function
that is assessed using the inter-landslide interaction methods
like the %-and $-functions [20]. In this way, the nature
of the departure from complete spatial randomness (CSR)
can be identi	ed. �is, in turn, is useful in determining the
kind of interaction and interaction distances between the
landslides [21]. Alternatively, Ripley’s%-function can be used
for detecting deviations from spatial homogeneity.�e shape
of this function indicates the speci	c type of pattern displayed
by the data, that is, indicating whether the landslides show
inhibition or occur as a regular or a clustered pattern.

�e $-function quanti	es the distance distribution of a
landslide to the nearest other landslide. It is expressed as

$̂ (#) = ∑
�=1
* (��, #) +{	�≤�}, (8)

where # is the radius of a disk centered at the location of the-th landslide ��, *(��, #) is an edge correction weight such that$̂(#) is approximately unbiased, "� = min� ̸=� ‖�� − ��‖ is the
distance of each landslide location to its nearest neighbor, and+{	�≤�} is the indicator function equal to 1 if "� ≤ # and it is 0
otherwise.

An estimate of $ derived from a spatial landslide pattern
dataset can be used in exploratory data analysis and formal
inference about the pattern [22, 23]. �e shape of this
function provides information about the way the landslides
are clustered in a particular area. If the landslides are
clustered, $ increases rapidly at short distances, whereas
for landslides that are evenly spaced, $ increases slowly up
to the distance at which most events are spaced, and only
then it increases rapidly [24]. For a homogeneous Poisson
point process of intensity 1, the nearest neighbor distribution
distance function for landslide distribution equals

$pois (#) = 1 − exp (−13#2) . (9)

If $(#) > $pois(#) then the landslide pattern is clustered,
whereas if $(#) < $pois(#) the landslide pattern is regular.

2.3. Strauss Point Process for Marked Point Pattern Analysis
of Landslides. A multitype pairwise interaction process is

a Gibbs process which assumes symmetric interactions of
landslides have the probability density of the form

� (�) = �[�(�)∏
�=1
�
 (��)][[

∏
�<�
�
,
� (��, ��)]]

, (10)

where � is a normalizing constant, �
(��) is a function
determining the 	rst-order trend for landslides �(�) of the4th type of patterns, indicating whether the landslides show
inhibition or occur as a regular or a clustered pattern,
and �
,
�(��, ��) are symmetric functions that describe the
interaction between a pair of landslides �� and �� of given
types 4 and 4�; that is, �
,
�(��, ��) = �
,
�(��, ��) and�
,
� ≡ �
� ,
 [20]. �us, the conditional intensity of two
categories of landslides Small and Large as de	ned in (11) for
a multitype Strauss process is given by

1 ((�,4) ; �) = �
 (�) �(�)∏
�,�=1

�
,
� (��, ��) . (11)

�e multitype Strauss process has pairwise interaction terms

�
,
� (��, ��) = {{{
1 if

99999�� − ��99999 > #
,
�	
,
� if
99999�� − ��99999 ≤ #
,
� , (12)

where #
,
� > 0 are interaction radii as above and 	
,
� ≥ 0
are interaction parameters [20].

To 	t a multitype Strauss process model to landslides,
the matrix of interaction radii #
,
� between individual land-
slides is speci	ed based on 	eld conditions and distribution
patterns. Model 	tting generates values for the interaction
parameter 	
,
� and the model coe�cients describing spatial
inhomogeneity and inter-landslide interactions.

2.4. 	e Multitype/Hard Core Strauss Point Process Model.
�e multitype/hard core Strauss point process is a hybrid of
the multitype Strauss process and the hard core process, for
example, the case that 	
,
 = 0, 	
,
� = 0, or 	
�,
� = 0 of
the Strauss process. A pair of points of types 4 (Small) and4� (Large) must not lie closer than ℎ
,
� units apart; if the
pair lies more than ℎ
,
� and less than #
,
� units apart, it
contributes a factor 	
,
� to the probability density similar

to the 4,4 pairs and the 4�, 4� pairs. For landslides, this
extensionmakes sense, as the large landslides are usually well
separated and small distances do not occur; the same applies
to the smaller landslides, although to a lesser degree as they
can be closer. Moreover, a small landslide does not occur
below a large one, whereas, if the location of a landslide is
indicated as a point, the landslides cannot occur immediately
close to each other.

2.5. Goodness of Fit. Akaike’s Information Criterion (AIC) is
a measure of the goodness of 	t of an estimated statistical
model. �e AIC is de	ned as AIC = −2 ln (B) + 2D,
where B is the maximum likelihood value for the estimated
model and D is the number of parameters in the model.
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It can be interpreted as the trade-o� between bias and
variance in model construction indicating that of accuracy
and complexity of the model [25].

�e study system is based on the point process modeling
of landslide data along with the geoenvironmental covariates
in�uencing landslide such as lithology, topography, or geol-
ogy. �e models are selected based on the AIC. �e study
makes use of the spatial distribution of landslide to make
the exploratory data analysis, their interactions using $- and%-functions, and the possible susceptibility intensity in the
area using the Strauss point model. �e AIC is a test between
models and hence it may serve as a tool for model selection.
Given a dataset, several competing models may be ranked
according to their AIC, with the one having the lowest AIC
being the best [25].

3. Site Characteristics and Data Description

3.1. Study Site. �e study area lies between 30∘47�29��N and
30∘54�45��N latitude and 78∘37�41��E and 78∘44�03��E longi-
tude in the northern Himalayas, India, in the catchment of
the river Bhagirathi, a tributary of the river Ganges (Figure 1).
�is study area of a 12 km long road corridor with a total

area of 8.88 km2 was selected judiciously with corroboration
that any landslide that occurs in the area a�ects the road. In
theHimalayan terrain rock strength and geological structures
play a major role in the landslide activity. �e dominant rock
types in the area include low grade metamorphic rock such
as chlorite schist, schistose quartzite, and quartz mica schist
along with high grade migmatites and gneisses. Rock mass
properties, such as intact rock strength (IRS) computed for
the area, varies between 50 and 200MPa and corresponding
cohesion of rock mass varies between 9 and 29KPa [26].
Detailed assessment showed that the IRS varies due to
compositional changes, the spacing and orientation of the
joints present in these rocks, and the degree of weathering
in each rock type. Elevation in the area ranges between 1550
and 2100mwith a high relative relief; average elevation of the
area is around 1900m.

�e last three decades of rainfall information between
1982 and 2009 showed that the highest (1900mm) and lowest
(600mm) annual rainfall occurred in years 2003 and 1991,
respectively, with an annual average of approx. 1200mm [27].
�e area receives heavy precipitation during the summer
months starting from mid of June to mid of October and
moderate rainfall during the winter months from January
to March. However, the rainfall is uniform in the area and
no variation of rainfall was observed spatially in this road
corridor. In the Himalayan region, landslides are recurring
annually and are prominent during the summer months
between June and October when the seasonal monsoon
occurs. Landslides in this area were the result of a combi-
nation of geotectonics, adverse natural topography, such as
steep slopes, weathered rocks and soils, human in�uences on
the topography, and high rainfall [28, 29].

3.2. Spatial Data Quality. Spatial data quality plays an impor-
tant role for the precise landslide identi	cation and accurate

landslide mapping. Landslide data were thus collected from
reliable sources. �e major organizations which keep the
updated record of landslides in the Indian Himalayan terrain
are Border Road Organization (BRO) and Geological survey
of India (GSI). �e historical landslide records of BRO
during 1982–2009 was used in this study for preparing the
inventory. A total of 178 active landslides were mapped at
the 1 : 10,000 scales. Areas a�ected by these landslides were
clearly recognizable from the remote sensing images. �ey
were correlated with BRO records for the road corridor
occurring along the cut slopes as well as in the natural slopes
of the road corridor. �e mapped landslides covered an area
of 0.45 km2, corresponding to 5.6% of the total area (min.

125m2, max. 41,000m2, median 1884m2, andmean 3967m2).
For the point pattern analysis the centroids of landslide
points were marked. Each landslide was attached with the
attribute, that is, the area of the landslide.�e areawas a proxy
for the area of in�uence of a landslide, directly re�ecting
its intensity. �e landslide data were converted into the
multitype marked point pattern by classifying the landslides
into Small and Large according to their size. Categorization
was done by considering the mean area of the landslides.
�erefore, for our study any landslide with size less than

4000m2 (mean of the distribution) was Small and more than
4000m2wasLarge. To investigate the nature of distribution of
the landslides the nearest neighbor$-functionwas calculated
for the landslide spatial patterns whether they follow a ran-
dom, normal, or clustered distribution. A multitype Strauss
model was 	tted and the AIC was determined by applying
the optimum interaction radii. To improve model 	tting,
various geoenvironmental factors like lithology, slope, aspect,
lineament density, drainage density, weathering, soil depth,
terrain units, road bu�er, and land cover were considered
as covariates [30]. Lithology, road bu�er, terrain units, land
cover, and drainage density were helpful in signi	cantly
reducing the AIC. �e 	nal susceptibility map was created
by including these as explanatory variables for the landslide
spatial pattern. In this study the Spatstat module was used in
the R so�ware for spatial statistical modeling [20].

4. Results

4.1. Distance Curves. �e temporal distribution of Large and
Small landslides in the area during 1982–2009 is shown in
Figure 2(a). �e area apparently contained more Small land-
slides in the early years than in recent years. �is indicated
that major landslides were subsequent to the occurrence
of Small landslides as could be con	rmed during the 	eld
survey. However, the occurrence of Large landslides could
also be due to the regional geomorphological settings and
modi	cation of slopes in later years in this area. Figure 2(b)
indicated the spatial distribution of the multitype point pat-
tern of Small (represented by circle) and Large (represented
by triangle) landslides in the road corridor resembling a
clustered pattern.

�e intensity was inhomogeneous throughout the road
corridor as shown in Figure 3.�e estimated average intensity

of the landslide was 2.02 × 10−5 landslides m−2 with a
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Figure 1: Locationmap of study area.�e study is carried out in the National Highway Corridor of NH-108 between Bhatwari and Gangnani.
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Figure 2: (a) Temporal distribution of Small (solid bar) and Large
(dashed bar) landslides in the study area between 1982 and 2009
and (b) the spatial distribution of Small (represented by circles) and
Large (represented by triangles) landslides along the road corridor
with UTM coordinates.

maximum intensity of 6.00 × 10−5 landslides m−2 and a

minimum intensity of 0.5 × 10−5 landslides m−2. �e single
order intensity clari	ed that the area was prone to landslides
at a given point of time though the intensity varied from
south-east to north-west. High concentrations of landslides
occurred in the north-eastern region.

For the second-order characterization of the landslide
data the pairwise distance%-functions were plotted to ascer-
tain the nature of distribution of the landslides.�e simulated
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2 × 10
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1 × 10
−05

Figure 3: Landslide intensity for the road corridor. Average intensity
equals 2.02 × 10−05 landslides per m2.

curves for di�erent estimates of%with edge corrections were
plotted well above the theoretical line indicating clustering of
landslides (Figure 4). In addition, it was clear from Figure 4
that the Small landslides were spatially correlated to large
landslides within the distance of 1 km.

Next, the$-functionswere used for themultitypemarked
point patterns of landslides. Figure 5 presented a graphical
interaction of the Small and Large landslides. Figure 5(a)
showed the cumulative distribution of the nearest neighbor
distance of each Small landslide from a landslide of the same
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Figure 4: %-functions for interaction of Small and Large landslides with theoretical values for clustered distribution (blue line) lying below
the simulated curves (black, green, and red lines).

type. �e estimated curve for the nearest neighbor distances
laid well above the curve of the Poisson process, indicating
clustering. �e maximum interaction radius as shown in
the 	gure was 80m, whereas a sharp rise of the $-function
occurred at distances above 30m.�ese indicatedmore land-
slides in a close vicinity. Figure 5(b) revealed the observed
cumulative distribution pattern of the distances from Small
landslide to its nearest neighbor landslide of type Large. Here
also clustered pattern was observed as all the curves are
above the curve of the Poisson process. Figure 5(c) showed
clustering of the Large landslides around the Small landslide
within distances of 80m. Clustering of Small around Large
landslides was di�erent from the clustering pattern of Large
around Small landslides. Apparently, the occurrence of Small
landslides around and following large landslides di�ered
from that of large landslides around and following Small
landslides. Large landslides were tightly clustered around
Small landslides.

Figure 5(d) indicated the clustered pattern of Large
landslide as the plotted $-function is above the curve of the
Poisson process. Many large landslides however were tightly
clustered within radii of 80m. �erefore, the $-function
plotted in Figure 5 clearly indicated the clustering of the
landslides along the road corridor.

4.2. Model Fitting. It is a common practice to determine the
interaction radii by observing$-function values between the
di�erent pairs of points. �ere is no single optimal way to
determine the interaction radii for themultitype Strauss point
pattern that 	ts to a dataset [20]. �e following matrix was
determined interactively for the interaction radii that satisfy
the best model 	t:

#�� = [10 19
19 105] . (13)

�e values in (13) suggested that the distance for the optimum
interaction of Small and Large landslides in the study area
equaled 19m. Estimation of the interaction radii is one of the
requirements for 	ttingmultitype Strauss pointmodels. A�er
trying the di�erent Strauss model for di�erent interaction
terms, the model in which the intensity was log linear
function of the Cartesian coordinate was selected as the
appropriate one. Since landslide is a natural phenomenon of
slope failure the underlying cofactors practically follow a log
linear relationship with the landslide occurrence data. �e
model output shown in Figures 6(a) and 6(b) represented a
log linearmodel with amultitype Strauss process of Small and
Large landslides with AIC equal to 1416 (Table 1). Figures 6(a)
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Figure 5: Nearest neighbor$-function for interaction of Small and Large landslides showing the distribution of landslide data.�e theoretical
values (blue line) lies well below the simulated curves (black, green, and red lines) indicating clustering of the data.

and 6(b) depicted that the in�uence of both Small and Large
landslides and their intensity was higher towards the valley
portion in the upper half of the road corridor.

Next, we 	tted the model for various numbers of covari-
ates adding sequentially andmonitored the AIC. Twomodels
are signi	cantly di�erent if the di�erence of their AIC is at
least 2 [31]. Various covariates were explored during model
	tting in order to reduce the AIC to identify the best model.
�e covariates that contributed to a signi	cant decrease
were maintained. �e covariates that were 	nally selected in
the model were the causal factors for the landslides in the
area. Lithology, land cover, road bu�er, drainage, and terrain
signi	cantly reduced the AIC.�e resultant model including
these covariates along with the landslide density re�ected
the susceptibility of the area to landslides. �e model was
implemented as

JK�*L = ��4 (M, ∼ � + O + L-"ℎ4P� + L�4P�
+ #KP�4P� + �#P-�4P� + Q*K4P�, �KVP#-P"*R
= L-R" (L-"ℎ4P� = L-"ℎ, L�4P� = L�L�, #KP�4P�

= #KP���SS1, �#P-�4P� = �#P-�, Q*K4P�
= Q*K4) ,
J�L"-T"#P�RR (� (“PT4PLL”, “�BP#Q*”) , #)) .

(14)

Fitting this model we obtained the corresponding parameter
values listed in Table 1 with AIC value equal to 1395.

�e estimated interaction parameters 	�� for the models
were 6.16, 0.56, and 1.86 for the Small-Small, Small-Large, and
Large-Large interactions, respectively. Interaction parameters
of the Small-Small and Large-Large landslides had values
larger than 1, thus showing clustering. Small-Large land-
slides had an intensity value below 1 suggesting inhibition.
�e detail estimated parameters of the 	tted intensity are
presented in Table 1 and the 	tted density outputs with all
signi	cant covariates are presented in Figures 6(c) and 6(d).
�e covariate analysis showed that lithology, road bu�er,
drainage density, and terrain units positively in�uenced the
outcome of the model whereas land cover had a negative
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Figure 6:Map showing themultitype Straussmodel 	tted to the landslide data for (a) Small (represented by circles) and (b) Large (represented
by triangles) landslides using a glm function and 	tted density functions to landslides along with the signi	cant covariates data for (c) Small
and (d) Large landslides to show the spatial variation of landslide susceptibility within the study area.

in�uence in the 	nal model. Further, the overall intensity was
increasing because of the in�uence of the covariates that act
as causal factors for the occurrence of landslides.

4.3. Comparison of the Model Output. �e evaluation of
the model was done by comparing the Receiver opera-
tion characteristics (ROC) curves generated for the logistic
regression model and the Strauss point process model. A
ROC curve, also called success rate curve, was generated
to analyze the success of the developed model for landslide
susceptibility. By using the ROC curve, success was assessed
by comparing the calculated probability values vis-à-vis their
actual present condition. �e area under the ROC curve
(AUC) characterizes the quality of a prediction system by
describing the system’s ability to anticipate correctly the

occurrence or nonoccurrence of prede	ned “events” [32].
True positive rates (sensitivity) are compared against false
positive rates (1−speci	city) to assess the prediction accuracy
by the models. �e ROC curve is shown in Figure 7.

�e area under the curve (85.0% for Strauss model and
79.6% for LRmodel) implied a higher success rate for Strauss
model, even with same sets of variables. Further, the ROC
curve for the Strauss model showed a stable increase in the
sensitivity as compared to the LR model 	nally achieving the
higher accuracy. �is indicated the higher sensitivity of the
Strauss model to the output probability.

4.4. 	e Multitype/Hard Core Strauss Point Process Model.
Table 2 shows the 	tted coe�cients and the AIC values
for the multitype/hard core Strauss point process model. As
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Table 1: Coe�cients and AIC for the 	tted models multitype Strauss model.

Intercept � O Covariates
AIC

Lithology Land use Road bu�er Drainage density Terrain units

Model 1.03 × 104 4.83 × 10−3 −3.43 × 10−3 — — — — — 1416

Model + 1
covariate

1.14 × 104 5.19 × 10−3 −3.78 × 10−3 1.82 × 10−1 — — — — 1414

Model + 2
covariates

1.11 × 104 5.02 × 10−3 −3.67 × 10−3 1.85 × 10−1 1.28 × 10−1 — — — 1412

Model + 3
covariates

8.92 × 103 4.15 × 10−3 −2.95 × 10−3 1.73 × 10−1 −1.14 × 10−1 8.23 × 10−1 — — 1409

Model + 4
covariates

8.64 × 103 4.06 × 10−3 −2.86 × 10−3 6.98 × 10−2 −1.15 × 10−1 7.40 × 10−1 7.79 × 10−1 — 1401

Model + 5
covariates

1.13 × 104 5.07 × 10−3 −3.72 × 10−3 3.18 × 10−2 −1.14 × 10−1 5.48 × 10−1 4.30 × 10−1 1.66 × 10−1 1395

Table 2: Coe�cients and AIC values for the 	tted models multitype Strauss hardcore model.

Intercept � O Covariates
AIC

Geomorphology Drainage Land use Drainage density Terrain units

Model 1.20 × 104 5.42 × 10−3 −3.96 × 10−3 — — — — — 1379

Model + 1
covariate

1.51 × 104 6.56 × 10−3 −4.95 × 10−3 2.29 × 10−1 — — — — 1374

Model + 2
covariates

1.43 × 104 6.26 × 10−3 −4.68 × 10−3 1.79 × 10−3 4.68 × 10−1 — — — 1361

Model + 3
covariates

1.47 × 104 6.40 × 10−3 −4.81 × 10−3 1.93 × 10−1 3.79 × 10−1 −1.57 × 10−1 — — 1356

Model + 4
covariates

1.26 × 104 5.57 × 10−3 −4.14 × 10−3 1.67 × 10−1 4.37 × 10−1 −1.59 × 10−1 6.67 × 10−1 — 1355

Model + 5
covariates

1.28 × 104 5.66 × 10−3 −4.21 × 10−3 1.66 × 10−1 4.13 × 10−1 −1.61 × 10−1 6.42 × 10−1 1.08 × 10−1 1357

in the multitype Straus point process model, initially the
inclusion of covariates improved the model, as the AIC takes
signi	cantly lower values at each step. �e last two steps,
however, show that the model with three covariates is to
be preferred above the model with four and 	ve covariates.
�e best 	tting model thus has geomorphology, drainage
density, and land use as the signi	cant covariates. As both
geomorphology and land use are categorical variables, not
much value can be assigned at present to the positive or
negative values observed.

5. Discussion

Landsliding is a geomorphic slope failure process triggered
by natural as well as anthropogenic factors and is controlled
by unfavorable terrain conditions that act as causal factors.
To understand the landslide mechanism in an area and to
identify the unknown factors a�ecting their occurrences, sev-
eral geoenvironmental variables are included in the analysis
[32]. �erefore, the problem of spatial zonation of landslides
lies in the landslide inventorization, as well as in their
integration with causal factors in a conceptual framework.
Various statistical methods have been applied successfully
to model the landslide susceptibility mapping [26, 33–37].

All these methods handle the landslide data as spatially
independent locational variables, whereas a point pattern
analysis allows preserving the level of detail o�ered by the
landslide data itself. �is is achieved through inter-landslide
interactions and variation in the relative frequency of the
pairs of landslides as a function of their position.

A multitype Strauss point process model was used in
this study with ten explanatory variables, including mor-
phological, lithological, and structural covariates. �e $-
function was able to classify landslides as a clustered pattern.
�e AIC of the 	tted model was calculated for each of the
covariates and signi	cant oneswere recorded [38]. Covariates
slope, aspect, soil, weathering, and lineament density did not
reduce the AIC signi	cantly. Covariates lithology, land cover,
road bu�er, drainage density, and terrain units signi	cantly
reduced AIC of the 	tted model and were included in the
model to demonstrate the landslide susceptibility of the
area. �is study showed that the Strauss point process is
capable of modeling the clustered pattern of landslide data
for identifying causal factors for susceptibility zonation. �e
landslide database typically used by experts for landslide
susceptibility mapping includes a comprehensively prepared
landslide inventory map supported by geoenvironmental
variables that cause landsliding [30, 39]. �e Strauss point
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Figure 7: Receiver operation characteristics (ROC) curves repre-
senting logistic regression model (dash lines) and Strauss model
(solid line). Areas under the curve (AUC) are equal to 0.796 and
0.85, respectively.

model uses such data in a generalized linear modeling
framework to show the areas that are susceptible to landslides.

�e Strauss point process model discussed here can be
applied to any set of landslide database for characterizing
its inherent property for susceptibility zonation. �is study
presented a case for analyzing landslide data as well as
identifying signi	cant variables for generating a landslide
susceptibility scenario with available information. However,
the method is data driven and, therefore, the reliability of the
results ofmodeling is always associatedwith the quality of the
input dataset used in the model development.�us, accuracy
of the outputs invariably depends on the accuracy of the
input dataset. For this study the centroid of landslide points
were marked which in a way helped to reduce the positional
uncertainty of landslides. �e landslide data were converted
into a point pattern with size (area) of landslide as mark of
each landslide making it a marked point pattern. �e model
used the 	rst-order (intensities) and second-order (interac-
tions) e�ects of point pattern sequentially for characterizing
the landslides. �e required parameters like interaction radii
were derived iteratively by running the model several times.
A�er model 	tting, the corresponding AIC values have been
calculated for the 	tted model. �e model 	tting with AIC
showed that the covariates like lithology, land cover, road
bu�er, drainage, and terrain units were signi	cant to the
	tted model. All the signi	cant covariates were combined
with the landslide data in the multitype Strauss model to
generate the map showing areas susceptible to landslides.
�e nearest neighbor distance analysis carried out for point
pattern data of landslides opened an opportunity to include
the spatial distribution of landslides in an alternate fashion

to the existing methods. Model 	tting was carried out by
means of GLM functions including a combination of distance
correlation functions, model 	tting, and simulation which
helped in describing and understanding the landsliding
pattern in detail.

Several physical and terrain parameters in�uence the
landslide process. To understand the landslide occurrence
mechanism, these parameters were analyzed systematically.
All the factors invariably had control on the landslides
occurring along natural slopes. Small landslides occurring
exclusively along the cut slopes of road corridor, however,
might be controlled mainly by anthropogenic factors rather
than by the natural terrain factors. Model 	tting through AIC
was a goodway to address the sensitivity of the 	ttedmodel to
the landslides data as well as to the signi	cant covariates data.
For the Strauss model being a Gibbs model, AIC acted as a
goodness-of-	t of the model to the data for global sensitivity
assessment of the susceptibility model.

Landslides are spatially discrete events and are con-
trolled by number of geoenvironmental factors that are
not straightforward to be easily modeled using statistical
methods. Fitted models of the multitype Strauss process to
landslide occurrences re�ected the nature of model 	t to
the data. �is mathematical model is the model that best
	t the data; however, it is not necessarily the best model to
serve in situations of practical use. �erefore, it is essential
that the 	tted model keeps pace with a priori knowledge for
consistency. For those reasons we also 	tted the multitype
Strauss hardcore model. �is showed slight di�erences with
the multitype Strauss model, as the geomorphology now
more stands out as the most explaining covariate, besides the�- andO-coordinates.�emodel provided a slightly better 	t,
that is, lower AIC values.

A point pattern analysis of the landslide data was helpful
in understanding the intensity of the landsliding spatially
as well as relating the interaction of the geoenvironmen-
tal variables in each landslide location with the processes
generating the landslide distribution patterns. In addition,
an automated module created by considering landslides as
point data reduced the bias of sampling errors. In landslide
studies more emphasis is given on 	eld work and 	eld data
collection and research. Little has been done so far towards
dissemination of information and facility for nonexperts.
�e needs of the disaster mitigating agencies working in
remote hazardous front where no geomorphology expert can
be made available are critical as also in case of adventure
travelers or groups of pilgrims in a hilly terrain. Hence a
data driven model can be useful to provide information on
susceptibility of landslide in a particular region.

�e factors that control landsliding in a particular region
largely depend upon the geoenvironmental setup of the area.
Point pattern analysis of the landslide can be helpful to urban
planners in understanding the distinctive geological and
geophysical characteristics at individual landslide location.
�ese provide insight into the processes behind the landslide
distribution patterns. �e interaction between the landslides
and their causal factors derived bymeans of the point process
model as shown in this paper can be useful to address the
management practices in hazard prone areas. It was observed
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from the area in this study that geoenvironmental factors
related to rock types and their weathering conditions, land
use patterns, and �ow of water, occurring both at the surface
and at the subsurface, in�uenced the occurrence of land-
slides. �e marked point pattern analysis technique had the
advantage of including the size of landslides into the analysis,
as well as their interactions amongst themselves and with
the covariates controlling the landslides. �is made a unique
combination to address the locations and time of occurrence
of landslides in particular area leading to adopt suitable
mitigationmeasures like slopemodi	cations, construction of
retainingwalls andwater channels, a�orestation and alternate
route alignments, and so forth.

6. Conclusions

A multitype Strauss point process model applied in this
study successfully addressed the intensity and spatial inter-
actions of landslides by means of the distance correlation
functions, model 	tting, and simulation. We concluded that
this model enriches the set of statistical methods that can
comprehensively analyze landslide data. It expresses prop-
erties inherently associated with each landslide and their
interactions with landslides in the neighbourhood. As such,
point pattern models are advantageous over GLM based
models that perform a model 	tting and simulation for
landslide susceptibility analysis. �us, our study adds to
already existing statistical methods for landslide susceptibil-
itymapping.Model 	tting also demonstrated the signi	cance
of covariates. In this way, signi	cant causal factors could
be extracted that help to better understand the pattern of
landsliding in an area.
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