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We report the results of the nonrelativistic application of the quark-confining string model to the study of

Q spectroscopy. This string model is defined by a relativistic-invariant, gauge-invariant, and

reparametrization-invariant action describing quarks interacting with color SU(3) gauge fields. The model has

no gluonic degrees of freedom, but has instead string degrees of freedom. Quark masses and the quark-gluon

coupling constant are the only parameters of the model. In the SchriMinger limit and in the absence of light

quarks, the longitudinal modes of the quark-antiquark pair and the rotational modes of the string for a
meson reduce to the charmonium model with a linear potential. String vibrations, which are absent in the

charmonium model, provide additional levels. They start coming in at around 4.0 GeV; the density of states

increases as an exponential function of the mass. The two lowest vibrational levels in the e +e channel have

energies at 4.0 GeV and 4,4 GeV. Relativistic corrections are estimated to be small for the low-lying states

so that the Schrodinger approximation is justified. We consider this application to Q spectroscopy as a test of
the model.

I. INTRODUCTION

The discovery' of' the g family of particles marks
an important turning point in the development of

particle physics. Recent development' strongly

suggests the existence of the charmed quark pro-
posed by Glashow and collaborators, ' and the g
particles are charm-anticharm quark bound states.
The states of the tI) spectroscopy are very narrow;
their masses are accurately measured and a lot
of their properties are known. Their spectroscopy
therefore provides an ideal testing ground for any

comprehensive model of hadron dynamics.
The g states appear to be most naturally de-

scribed as nonrelativistic bound states of a
charmed quark and its antiquark, as first sug-
gested by Appelquist and Politzer. ' It is clear in

this treatment that the dominant nonrelativistic
potential between the quarks is linear. In the non-

relativistic approximation, the bound system may

be described by the Schrodinger equation'

1 &' f(l+ 1)
, +Ir+, [~e(r)]=z[rc(r)],

M&r Mr'

where E is the mass of the state, M is the

charmed-quark mass, k is the strength of the

linear potential, and C is the radial part of the

wave function for a state of orbital angular mo-
mentum E. This we refer to as the charmonium
model.

Equation (1.1) describes a set of radial and or-
bital excitations of g states with no spin-orbit or
hyperfine splittings. Such splittings presumably
arise as relativistic corrections in some relati-
vistic theory to which Eq. (1.1) ls an approxima-
tion. This simple picture does not seem to ac-

count for the rich spectrum of states observed be-
tween 3.9 and 4.5 GeV ih the e'e channel; it pre-
dicts only one state (-4.15 GeV) in this region.

There are many other terms one may add to the
above equation (e.g. , additive constant, Coulomb,
square well, etc.). However, their introduction
requires the introduction of new parameters, in
addition to the two, namely k and M, already pres-
ent in Eq. (1.1). Furthermore, the contribution of
any additional terms is probably of the same order
of magnitude as the relativistic correction terms
(e.g. , the spin-orbit splitting). Hence the only way
to decide if the above linear potential term needs
modifications or not is to evaluate the relativistic
corrections, among which are the fine and the
hyperfine structures.

In the charmonium model, per se, we a,re unable

to deduce relativistic corrections unambiguously,

or to understand the origin of the linear potential.
The only reliable way to investigate this problem
is to write down a relativistic invariant model
which in the nonrelativistic limit gives Eq. (1.1)
for a quark-antiquark bound state. One can then

pick up all the relativistic corrections and evaluate
them perturbatively.

A more fundamental issue is the origin of the
linear potential. To describe the potential in rela-
tivistic language, fields must be introduced. It is
well known that gauge fields in one space a,nd one

time dimensions have a linearly rising Coulomb

potential. However, we live in four-dimensional
Minkowski space.

It has been suggested that the local field theory
of quarks interacting with color Yang-Mills gauge
fields, namely, quantum chromodynamics (QCD),
may give stringlike solutions, with a hnear po-
tential in the nonrelativistic approximation. Me-
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sons with heavy quarks then obey Eq. (1.1) in the

leading approximation. Unfortunately, to demon-

strate stringlike hadrons as solutions of QCD is
extremely difficult. ' Equally difficult is to calcu-
late hadron properties from @CD in a reliable

way. An easier task will be to start from a pre-
cisely defined, relativistic-invariant fi eld-theo-

retic model where quark confinement is explicit,
and where the linear potential arises straightfor-

wardly. To such a model we address ourselves.
In this paper, we consider the dynamics of non-

relativistic heavy-quark bound states in the

"quark-confining string" (QCS) model recently

proposed by one of us {S.-H.T.).' This is a clas-
slcRlly Lorentz-invariant, gRuge-iDVRriRDty Rnd

repax'ametrization-invariant model of quarks and

color SU(3) gauge fields interacting in 8, two-di-

mensional world sheet {i.e. , string). The color
dynamics of this model is analogous to that of two-

dimensional QCD; in particular, all physical states
are color singlets; there are no independent gauge-

fleld degx'ees of freedom, Rnd R llneax" potentiRl

arises naturally from the color Coulomb foxce.
There are additional string degrees of freedom

desex'ibing the embedding of the string in Min-

kowski space. The quarks Rre DirRc fieMs in Min-

kowski space.
IQ this wox'k we lnv'estlgRte only the application

of the QCS model to the g spectroscopy in the non-

relativistic limit. ' We ignore all the light quarks

and consider only the charmed quark. This we

refer to as the charm string. %6 shall assume the

charmed quark to be heavy and the quark-gluon

coupling e small enough so that a Schrodinger ap-
proximation is valid for the charm-anticharm

quark bound system. The relativistic effects are
to be introduced as corrections. %6 discover that

even in this nonrelativistie limit, there are new

features of the string model that are absent in the

char monlum model.
Pictorially, the g meson is composed of a quark

and an antiquark linked by the appropriate color
electric flux line (see Fig. 1). This electric flux

defines the string. %hen the string is straight
(note that straightness is meaningful only in the

nonrelativistic limit), the electric field is essen-
tially a constant. The string and the quarks can

rotate as a unit. Ignox'ing its vibrational motion„
we obtain from the QCS model the Schrodinger
equation (1.1) where k=2e'(3. However, the

string can also vibrate. These vibrational modes

provide new states beyond the charmonium pic-
ture. In the e'e channel, the two lowest vibra-
tional levels lie at 4.0 and 4.4 GeV.

As the QCS model is a relativistic model, all
relativistic corrections are, in principle, deter-
mined. For the lowest P state, the n(Ez, —EI,)
splitting is of the order of 0.14 GeV. This indi-
cates that the Schrodinger treatment of the g spec-
troscopy is a valid approximation. However, a
complete evaluation of the spin-orbit coupbng,
hyperfiQ6 splittlngs, and oth6x' relRtlvistlc effects
is nontrivial and is beyond the scope of this paper.
Throughout we emphasize the physics of the string
picture instead of mathematical rigor. This work
is organized as follows. The QCS model is reviewed

in Sec. II. %6 also discuss our choice of gauge
and parameters. In Sec. III and Sec. IV we con-
sider the charm string in the absence of vibra-
tional modes. In the Donrelativistic limit, we show

how the quantization of angular momentum emerges
from the rotation of the string. Then the ehar-
molliUIll equatloll (1~ 1) 1'esul'ts. It ls allluslIlg 'to

note that quantum mechanically, the ground state
of the charm string has a spherically symmetric
wave function. In Sec. V we study the lowest vi-
brational modes. %'6 calculate the vibrational en-

ergy as a function of the distance between the quark
and the antiquark. This is then treated as an ef-
fective potential V„(r) inserted into the bound-state
equation. Besides a summary, See. Vl also in-
cludes a discussion of the vabdity of the Schro-
dinger approximation, and some of the properties
of the QCS model beyond those studied in this
work.

FIG. 1. The physica1 picture of a meson charm string.

II. THE QUARK&ONFINING STRING

A. Review& and notations (Refs. 7, 9)

The siring we consider is a (1+1)-dimensional
world sileet, of lllfilll'te extent» embedded 111 (3+ 1)-
dimensional Minkowski space. It may be described
by the coordinate function R"(u ), where g is a
Minkowski index (0, 1,2, 3) and {u', u'J gives an

b t a y d'nat at' f th ld hect. The
flat geometxy of Minkowski space induces R

Riemannian geometry in the internal coordinate
space {u, c» =0, 1].. Let l" be the tangent vector
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to the sheet in the u direction,

(2.1)

d'using is the invariant volume element on the
sheet. T', a = 1, ... , 8, are the matrix generators
of SU(3) color,

Then we define
[Ta Tb] &f

Zve (2.7)

gas ~a ~8 &

g=detg &.
(2.2)

8, (u) (a = 0, 1) are color gauge fields in the inter-
nal coordinate space,

(2.6)
g 8 is the induced metric in the internal coordi-
nate space, and it will be used along with its in-
verse, g, to transform between covariant and

contravariant tensors.
At each point on the sheet, we introduce two unit

(spacelike) normal vectors n", (l = 1,2), n, n,
=n, v =0. We have (g, '=-1)

~u7~u g ZuZu (2 3)

where 0» is the Minkowski metric (1,-1, -1, -1).
Also

4 8
~a(8 8~a

~Q

-[ "Bj (2.4a)

Bv
nii~=hgf Br +e,W~&v~ .

( "8) is the usual Christoffel symbol,

( as)= 2& (8'avi 8+&seta &asia) i

(2.4b)

A iig=A is+{8~)A

%e also have a covariant derivative for Dirac
spinors, "

and fg, 8 is a symmetric tensor for each /, whose

principal values are the inverse radii of curvature
of the sheet in the n, direction. The torsion v

+ pl
i

ply and E'
j g & gg 1 We shall use a vertical

bar to represent ordinary derivatives and a double

verticle bar to represent covariant derivatives:

8A
A. |8=

and may be written as E, 8=8,e 8, where e Sis
the unit antisymmetric tensor in two dimensions
(e« = ~g) and 8, is the color electric flux (a
scalar).

The action (2.6) is invariant under color gauge
transformations:

T'8,„(u)- U(u)[T'8, (u)]U '(u)+ —
Ui (u)U '(u),

(2.9a)

where U(u) is any element of SU(3). The action
(2.6) is also invariant under general coordinate
transformations of the two-dimensional (u, )
space,

u —V™(u),

g(u) -g(v),
R"(u)-R"(V),

gys
8,.(u)-, . 8.,(V).

(2.9b)

The equations of motion of the theory follow di-
rectly from the variation of the action (2.6) with

respect to g, 8, and R":

[g"(fD. ev"8,.—) M, ]y, -

Coordinate invariance is manifest once we note the
identity

ppD =8 —
2

0 T )17fyllii g (2.6) (2.10)

The QCS model is a model of interacting color
quarks and gauge fields defined on the string. The
system is defined by the action

S= d'u -g

(2.11)

O=P "I) (2.12)

where P "is the covariant energy-momentum ten-
sor

(2.6)

PaP gas& I +~ +Pea
8

2

(2.13a)

y (u), for each flavor j, is a four-component Dirac
field which is also in the fundamental representa-
tion of the color gauge group SU(3); g =y„7 ".

r"= 'z *g",pyy —' a' ss '7
)
q-
(2.13b)
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V;= E g lf,
—lf" —eB 'T }'p

f
f l 2

(2.13c)

E,~~+ef„+, E = ee„aj-, .

This determines B, up to gauge transformations,
in terms of the quark color charge density; as we

expect, the (1+1)-dimensional gauge field has no

independent dynamical degrees of freedom.
The string equation of motion is simply the local

conservation of energy-momentum. We note that

the tangential components in Minkowski space of

the equation P "t~ =0 follow from the field equa-

tions (2.10) and (2.11). This is a trivial conse-
quence of coordinate invariance, since variations
of R" (u ) along the sheet are equivalent to coordi-
nate transformations. The nontrivial string equa-

tions of motion are the two normal components of
P )]~=0:

(2.14)

The left-hand side is the net force density on the

sheet arising from the field stresses on it, and

must vanish if the sheet is freely moving.
We remark, as discussed in Ref. 7, that the

color electric field energy plays precisely the

same role in the stress tensor T 8 as does the
string constant 1/2vo." in the conventional string.
The term &Z, g" provides a constant energy per
unit length along the string.

We expect that this dynamical generation of the
string constant will have profound effects on the
spectrum of states in the theory. In a completely
classical picture, with quarks in localized wave

packets, we expect that noncolor-singlet states
will have infinite energy, since —2E, ' will be non-

zero along the entire infinite string, while color-
singlet states will have a nonzero string constant
only between quark and antiquark (Fig. 1). The

Equations (2.10) and (2.11) are the natural gen-

eralizations of the corresponding flat-space field

equations to a curved two-dimensional sheet. The

differential operator

g"(D +ieB, 1 ) =t & + a) l„+ZeB,j"T'
is the covariant spinor derivative with respect to
both the general coordinate group and SU(3) color.
The Dirac matrices P, g' replaces the yo, y' which

would be present in flat two-dimensional Mink-

owski space. The term 7 "~~ is the mean curva-
ture vector of the sheet. Its presence in Eq. (2.10)
reflects the sensitivity of the spin of the quark

field to the curvature of the string. A spinor
forced to move along the curved string will. pre-
cess.

The equation of motion of the gauge field (2.11}
can be rewritten as

string can carry energy-momentum only in the

region between qq, and thus the quarks appear to
be at the ends of the (physical) string.

For a baryon, each of the two ends of the phy-

sical string must also end with a quark.

R„(u ) =(t, R(o, t)),

gpss 'Tp Ty R R 0 ~

Hence the induced metric g 8 becomes

(2.15}

(2.16)

(1— 0

g. s=
I

0 -R'

and

(F' 0)
( 0 -JE2)

(2.17)

(2.18)

In this coordinate system, the coordinate "time"
u' has been chosen to agree with the time, R', in
Minkowski space (in a particular Lorentz frame).
a has been chosen so that the instantaneous spacial
velocity of the string at a point of fixed 0 is nor-
mal to the string. The coordinate system is still
not uniquely fixed as we still have invariance un-

B. Coordinate and gauge choices

The gauge invariances (2.9a) and (2.9b) of the

theory reflect the presence of nonphysical, "gauge"

degrees of freedom in the action (2.6). Indeed, all
components of B, , and the tangential components

of the string motion are nonphysical. One may ap-
proach the quantization of the theory either by

quantizing "covariantly" and showing that nonphy-

sical degrees of freedom decouple, or by elimi-
nating the redundant degrees of freedom from the

outset at the expense of manifest gauge, coordi-
nate, and Lorentz invariance. We shall take the

latter approach.
We will not discuss a fully quantized theory here.

Our strategy will be to remove all nonphysical de-

grees of freedom through gauge choices, with the
focus of maximally simplifying the Dirac structure
in the rest frame of a heavy qq system.

Our notation is such that a, b, c, d, . . . refer to
the group index, p. , v, A. , p =0, 1,2, 3 refer to the

Minkowski space index, and o. , P, y, 5=0, 1 refer to
the string parameters. The p. =0 and n =0 compo-
nents are timelike. The flavor index ) shall be
suppressed for convenience.

We shall choose coordinates (u' = t, u'=&r) by re-
quiring
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(~gF ) =«-g3 —eBoxE &-g (2.21)

der a -f(s); s will be specified more precisely in

Sec, III. The choice of coordinates ere have made
manifestly breaks Lorentz invariance.

We now turn to the specification of an SU(3}
gauge in the coordinate system (rr j we have

chosen. Let us choose the axial gauge

(2.19)

The gluon equation (2.11)becomes ( j "=It'r'"T1t)

~g F '~~ =(&-gs'8,)'

=«-g 3

w 0

le by a local transformation S(a, t)

y(s t) =S(s, t)X(s, t)

such that

(X(s, t), yt(s', t)] = 6(s —s') .
In our coox'dinate system we can write

ro» = R» = (1, rrm),

vr» = R» = (0, tr r"') I

n, »
= I'(r/, m),

n,»
= (0, r""x 4),

(2.28)

(2.29)

(2.30a)

(2.30b)

(2.30c)

(2.30d)

where we introduce the notation f = s,f= srf, f'
= 8 f = s,f, and (8 xh), =f„,Bp, . Recall that

s~(vt-gf") = I-gf
~~

. Equation (2.20) can be im-
mediately integrated to give

Bo=8 do' -g 0' j G 0'y 0' (2.22)

where the Green's function G(s, a') obeys

-s, ([-g(s)] '/'s, G(s, s')}=6(s-s') . (2.23)

Using Eq. (2.20) and (2.21), we obtain the vector
cux'rent that is conserved, 8 J =0,

&'=~i j',
J'=~-g i'+»~-g(F" Bo}. (2.25)

where the symmetrization fF",8 j,= PorxB —8
x F" is introduced in anticipation of the require-
ment that 7' is Hermitian in the quantized theory.

s

5g 2
(2.26)

which would (formally) lead to the anticommutation

relation

A(s, t), ~-g Frt'(s', t)), = ~(s -s') . (2.2'I)

The factor 1/:gr' involving the string degrees of

freedom immensely complicates the analysis of
the model in terms of g. Its oxigin is easy to un-

derstand: g~g transforms as the zeroth compo-
nent of a four-vector in Minkowski space, but as
a scalar in the internal (s, t) space. v-ger'0$, like
5(s —s'), transforms as the zeroth component of a
vector density in the internal space. This suggests
the introduction of a new Dirac field y, related to

C. Transformation of the Dirac fie1d

In principle, the quantization of the QCS model

can be realized using the Dirac constx'aint method. "
This px oblem has not been solved. In our discus-
sion we will focus on the quantum mechanics of the

Dirac fields. Canonically, the momentum conjugate
to the Dirac field is

where r and m are unit tangent and spatial normal
vectors, respectively, r'=&A'=1, R r=0, I'
=(1—r/') ' '. We introduce the transformation

1'(s, t) = U(a, t)y(s, t), U = SW, where S is a local
boost tx'ansformation and 5' is a local rotation
transformation such that

U- )OU og

U-'r(, U= -y',
U 'It U=-y' .

(2.3la)

(2.31b)

(2.31c)

(2.31d}

+ —s,(j"mxm)+ ~(r mxrr"1'}
2h

I'

2k
(2.32)

The effective Lagrangian in this fox m is conven-
ient for the nonrelativistic approximation. We

note that the derivation of the form (2.32) does not

require the explicit construction of U. Vfe need

only

2U- U=- +o r 8+a ir(r- rttxrS) ——C1X O'U h

h h

SQ'SI 5 —is I'(r" mxrtt}I

+ ' (i' rh xm')
h

and
1

U' = a, l"jr + n, i'rr'+ n, i' r/(r"'. 4 x m') ——

(2.33)

-is, I'(r" mxm')+is, (r" mxr )+is,I'r" m',

(2.34)

We find it convenient to rotate to the string frame
(via W). It is straightforward (although rather
lengthy) to show that the Lagrangian of the QCS
model can be written in terms of y as (y' = P)

ia, 1 MJI3
X r (Ph)1/2 1 (Ph)1/» P 0
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which follow from Eq. (2.31). The string equation

(2.14) in this new frame is summarized in Ap-

pendix A. In this notation the Dirac and gluon

equations (2.10) and (2.11) become

we consider completely nonrelativistic motion:
4

v = /R /
&(1 . (3 2}

(3.3)

In the nonrelativistic approximation we may choose

0 so that

+ —o (r"' mx m) +—' (r" ni x m') 1 = 0 (2.35)
2 ' 2h

+&X T X=O ~

The D1x'Rc f161d X ob6ys the anticommutRtlon r61R-

tion (2.29}.
Physically, the transformation U(o, I) brings us

from the space frame to the string frame. To de-

rive the string equation from the effective Lag-

rangian density (2.32), a Lagrange multiplier term

must be intr oduced for the constraint R R'= O. %6
shall use the string equation (2.9) given in Appen-

dix A. This I agrange multiplier term has no ef-
fect on the derivation of the Hamiltonian, or the

Dirac and gluon equations, as is obvious.

III. THE NONRELATIVISTIC LIMIT

A. The nomelativistic Hamiltonian

%6 consider the case where the quark mass M is
181ge compared to the coupling constRnt e, which

has the dimension of mass. In the bound-state

problem, it is the condition [for color SU(N),
iv= 3]

so that both h and I' can be replaced by unity ex-

cept when multiplied to the mass term. The ef-
fective Lagrangian density (2.32) becomes

BP2
i~, + in, 8~ -MP 1 ———eB, X+

Equation (2.23) becomes, to leading order

8,'G(o, o') = -5(o —o')

(3 5)

G(o, o') = -!io —o'i

so that Eq. (2.22) also simplifies to (J'=8")

Pg=8 6!0' G 0'y0' X (0' T g 0'

=8 dG G 0', 0' 0' (3 7)

Now we can derive the nonrelativistic Hamiltonian

for the QCS model:

that allows us to treat the system in the Schro-
dinger approximation. In this limit the relative
quark motion is nonrelativistic. Throughout this
work we consider only quarks with nonrelativistic
velocities in the I orentz frame we have chosen.
This restricts our study to the low-energy states.

The motion of the string away from regions
where the quark wave function is large may be
relativistic or nonrelativistic. We can see this
qualitatively from the structure of the energy-mo-
mentum tensor on the string. T", the "mass"
density of the string, is of order MX~Py where X

is large and goes to E'/2goo- O(e') where y is
small. The "tension" of the string (T")-E'/2g"
+ (i/2)Itta, B,I( is always of order e'. When y is
small, the velocity of sound (7"/T")'~' is O(1).
Therefore, the string can rapidly adjust to changes
in the position of the quarks and, we expect, will

be

straight

in the lowest-energy states. String ex-
citations ("vibrations") will, however, involve

relativistic motion of the string in regions (be-
tween quarks) where y~y is small. In this section,

Since 8; is given by Eq. (3.'I),

8' d0 =8 d0'd0 "J' O' G Cr', 0" ' 0"

+8 d0' dVV (V (0'

x s,G(o, o')G (o,o")i. ,

the Hamiltonian becomes

PMv
H = d0' y~ pM+

2
—ia&

2

+
2

dodoV'(o)G(o, o'p'(o'), (3.10)

where we have dropped the surface term in Eq.
(3.10). Dropping this term is valid only if the net
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color charge vanishes. The surface term is

e2
lim — dkr'do'V'(o') J'(o")[e(o-o')~o —o"

~]

e'A= lim Q'Q' .
A~~

If Q'10 for any a, this term contributes an infinite
energy piece to the Hamiltonian (3.8). Hence only

color-singlet states can have finite energies:

(i.e. , between quarks) has a nonzero color electric
flux line. This contributes to the Hamiltonian an
energy piece proportional to e .

In the Schrodinger approximation, the spin struc-
tures of' the quarks play no role. Since it is im-
portant for us to retain the quark-antiquark struc-
ture, we must extract this from the first term of
the Hamiltonian.

Let k and s be the momentum and spin labels
where

g(o, t) = Q [U(k, s)b(k, s)e 's'
k, s

Q'~color singlet) =cIr'g} =0 . (3.ii) + V(k, s)dt(k, s)e" '] . (3.14)

[q', Z'(o)] = rf "'Z'(o) . (3.12)

Equations (3.11) and (3.12) together give another

amusing statement,

Using the commutator of }C, Eq. (2.29), we obtain

( icI,-&, +PM)W=ER', (3.15)

Choose U and V to be the nonrelativistic solutions
of the wave equation

To argue that there is quark confinement, we

must show that the quarks and/or the antiquarks in

a color-singlet state can be pulled apart only at a
cost of infinite energy. This is provided by the
Coulomb (last) term of the Hamiltonian (3.10}. As

we shall see, the Coulomb potential between a
quark and another quark or antiquark is proportion-
al to the distance between them. This linear po-
tential completes the quark confinement. Of

course, as we pull a quark away from a color-sing-
let state, new quark-antiquark pairs can be created
as the potential energy grows.

The Hamiltonian (3.10) is composed of three (the

quark, the string, and the Coulomb) terms

dox@@-r~ sr}x+ dox &x
2

Mg'

e2

+
2

dodo'}Cr(o) T'y(cr) G(o, o' )}Cr(o')T'}C(o') .

(3.i3}
The quark equation of motion follows from the
Hamiltonian. This can be checked by taking the
nonrelativistic limit of the quark equation of mo-
tion (2.10) and the gluon equation of motion (2.11).
The nonrelativistic Hamiltonian has a clear phy-
sical interpretation. The first term describes the
motion of a quark field along the string. The sec-
ond term is the kinetic energy of the nonrelativistic
string, which involves only the mass densities of
the quarks. This immediately implies that the
string is straight because, where g PX is zero,
the string energy has no kinetic term. The last
term is the remnant of quark-gluon interaction.
The segment of the string between R(cr) and R(o')

V for E&0 .
Solving the equation, we obtain

(2' r

V= V(k, s), E= — M+
1

where 0, is the first Pauli matrix. For a free
quark field moving along a string, we have

y(o, 0) = g t
' ' ' +corrections( V(k, s)b(k, s)}

(V(k, s)dr(k, s) P

(3.16}

US111g tllls sollItloll fol y(o, t) we obtain (t1' ='tl'ar1s-

pose)

yr Py = br(o) b (o) + d t(o)d(cr),

J'=x &'x

= br(o) T'b (o) —dr(o) T „' d(o),

(3.1I)

(3.18)

where normal ordering has been introduced; fol-
lowing from the anticommutator of y, we have

{b,(cr), bIr(o')j, = 5,,5(o —o'),

{d, (cr), drr(o ')), = 5,,b(cr —o') . (3.20)

All other anticommutators among the quarks and

antiquarks vanish. The index i,j refers to the
color (i,j = 1,2, 3). The quark-gluon interaction
term is approximated as an instantaneous Coulomb
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potential term.
Performing the Foldy-Wouthuysen transforma-

tion on Eq. (3.10) to remove the n, matrix, we ob-

tain the final nonrelativistic Hamiltonian,

or

A1 pp=I V V=O
~ ~

h»o —-R (r" xm) =0 .

(3.27a)

(3.27b)

0= d b,' M
2

a.' b,

~ da(a) M- b, ') d, (a)

M
+ CtXb. Ob (X +G. o'tg 0'

2

+ — shader'J'(o G o, v' ' 0' (3.21)

R(o, t) =or"(t)+R, , (3.28)

then the string equation (3.27) becomes (r'=1)

r" xm=0 „

r" (r"xm) =0,
where a constant rotation is a solution.

A constant translational motion is clearly a solu-
tion. For rotation we consider

where J'(o) is given by Eq. (3.18). The color in-
dex is summed in the Hamiltonian. d(o} and b(o)
annihilate antiquarks and quarks, and dt(o) and

b~(o) create them, respectively. Explicitly

b, (o)

b(o) =- b, (o) '

b, (o)

(3.22)

This implies that a string with mixed flavors can

also be an eigenstate of the Hamiltonian.
The Hamiltonian (3.21) describes both mesons

and baryons. For a meson state with energy E„

It is straightforward to extend to more than one

flavor, each with mass M~. The Hamiltonian (3.21)
is valid provided 2e'(3M, . ' «1 for each flavor j.
In the presence of flavor

ga pa ga (3.23)

IV. THE CHARMONIUM PICTURE

In this paper we limit ourselves to investigate
the meson state (3.24). Physically it is clear that

the string can translate, rotate, and vibrate with

the quark and the antiquark at the two ends. In

this section we shall study the string in the ab-
sence of vibrational modes; in this case, the string
is essentially straight. To show that the charmon-

ium equation (1.1) emerges from the string pic-
ture, we proceed via three steps: First, we quan-

tize the rotational modes, tM.s gives simply the

standard discrete angular momentum; then we ob-
tain the Schrodinger equation for the probability
amplitude along the string. Finally we derive the

relation between the bound-state wave function in
Minkowski space and this amplitude along the

string.

IM) = fd da b(, ')b,')a)da) ')lb),

fflM&=E„IM& .
(3.24)

R(o, t) =or(t)+x(t}, (4.1)

A. The string modes

To separate the translation and the rotation, let

For a baryon state with energy E~

)bb) =fdad 'da'bla, a', a")ba) )ba( ')bal ")lb),
db

(3.25)

where r" (t) is a unit vector i"=1. This is the form

of the solution from the string equation. The de-
rivatives are

R (o', t) = or" (t)+ x(t), (4.2a)

Hl»=E, I» . R'(o, t) = tb(t) . (4.2b)

Proper color symmetrization must be incorpor-
ated.

Let us turn our attention to the string motion.
Physically the string can translate, rotate, and vi-
brate. Since segments of the string may move at
relativistic velocities during vibrations, we can
discuss only rotations and (Galilean) translations
in the nonrelativistic limit. The string equation
given in Appendix A is simplified considerably in
the nonrelativistic limit where all spin effects drop
out. In the leading-order approximation,

The constraint (2.20) becomes

R R'= —(r"')'+x
2

=x ~ P=O. (4.3)

~ ~

H~ = dv n~ cr +n„(v —0'r"'+2O'y" x+x'

(4.4}

Now, the string term in the Hamiltonian can be
written as

b), oo 0 X X)b), oo (3.26) where
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n, (o) = btb, (o),

(4.5)

n, (cr) = dtd, (o} .
Since r" (f) and x(f) both are independent of cr, Eq.
(4.4) can be rewritten as

~ 0 4

Hz =
~ IP+ Zf"x+ —,P, x

P'p=O,

u 5=0.
(4.16a)

(4.16b)

8. Quantization of the angular momentum

Following Eqs. (4.3), (4.13), and (4.14), we have
the following constraints:

I= doMo' n v

Z= doMon o

dc&Me 0

(4.6)

(4.8}

As a consequence, the canonical commutation rela-
tions of r" and x with their respective momenta p
and 5 are nontrivial. The commutators must be
introduced in such a way that the constraints (4.16)
remain val1d,

Physically the momentum ii generates transla-
tion normal to r and the momentum p generates
rotation. To satisfy Eq. (4.16a) it is convenient to
introduce a new operator L such that

p=-rxl . (4.17}
n(o) =n, (o)+n, (o) . (4.9)

H= der b~ M — '
Q&+d~ 3f

I, S, and p, are the moment of inertia, the first
moment, and the mass operators, respectively.
The Hamiltonian (3.25) now becomes, in the ab-
sence of v brational modes,

The commutator of x and II is modified to satisfy
Eq. (4.16b):

(4.18)

(4.19)

[x;,II~]=i(6;~ —r"'; rq) .
The operator I obeys the commutators of angular
mome ntum

y

8
+

2
dodo'n', (cr)(o-cr'(n', (o')

+ gl g + Zg'x+ pg, x (4.10)

[I; Lg]=&&;gafr ~ (4.20)

To shorten the discussion, let us write down a dif-
ferential operator representation for L and 5:

where only the relevant (for meson) Coulomb term
is kept, and

8
~~i jk~J

n,'(cr) = bt(o) T'b(o),

n~(o) =dt(o) T;, d(o) .
(4.11)

(4.12)

8
II = r'(6

r
—-i, r.,)s ij 5 j (4.22)

5Z0= e =px+gg
5x

(4.13)

In the effective Lagrangian (3.5), we write the
c(' term in terms of Eqs. (4.6)-(4.8). We derive
the canonical momenta:

Commutators (4.18), (4.19), and (4.20) are satis-
fied, where L is the standard orbital angular mo-
mentum operator. All other commutators among

x, r, II and I vanish except

[L...il,]0.
5Z

p =,= Z x+1'P,
6P

(4.14)
The constraint (4.16b) remains valid, since

[J.„W Il]=0

Equation (4.5) can now be written in terms of the

momenta,
[e„w iT]=o,

where H~ can now be written in terms of L (p'
= L '),

pL +f11 +22'll (2 Ip, —Z'

(4.23}

(4.15)

where 8' ' is the inverse of the matrix operator

Since we are only interested in the bound-state
problem, we can choose the frame where the
translational momentum ii vanishes (see Appen-
dix 8 for an alternative approach). The Hamil-
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tonian for the meson bound state then becomes

JI@= dg b] M- 8 5,. +d~ M- 8 d,.

and similarly for the antiquark term,
2

'p-p'n~ pn~ p' M

+
2

dodo'n', (o) ~a o—'~n', (cr) +
2

(4.24)

where 1=0, 1,2, ... is the angular momentum

eigenvalue. We have restricted ourselves to con-
sider the case where the quark and the antiquark
both are of the charm flavor. We are now ready
to derive the charmonium equation (1.1).

C. The Schrodinl, er equation

The equation of motion for the bound-state wave

function (f)(o, o') where

(3.24')

can now be evaluated using the anticommutators
for b,. and d, ,

g~p ~- Bp Q, p M

dodo' —
~o —o'~ (f (&x„&r')

e N —1

x b(~(o) dt(o')
i 0) (4.26)

where %=3 for color SU(3).
To calculate the angular momentum term, we

use Eqs. (4.6), (4.V), and (4.8)

[I, b (o)]=Mo'b~(o),

[Z, bt(o)] =Mob "{o),

[p, , bt(o)] =Mb~(o),

and similarly for d(o). Therefore

.()«&=(»»&~»pf-&(~»-»*)))I«)
Ip, —Z

2M
(f(ado'

M«( I)«

x 4 (o, o')bt(o)&&'(o')
I o},

where (4.27)

dgdg gy g 5~(p

x M- Bp b, p b~gd~~g' 0

dgdg'b&~g M — 8 '
P g, g' d&~g' 0

»ddt '[[(« —
2» ~.*)»(»,v') s,'( )»;( ')Io&,

(4.25)

(fbi-Z')(M) = dodo'(f (o, o')[2(o'+o") —{o+&x') ]

x M'b,"(o)d(~(o')
i

0}.

dodo'P (o, a')M'(o —o')'

x b t(a )di~(&r') ~0}

is used. Combining Eqs. (3.24}, (4.25), (4.26), and

(4.27) then gives

„~ I»-~'I+, .) «(», »') ( (~)» ( ')(O) .1 8' 1 6' 2e', I(I+ 1)
2M Bo' 2M Bo" 3 M(o' —o') (4.28)

Introducing the center-of-mass coordinate z
= —,'(o+ o') and i'= o —(7' we finally obtain the Schro-
dinger equation for the meson bound-state wave
function P{o,o')

1 8' 1»((, z) = (2&«- —~, ——,~

(4.30)

so that Q becomes a function of r only. Equation
(4.30} completes our choice of the center-of-mo-
mentum frame.

D. The charmonium equation+, 4&(r, z) .
E(E+ 1)
Mr

(4.29) To conclude that Eq. (4.29) is the charmonium

Eq. (1.1), we need the identification
Earlier we set II =0. From Eq. (4.16), it is clear
that the longitudinal component of the quark trans-
lational momentum is still not fixed. We obtain
zero total momentum hy choosing Q(r, z) = (f)(r), or

(4.31)

where, in both cases, r measures the distance be-
tween the quark and the antiquark. In Eq. (1.1),
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r& 0. In Eq. (4.29), r=u —o' and ~-&r& ~.
Hence, it appears that Eq. (4.29) allows solutions
where

y(r)l, ,~ 0 (4.32)

in addition to the solutions of Eq. (1.1}, where

f(r)l, =.= o (4.33)

[Equation (4.33) is required since the probability
amplitude 4 (r) =f(r)/r must remain finite at r= 0.]
Actually the identification is correct, and there-
fore the additional solutions (4.32) are not allowed.

First, we interpret g(r) to be the probability am-

plitude along the string. To see this, we calculate
the following correlation function of lM) along the

string:

(Mln, (o)n, (cr')lM) = y'(o —o'),
where lM) is normalized, 0

0 10

r (Gev )

20

Next we want to calculate the probability distribu-
tion in the real physical space. Since the string is
embedded in Minkowski space, it also can be cal-
culated from lM}. For lw 0 solutions in Eq. (4.29),
P(r=0} must vanish. Hence we can consider only

the S(l=0) wave case. The correlation function in
Minkowski space is given by

5 =(M ln, (y)n„(z) IM),

where

n~ ~(y) = 5'(y —R(o))n~ ~(o)da .

It is straightforward to obtain

FIG. 2. The effective potential V„(r) for n =0, 1.

tential V„,(r) between the quark and the antiquark:

1 9'
Ef(r) = 2M ——,+ V„,(r) f(r), (5.1)

where n is the vibrational-mode quantum number.
For n=0, V„(r) is simply the orbita, l-angular-mo-
mentum term plus the linear-potential term in Eq.
(4.29). This approximation is valid if the vibra-
tional energies are bigger than the quark longi-
tudinal-mode energies. In the presence of both
vibrational and rotational modes, V„,(r} is, in
general, rather complicated. We shall assume

((- -, „0'(ly- zl} 0'(r)
V„,(r) = V„(r}+

l(l+ 1}
1lfr

(5.2)

and P(r) must vanish at r= 0 so that the correla-
tion function $(r) remains finite at r=0. This com-
pletes our derivation of Eq. (1.1}from the quark-

confining string, where k= 2e'/3. The eigenfunc-
tions for the angular momentum are the standard
spherical harmonics Y, (8, Q).

V. VIRATIONAL MODES

In this section, we calculate the vibrational states
of the string. The coupled string and the quark
equations are very nonlinear so that there is no

hope of solving them completely. We content our-
selves with the following approximation scheme.
First, we solve the string equation (via the Bohr-
Sommerfeld method) to obtain the vibrational mode

energies as functions of r, the distance between
the quark and the antiqua, rk. These are then in-
serted into the meson equation as an effective po-

and keep in mind that due to the negligence of the
vibration-rotation coupling, states with n a 0 and

I,t 0 in general have errors la.rger than that of the
other states. In Sec. VA, we provide a naive guess
of V„(r). In Sec. VB we estimate via Bohr-Som-
merfeld quantization the form of V„(r) for the case
of infinite quark mass. Since for r&2M/k, the
string is heavier than the quark masses, the above

approximation is obviously inadequate. The finite-
mass correction is introduced in Sec. VC. V„(r)
for n=0, 1 are plotted in Fig. 2. The two lowest
(l = 0) vibrational energies from various estimates
are given in Table I for comparison. Their wave
functions at the origin are also given in the form
lC (0)l'/E' normalized to that of the ground state.

It is clear that the energy levels differ a lot less
than the wave functions at the origin for different
estimates, as is expected.



R. C. GILES AND S. H. H. TYE

TABLE I. Various estimates of the first two vibrational levels (I= 1,/=0) and their wave
functions at the origin. The latter are expressed as ~e(0)p/&„t, where &, is the mass of
the level. For comparison, we include III(3.1) and g'(3.7} as well and the above expression
is normalized to that of |I)(3.1).

V„(~)
The effective potential

~

4, (0) (2/g2

Normalized to that of $(3.1)

1+ — (n= 1)kt'2

Eqs. (5.41b) and

(5.41c) (n= 1)

4.15
4.55

3.96

&0.01
&0.01

0.23
0.23

0.35
0.32

A, The stag motion

For massive quarks, the quark and the antiquark

essentiaQy sit at the two ends of the string. In the

nonrelativistic limit (i.e. , 2e'/3M'«1), we can

simplify the string equation (2.14) (Appendix A) by

the foOowing approximation:

(5.8)

Then the vibrational energy is given by

(wrongly) that the string speed is also very slow
and the ampbtude of the vibration is small so that
Eq. (5.7) reduces to

~ 4

R-R"=0 .

p 4pt2
+My~PX

2h 7

I'&a'
2I4

yOX~ yl0~ yA~O

(5 3)

(5.4)

(5.9)

where n = 0, 1,2„.. . . The superscript c is to re-
mind us that this is a very crude estimate. Adding

this term to the meson equation (4.29) gives
(ft = 2e'/3)

Physically, the ends of the QCS model are domi-

nated by the quark-mass terms while the string
itself is dominated by the color electric flux line

where I' and h are not necessarily close to unity.

The quark effects along the string are neglected.
Using Eqs. (3.6) and (3.7), we obtain

~"=&g +'A Px,
ply. ~ ygll

so that the string equation is given by

(~g 7"R) + (~g T"R')' = 0 .

(5 5)

Away from the ends of the string, we have

0 (v-g it") =0 (~gg ass&i)=0. (5.7)

First let us make a very crude estimate of the vi-
brational-mode energies as a function of the dis-
tance r between the quark and the antiquark. This
function is then inserted into the bound-state equa-
tion as an effective potential. This illustrates our

approach and also indicates the areas where better
estimates are required. Since the quark mass is
heavy enough so that the ends of the string are
moving at nonrelativistic speed, we assume that

they are essentially fixed. Next, we assume

(5.10)

where the vibrational energy acts like a repulsive
(three-space dimensional) Coulomb potential. The
two lowest eigenvalues E(fV, n, 5= 0) are given in
Table I, as are their wave functions at the origin.
This is clearly an overestimate since V„'(r) in-
creases without bound as r 0. Phys-ically V„(r)
is expected to remain finite and smooth as r-O.
The approximation (5.8) breaks down as r-0 since
R and R' are no longer small.

In the remainder of this section, we treat Eq.
(5.6) semiclassically for the vibrational modes.
First we assume quark masses to be infinitely
heavy so that the ends of the string are fixed.
Next we improve this approximation by introducing
the finite-quark-mass effect. A numerical treat-
ment of Eq. (5.6) gives essentially the same re-
sults.

8. Bohr--Sommerfeld method

Let us assume the quark mass to be very heavy
so that the ends of the string are fixed:
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a",(/)= ( /oo, —,-") .

The equation of motion (5.7)

8 (4-g7g) =0

has the general solution (parameters u', u')

tt"{u', u') = S"(u') + q"(u')

in the light-cone coordinates

(5.11a)

(5.11b}

(5.12)

where

dpi''-g

k7',
a/2

a/2

dpi'-g

(g"7, ,+g"7, ,)
/

(5.25)

goo=s'=(8„S)2=0,

g„=q' = (e„q)' = 0 .
Let us choose 8'=u' and Q'=u' so that

R„=(u'+ u', 5+ Q) .

(5.13)

(5.14)

(5.15)

~g = I-&"4'

From Eqs. (5.16), (5.20), (5.22), and (5.23), we

can write Q, as
+ fry /a

q, (u) = ——— de[1 -F'„(8)']'~' . (5.26)
2 w

Equations (5.13) and (5.14) become

(5.16)

and t = u + u'. I et o = (u —u')/2 and o2(t) be the

ends of the string. Equation (5.11)becomes
(~-1,2)

5~ —+o, t +@~ —-g~ t =0, (5.17)

r
+ a &(t) + q 2 a& (t) (5.18)

(5.19)

where the constant a is to be determined. 5 and

Q have the following periodicity properties:

From Eqs. (5.17) and (5.18) and their time deriva-

tives, it is clear that 0, are constants. From re-
flection symmetry, we can write

We also note that the largest period T of R~
(hence lowest frequency) is 4a.

We now have all solutions to the classical equa-
tions of motion (5.7) subject to the boundary condi-
tions (5.11) parametrized in terms of the arbitrary
function F,(8). Unfortunately, this does not ex-
tend naturally to a parametrization of all of phase
space so that we cannot quantize the system simply
in terms of these modes. We content ourselves
with a Bohr-Sommerfeld estimate of the enexgy
levels of one of the simplest possible modes-that
is, we choose a form for F~(8) that depends on

one parameter and then quantize the values of that

parameter via the Bohr-Sommerfeld method.

Now we are ready to introduce Bohr-Sommerfeld
quantization

2nv = (H+ f,)dt
orbit

S,(u+ 2a) = S,(u) = -q, (u —a),

S,(u+ 2a) —S,(u) = r,
(5.20)

2a a/2
= 2ak(4a) —k dt dp~g,

-2a -a /2

where the last term is the action. Defining

(5.27)

q, (u) = ——S,(u+a) . (5.22)

Introducing a new function F, (8}with period 2v,
E~(vu/a) =(v/a)S~(u), we have, using Eq, (5.16)

7m/a

S,(u) = — d8[1 F', ( )']8' ,
t2—

O

(5.23)

where the prime denotes derivative. Combining

Eq. (5.21) and (5.23) gives

de [1—F,'(8)']'t' .
2Q

(5.24)

The energy can be computed in terms of a easily,

8, = vt/2a,

e, =vp/a,

F/ (y/ (1 F/ 2)1/2)

Equation (5.27) becomes

" d(9,
2ng = 4g'k 1—

2w

/'de-
x ' F'(8, + 82) F/(v+ t( —8,)-./2 2m

(5.28)
Consider the simplest example for F2 [see Fig.
3(a)]
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(&) fixed ends

parable to M. As we sha, ll see, the charm string
has M/k-5 GeV '. Hence the finite-mass effect
cannot be neglected. To include this, we simply
extend the above approximation with a linear trial
function used in Sec. V B. Let us consider the QCS
model in the center-of-mass frame. With the same
trial function, we have [see Fig. 3(b)j

k da 8, v 1+c' '/'+2M-dc =0. (5.33)

This can be solved for d,

kr'(1+ c')'~'

4 2M+ kr(1+c')' ' ' (5.34)

(b) moving ends

FIG. 3. The triaj. shape of the vibrating string for n

=1. In (a) the ends of the string are fixed. In (b) the
ends of the string (where the quark masses are) move

in such a way that the string's center of mass is fixed.
/2-a

der(2k) = 2k(a+ 2b) (5.35)

In the Bohr-Sommerfeld quantization formula
(5.27), 2nv= UT+3, T remains 4a while

/2+ Q

2e a/2+5
dt do(l —O' Q.'),

2a -a /2-5
(5.36)

For this oversimplified case, Eq. (5.24) can be

solved immediately,

2a(1 —c')'~' = r,
and Eq. (5.28) gives

2nv = k(2s)'c' . (5.31)

From Eqs. (5.30) and (5.31}we finally obtain the

vibrational plus potential energy V„ for very large
quark IDass,

2(a+ 2b)(l —c')'i' =(o+ 2d = r (5.37a)

2b(1 —c')'i' = d . (5.37b)

It is then a simple matter to obtain the following
quantization formula

where b is the correction to a due to the finite-
mass effect. To the leading order, we simply ex-
tend the relation (5.30) to (where r is replaced by
co)

2nw=4ke'[a(a+2b) —2b(a —2b)j . (5.38)

=kr 1+

For large r, we have

(5.32)
Eliminating a, b using Eq. (5.37), we obtain, using
Eqs. (5.34) and (5.38),

V„(~)= U= kr(l —c') '~'

nr
V„(r) ~ km+ —,

a~ oo r '

which is precisely the effective potential given in

Eq. (5.9). For small r, we have (for ng0)

k
(rV)~ ( 2nk)'v~' 1+

40 4nr

2m~

k (

where d is given by Eq. (5.34) and c' by

2= 2m'

2nw+k[(r-2d)'+ 4d'j

(5.39)

(5.40)

which is finite, as one might expect. Using the

potential (5.32) for Eqs. (5.1}and (5.2) we calculate
the lowest two vibrational levels and their wave

functions at the origin. These are shown in Table
I.

The coupled set of equations (5.34) and (5.40) deter-
mine c and d in terms of r so that d= d(r).

Since c' 0 as r- ~ and c'-1 as r-0, d xs rela-
tively insensitive to c and hence it is easy to esti-
mate d(r). We note that

C. Finite-mass correction

Since the quark mass is finite, the above ap-
proximation breaks down when kx becomes com-



16 APPLICATION OF THE QUARK-CONFINING STRING TO THE. . .

4.0—

GeY

3.5—

3.0

( =2)

4.41

4.17

396
(n = I)

3.68

3.10

s(~=0)

4, 40

------4.21

3.95

3.44

P(S= 1)

«4 45

4.20—

3.74

D(~=2)

ends. "
The two parameters of the charm string are the

charmed-quark mass M and the color coupling in
the form k. They are taken to be

M= 1.154 GeV,

k=0.21 GeV' .
We observe that the wave functions at the origin
for the vibrational levels are in general smaller
than those of the radial excitation levels. Unfortu-

nately, our method is too crude for the determina-
tion of the wave functions (the energies of the
levels are more reliable). Since physically the
vibrational mode of the string between the quark
and the antiquark tends to push them apart, we ex-
pect the quark-antiquark annihilation probability
to be smaller for the vibrational levels.

VI. DISCUSSIONS AND REMARKS

FIG. 4. The nonrelativistic spectroscopy of the charm
string. $(3.10) and tt}(3.68} are fitted to obtain I =1.154
GeV and k =0.21 GeV2. The dashed lines are the vibra-
tional levels absent in the charmonium model. Levels
with E & 4.5 GeV or l & 2 are not shown.

Putting together Eqs. (5.1), (5.2), (5.34), (5.39),
and (5.40), we obtain the nonrelativistic charm-
string equation:

1 s' l(l+1}2M- —,+ V„(r)+, f(r) =Ef(r),
M ay'

(5.4la)
where

2nlr z/z

""= "I '
a[ '-4 a su*]

In order to compare quantitatively the spectro-
scopy of the charm string with experiments, we

must include the leading-order relativistic effects,
possible S Dmixing, -threshold effects (of charmed
mesons and baryons in the e'e channel), and
vibration-rotation couplings. These investigations
are beyond the scope of this paper. Instead we re-
strict ourselves to a simpler task: to check the
validity of the nonrelativistic approximation em-
ployed in this work.

To be specific, let us consider some typical con-
tributions to the spin-orbit splitting. Using the
same string variable (4.1), we pick up from the
Lagrangian terms that contribute to the Hamil-
tonian in the form L 8,

+ + e .40

g
0' ~ ~

2
X ~x%+(r"xr)v'+(x r)Rxr rx-r

= kr(2 n„')— (5.41b)
yt —Rx r"6,)(, (6.1}

kr'e„
d(M, r, k, n)=

4(2M
k"

)
(5.41c)

where n is the vibrational quantum number. For
n=0, a„'=1 and V„reduces to the linear potential
in the charmonium model (1.1). d is introduced as
a correction due to the finite quark mass. d-0 as
M ~. The effective potential V„(r) is plotted in

Fig. 2 for n = 0, 1. The two lowest vibrational
levels and their wave functions at the origin are
given in Table I. The spectroscopy of Eq. (5.41) is
shown in Fig. 4.

After the series of approximations we have

adopted to derive Eq. (5.41}from the QCS model,
the resulting picture resembles closely that of a,

string with a quark and an antiquark at its two

EJ' 2 Eg—p 0 14 GeV (6.3)

This is small in comparison to the binding energy
of the state, E -2M-1.1 GeV. Hence our Schro-

where we have rotated back to the space axi,y. The
first term involves the string acceleration R and is
identified as a quark precession term. It is
straightforward to evaluate their contributions (in
leading-order approximation) to the bound-state
Hamiltonian in Eq. (1.1),

1"5 2l(L+ 1) —1
M't' r

For the lowest P state, which has a mass E = 3.45
GeV, the total splitting due to Eq. (6.2) can be
evaluated straightforwardly:
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dinger approximation for the low-lying levels are
justified a posterioH . Of course, the complete
fine structure involves other terms as well (e.g. ,
tensor splitting). The splitting (6.3) should be
taken as an indication of the size of the relativistic
corrections we expect from the charm string.

Spin-spin splittings do not arise directly as a
result of transverse vector exchange in this mod-

el. Quark spin interactions arise only from quark-
antiquark annihilation terms in the Dirac Hamil-
tonian and from virtual exchange of transverse
string vibrations. Though such terms have not yet
been evaluated, it is expected that they will be
small corrections to the nonrelativistic limit. We

remark that our estimate of the n= 2 level may

not be as good as that of the n =1 levels. Hence it
is possible that the 4.46-GeV level in the 8'e

channel is degenerate with the 4.41-GeV level.
Since the vibrational levels are above the charm

(i.e. , DX)) threshold, they are expected to decay
predominantly into charmed mesons.

We note that the presence of vibrational levels
in the g spectroscopy is actually more general than

the quark-confining string model. To obtain a
linear potential from field theory, the color elec-
tric flux must be confined, dynamically or by hand,

to a tube (or a vortex). The resulting tube can, in

general, move and vibrate in space. Such motion

gives the extra, vibrational states in quantum me-
chanics. The rigidity of such a tube is determined

by the dynamics of any particular picture. Hence
it is the energies (not the presence) of the vibra-
tional levels that is characteristic of the QCS mod-

el.
To summarize, we have shown that the charm-

onium model with a linearly rising potential can be
derived from a relativistic, gauge and reparam-
etrization invariant field-theoretic (albeit uncon-

ventional) model. Furthermore, in the QCS mode-

el, relativistic invariance requires the introduc-
tion of string dynamics, which provides additional
vibrational modes that are absent in the char mo-
nium model. This already occurs in the Schro-
dinger limit. With the inclusion of all the rela-
tivistic corrections, we expect many additional
terms contributing to Eqs. (1.1) and (5.41). Their
effects on the mass shifts of the low-lying energy
levels are roughly an order of magnitude smaller
than the binding energies. However, their effects
on the wave function may be more drastic. It is
also very important to evaluate the effects due to
8-D mixing, opening of thresholds, and various
decay channels. Keeping this in mind, the charm-
string spectrum seems to agree with experimental
data' quite well.

Though we have discussed only the g spectrum
as a test of the QCS model, it is clear that the

model can be considered successful only if it can
be applied to the rest of the hadronic spectrum and

interactions. As a model of hadrons, the QCS mod-
el appears to have the unique property of color-
quark confinement without the presence of mass-
less color gluons or of pure gluonic states. Further,
we expect that physical states with light quarks
will lie on essentially straight Regge trajectories
with slope n'- I/2vk-0. 8 GeV '."
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APPENDIX A

The string equation (2.14)

&»8+ ~i ))~ &r~~m

in the coordinates defined by Eq. (2.31) looks rath-
er complicated. Using Eqs. (2.30), (2.31), and

(2.33), we obtain

p4
+

~
&3 X+

2

T '=—,}it i$ +I'&r, (r" mxR') —o,(r" mxP')

rI
0'3 X y

V

~2~p
2 2 X Eclat-2eapel-r vgs

+1~,(i mxm)+1(r" mxm)y, }(,

7"= 2, yt ia, a, —I'v'o, +rur, (r" mxm'}l o

+I'(i' mxm')y,

f,Q 2~t —28BpG 2 0'3

iQ28~+I'fgva —I'gg|(y'' pox St'}
1

-y, (r" mxi") y,

p2 Fvs'
--2p, « f'~ ~-2~Bp~3+

y,

rU'
+I ~1+

I &5 Xy

0

V'' = 2a'X '&35 -rhc+r 5'vl- —ys X,
V
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h, N,
=I'v',

h, „=rhm W'=-rhh/v,

APPENDIX B

We note that with II = 0, the quantization of angu-
lar momentum can be easily obtained via Dirac's
method. " Starting from the canonical Poisson
bracket

h, «=v(r" mxrh),

h, „=v(r" Axed'},

h»&:h(r" 'mxF )

v, =+I'(P mxm}

under second-class constraints

P, =r"' p=0,

Q, =P' —1=0

we obtain the Dirac brackets

v, =+I'(r" mxm') .

Notice that 2 ' has a term (the time derivative) of

order M; all other T, V„h, 8, and v are of

lower order in M. Note that this string equation

must be derived from the original Lagrangian

(2.6). To derive this equation from the Lagran-

gian (2.32), a Lagrangian multiplier term for R R'
= 0 must be taken into account in Eq. (2.32).

(P„r~),=0.

Introducing L —rxp, we obtain

c(L;, L~)v —zan)~Lq .
Quantization follows from replacing the left-hand
side by a commutator.
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