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Application of the Random Forest model for chlorophyll-a

forecasts in fresh and brackish water bodies in Japan,

using multivariate long-term databases

Hiroshi Yajima and Jonathan Derot
ABSTRACT
There is a growing world need for predicting algal blooms in lakes and reservoirs to better manage

water quality. We applied the random forest model with a sliding window strategy, which is one of

the machine learning algorithms, to forecast chlorophyll-a concentrations in the fresh water of the

Urayama Reservoir and the saline water of Lake Shinji. Both water bodies are situated in Japan and

have historical water records containing more than ten years of data. The Random Forest (RF) model

allowed us to forecast trends in time series of chlorophyll-a in these two water bodies. In the case of

the reservoir, we used the data separately from two sampling stations. We found that the best model

parameters for the number of min-leaf, and with/without pre-selection of predictors, varied at

different stations in the same reservoir. We also found that the best performance of lead-time and

accuracy of the prediction varied between the two stations. In the case of the lake, we found the best

combination of a min-leaf and pre-selection of predictors was different from that of the reservoir

case. Finally, the most influential parameters for the random forest model in the two water bodies

were identified as biochemical oxygen demand (BOD), chemical oxygen demand (COD), pH, and total

nitrogen/total phosphorus (TN/TP).
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INTRODUCTION
For decades, in limnology and oceanography sciences, there

has been a consensus regarding the usage of chlorophyll-a as

a proxy for phytoplankton community biomass. It is also

widely recognized that the variation within this first echelon

of the food web in the aquatic environment can have a

strong impact on the whole of an ecosystem. The intensifica-

tion of anthropogenic pollution following the evolution of

our society has had a direct influence on this phytoplankton

biomass – mainly through a disruption in the nutrient flux

(Howarth et al. ). These eutrophication phenomena

are partly due to a decrease in the silicate flux and increased

nitrogen inputs, which favor the replacement of diatoms by

nitrogen-fixing cyanobacteria (Schindler ). It has been

shown on many occasions that these disruptions are
among major ecological issues in freshwater and coastal

ecosystems (Smith et al. ). Furthermore, there is a

direct link between inorganic nutrient pollution and the

increased occurrence of toxic algae (Camargo & Alonso

). The increase of harmful algal blooms (HAB) is gener-

ally linked to eutrophication. This kind of phenomena could

have a substantial negative impact on human health and the

economy in the towns close to these water areas. Therefore,

management of water quality in water bodies and the con-

trol of HAB are drawing considerable global attention.

Machine learning and data mining methods are numeri-

cal tools particularly well adapted in analyzing big datasets.

In recent years, their utilization and application have been

developed substantially. However, these methods of modeling
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and prediction are not popular in studies of aquatic ecosys-

tems compared with other science disciplines. The

majority of studies that use machine learning algorithms in

the field are performed with artificial neural networks

(ANN) (Karunasingha et al. ). This type of model has

been applied to a wide range of studies, such as forecasting

the timing and duration of cyanobacteria blooms (Chan

et al. ), and nutrient time series (Markus et al. ).

In most cases, these ANN models have been customized

(Ranković et al. ), or combined with genetic program-

ming (GP) (Muttil & Chau ), to improve their

performance. Less frequently, some modeling approaches

have used different types of machine learning algorithms;

such as, K-nearest neighbor (KNN) (Coopersmith et al.

), K-means (Chang et al. ), and hidden Markov

model (HMM) (Rousseeuw et al. ).

The Random Forest (RF) model, which uses in part

machine learning algorithms, was developed by Leo Brei-

man in 2001 (Breiman ). The model is commonly used

in bioinformatics to perform genomic analysis, especially

in cancer sciences (Touw et al. ), but is relatively

unknown to environmental science (Kehoe et al. ).

Recently, Harris & Graham () used the RF model to pre-

dict cyanobacteria abundance in a eutrophic reservoir using

a 14-year dataset. This model stands out from other tree

structure-based models in that it uses random selection,

which could potentially improve its performance (Breiman

). This RF model can also be used to create predictive

models (Jiang et al. ), or forecast models (Lahouar &

Slama ). The RF model has several advantages including

no need for a priori determination of the initial assumptions,

easy interpretation of outputs (Zhao & Zhang ), and the

ability to select a small number of parameters – even when

there is a large dataset available for inputs (Díaz-Uriarte &

De Andres ). These favorable attributes seem to be suit-

able for the study of long-term multivariate databases in

aquatic environments. However, the model also has the dis-

advantage of over-fitting problems (Breiman ), which is

quite a common issue with ANN model applications (Tu

).

The main objective here was to understand the behavior

of the RF model when applying it to a forecast model in a

reservoir and a lake where long-term data exist. In this

study, historical data recorded at Japan’s Urayama Reservoir
://iwaponline.com/jh/article-pdf/20/1/206/238479/jh0200206.pdf
(manmade, with fresh water) and Lake Shinji (natural, with

brackish water) were used. These contrasts enabled us to

investigate the adaptability of the RF model in different

hydrological and salinity conditions affecting algal blooms.

In this study, the RF model was applied to forecast algal

blooms detected in the form of a chlorophyll-a signal.
MATERIALS AND METHODS

Study sites and data

Urayama Reservoir

The Urayama Reservoir has been operated by the Japan

Water Agency since April 1999, and is located on the out-

skirts of Tokyo’s metropolitan area (35�57008″N,

139�03014″E). The reservoir provides hydro-electricity as

well as supplying water for municipal potable supply and

irrigation. The reservoir has a watershed of 51.6 km2, sur-

face water area of 1.2 km2, total reservoir capacity of 58 ×

106 m3, and a maximum water depth of 49.3 m. It receives

two inflows from the Urayama River and the Okubodani

River, which have an average retention time of ten months

(see Figure 1).

The dam’s operational center has been conducting

water quality sampling using a Van Dorn water sampler at

the surface (0.5 m), middle (mid-depth), and bottom layers

(1 m from bottom) on a monthly basis, at two points (U1

and U2) in the reservoir (see Figure 1). In an aquatic ecosys-

tem, the greatest proportion of the phytoplankton biomass is

mainly located in the euphotic zone. During preliminary

tests with the RF model, it was noticed that the addition of

sampling data performed at the middle and the bottom did

not affect the outputs of the model significantly. Instead,

the integration of these additional parameters remarkably

increased the computational time in learning phases, and

as a consequence, following tests focused on the surface

water phytoplankton data. For the two stations of this reser-

voir, 26 parameters of both water quality and hydrological

conditions (see Table 1) were used. Among these par-

ameters, TN/TP and NH4/NOx were artificially created as

there are suggestions that stoichiometry has an impact on

HABs (Liu et al. ). It was confirmed that this addition



Figure 1 | Locations of sampling stations in the Urayama Reservoir and Lake Shinji.
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improved the performance of the model; with little effect on

the computational time.

In some cases, this allowed an augmentation of more

than 30% for the correlation coefficient in forecasting chlor-

ophyll-a concentrations. Furthermore, monthly water

quality sampling and analysis included phytoplankton

counting (water was collected from the surface by a

bucket), which were grouped by taxa in the following

manner: Cyanophyceae (CYANO); Bacillariophyceae

(BACILLARIO); Chlorophyceae (CHLORO); Chrysophy-

ceae (CHRYSO); Dinophyceae (DINO); Cryptophyceae

(CRYPTO); and Euglenophyceae (EUGLENO) (http://

mizukoku.nilim.go.jp/ksnkankyo/mizukokudam/system/

download/H28D_Chousamanual_dam/H28D_06pura.pdf).

As a result, 33 parameters as inputs of the model for the

reservoir were used. It is important to note that a bubble-

plume artificial destratifier was installed in 2011 at the

bottom of this reservoir; consequently the dynamics of this

ecosystem have changed. Therefore, we only used the data

between 1999 and 2010 to avoid bias during the learning

phase of the model. Target signals of Chl.a for this study

area can be seen in Figure 2(a), where the black line corre-

sponds to station U1 and the blue line corresponds to

station U2. It can be seen that there is some concentration

discrepancy between the two stations, especially in 2006
om http://iwaponline.com/jh/article-pdf/20/1/206/238479/jh0200206.pdf
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and 2008. The sampling dates are summarized in Appendix

1 (available with the online version of this paper). Recent

data are available on the following website: www.water.go.

jp/kanto/arakawa/data/suishitsu.html.

Lake Shinji

Lake Shinji is the seventh largest lake in Japan. It is located

in the Shimane Prefecture in the western part of the main

island (35�27001″N, 132�56058″E) (see Figure 1). It is con-

nected to the Sea of Japan through River Ohashi, Lake

Nakaumi, and the Sakai Channel. Seawater occasionally

flows into the lake, which contributes to a variation in its sal-

inity. The average salinities of the lake according to the data

explained below are 3.6 and 4.0 psu at the surface and

bottom, respectively. The variation ranges during the same

period are 0.4–10.4 and 0.4–13.5 psu at the surface and

bottom, respectively. The lake’s surface area is 86.8 km2

and the average water depth is 4.5 m. There are 13 inflows

(except River Ohashi) into the lake, and one in-out flows

of River Ohashi, which makes a retention time of 60 days

(Kamiya ). The lake is managed by the Ministry of

Land, Infrastructure, Transport and Tourism, Japan (MLIT).

MLIT has a long-term monthly water quality data at the

surface (1.0 m) and the bottom (1.0 m from bottom) of S1

http://www.water.go.jp/kanto/arakawa/data/suishitsu.html
http://www.water.go.jp/kanto/arakawa/data/suishitsu.html


Table 1 | Parameters of predictors for the random forest model inputs

No. Parameters Names for predictors

Data availability

Urayama Reservoir Lake Shinji

1 Air temperature A. Temp ○ ○

2 Water level WL ○

3 Inflow discharge Inflow ○

4 Outflow discharge Outflow ○

5 Transparency Transp ○ ○

6 Water depth Depth ○ ○

7 Water temperature W. Temp ○ ○

8 Turbidity Turb ○ ○

9 Dissolved oxygen DO ○ ○

10 pH pH ○ ○

11 Biochemical oxygen demand BOD ○

12 Chemical oxygen demand COD ○ ○

13 Chlorophyll-a Chl.a ○ ○

14 Pheophytin Pheop ○

15 Suspended solids SS ○ ○

16 Escherichia coli E. coli ○ ○

17 Total nitrogen TN ○ ○

18 Nitrate NO3-N ○ ○

19 Nitrite NO2-N ○ ○

20 Ammonium NH4-N ○ ○

21 Total phosphate T-P ○ ○

22 Phosphate PO4-P ○

23 Dissolved total phosphorus DTP ○ ○

24 Dissolved inorganic phosphorus DIP ○ ○

25 Total nitrogen/total phosphorus TN/TP ○ ○

26 Ammonium/nitrate-nitrite NH4/NOx ○

27 Cyanophyceae CYANO ○

28 Bacillariophyceae BACILLARIO ○

29 Chlorophyceae CHLORO ○

30 Chrysophyceae CHRYSO ○

31 Dinophyceae DINO ○

32 Cryptophyceae CRYPTO ○

33 Euglenophyceae EUGLENO ○

34 Dissolved inorganic nitrogen DIN ○

35 Dissolved COD DCOD ○

36 Total organic carbon TOC ○

37 Chlorophyll-b Chl.b ○

38 Chlorophyll-c Chl.c ○

39 Chlorine Cl� ○

Note: In total, the Urayama Reservoir and Lake Shinji have 33 and 25 parameters, respectively. Water parameters were analyzed by the standard protocols based on Japanese Industrial

Standard (JIS) (www.mlit.go.jp/river/shishin_guideline/kasen/suishitsu/houhou.html).

209 H. Yajima & J. Derot | RF model application for chlorophyll-a forecast in two water bodies in Japan Journal of Hydroinformatics | 20.1 | 2018

Downloaded from http://iwaponline.com/jh/article-pdf/20/1/206/238479/jh0200206.pdf
by guest
on 20 August 2022

http://www.mlit.go.jp/river/shishin_guideline/kasen/suishitsu/houhou.html


Figure 2 | Historical Chl.a data at two study sites, and example of lead-time equal to six months with three lag-time data periods. The top panel (a) corresponds to the Urayama Reservoir

and the bottom panel (b) corresponds to Lake Shinji. Please refer to the online version of this paper to see this figure in color: http://dx.doi:10.2166/hydro.2017.010.

210 H. Yajima & J. Derot | RF model application for chlorophyll-a forecast in two water bodies in Japan Journal of Hydroinformatics | 20.1 | 2018

Downloaded fr
by guest
on 20 August 2
(see Figure 1). This study used the data collected between

1981 and 2015. The sampling dates are summarized in

Appendix 1. Some parameters of these historical data do

not have complete time series. As to the inorganic nitrogen,

the missing values for NH4-N, NO2-N and NO3-N are

not necessarily present at the same time. Therefore, we

obtained 40.1% of missing values of the NH4/NOx ratio.

Consequently, we decided not to use this ratio as a predictor

for this lake. It should also be noted that, contrary to the

previous site, there is no information about phytoplankton

species. Finally, 25 parameters for inputs of the model (see

Table 1) were used. In Figure 2(b), the target signal of Chl.a

(see blue curve) between 1981 and 2015 used for this study

area can be seen. Moreover, the data between June and

November from 1985 to 1988 have two datasets, except

August 1988, which has three datasets (see Appendix 1).

These data were simply averaged during the same month,

which allowed a regular time step of one month to be

kept. Recent data are available on the following website:

www.cgr.mlit.go.jp/izumokasen/shiryokan/jokyo/index.

html.
om http://iwaponline.com/jh/article-pdf/20/1/206/238479/jh0200206.pdf
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RF and CART models

The RF model is based on a tree structure proposed by

Breiman () as an evolution of the Classification And

Regression Tree (CART) model created in 1984 by the

same author (Breiman et al. ). The algorithm performs

a movement from the root to the terminal’s nodes, which

contain the predictions. This movement is done iteratively

where each child node is subdivided into branches (see

Appendix 2 for additional information, equations, and dia-

grams about these two models, available with the online

version of this paper). In the case of the CART model,

only one decision tree is built, whereas a predetermined

number of decision trees are used for the RF model. In

other words, the RF model is made up of a multiplicity of

CART models (see Figure A2.1 in Appendix 2). Hence the

term forest is used. In order to increase the robustness of

this model, it uses a statistical inference technique, called

a Bootstrap. Each of the trees which make up a particular

forest is built up from random sub-sampling of datasets.

Therefore, if several runs with the same database are

http://www.cgr.mlit.go.jp/izumokasen/shiryokan/jokyo/index.html
http://www.cgr.mlit.go.jp/izumokasen/shiryokan/jokyo/index.html
http://dx.doi:10.2166/hydro.2017.010
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performed without saving all the tree diagrams, a small

difference between outputs of this RF model is found. This

bootstrap method is based on a random draw with replace-

ment. Hence the term Random is used in the name of this

model. The final prediction of the model output is deter-

mined by an ensemble of methods among all results from

each tree making up the forest. This can be called the

‘majority vote’.

When applying the RF model to a prediction or a fore-

cast, it requires a longer period for the learning phase than

the prediction or forecast period to have accurate results.

In Figure 2(a) and 2(b), the separation between the learning

(see red and green lines) and forecast period (magenta and

yellow lines) can be seen. Considering the data availability,

the forecast periods of the Urayama Reservoir and Lake

Shinji were set for two and five years, respectively. In this

study, the construction of the RF models was performed

using the function TreeBagger from Matlab software.

One of the techniques to avoid over-fitting problems in

the RF model application is to limit the minimum leaf size

(min-leaf). This parameter determines the minimum

number of observations that is used to create each child

node; smaller values of the min-leaf need a deeper learning

process. The technical documentation of this Matlab func-

tion recommends using a minimal number of five

observations per child node (min-leaf¼ 5) by default.

Forecast method

In order to test the performance of the RF model to forecast

Chl.a in the study areas, a sliding window strategy (Herrera

et al. ) was implemented. The behavior of the model

through a variation of two parameters (lead-time and lag-

time) was also studied. The lead-time corresponds to shift-

time of the sliding window (see Figure A3.1 in Appendix

3, available with the online version of this paper). That is

to say, the shift-time that presents itself between the date

of forecasting point and the date of predictors that are

used in parallel as inputs to the RF model. In this study,

the lead-time between one and six months was varied. In

Figure 2(a) and 2(b), the red line represents the learning

periods of the target signal (Chl.a), and the three green

lines on each panel represent the learning periods used

with predictors (lag time ¼ 1, 2, and 3, respectively). The
://iwaponline.com/jh/article-pdf/20/1/206/238479/jh0200206.pdf
time difference between the right end of the red line and

the right end of the first green line on each panel (lag time

¼ 1) corresponds to a lead-time of six months in this case

(see the black annotation on Figure 2(a)).

Using multiple lag-times for predictions may allow

better results of Chl.a prediction to be achieved. In this

study, the parameter from one to three months was tested.

All predictors at the lead-time in cases where the offset

was equal to 1 were used. In the case where the offset was

equal to 2 or 3, all predictors with offsets of one and two

months before the lead-time were added, respectively.

Hence, the increase in lag-time increased the predictor

number inputs of the model. For example, in the case of

the Urayama Reservoir with a lag-time equal to 3, the total

number of input parameters expanded from 33 to 99.

These three-different lag-times are represented in green for

the learning periods and in yellow for the prediction periods

in Figure 2(a) and 2(b).

In the process of the RF model application, an average

of out-of-bag (OOB) error permutation performed on all

trees of the forest was calculated; which is a parameter to

show the relative importance of each predictor used in the

input of the model. In addition to varying the min-leaf

(MF), tests with an automatic pre-selection of predictors in

the process of the learning were also performed. In these

cases, only the ten most influential predictors with the

most influence were selected by a pre-run for the final run.

Protocol of testing strategy

As a preliminary study, sensitivity tests to evaluate the suit-

able min-leaf number for our cases were performed. Then

the RF model was applied to each station (U1, U2, and

S1). First, the min-leaf and lag-time variation was tested

with four different cases: (1) the default settings proposed

in the RF model (the min-leaf is equal to 5 and no pre-selec-

tion for inputs. Consequently, all predictors were used; (2)

the min-leaf is equal to 12 and no pre-selection for inputs;

(3) the min-leaf is equal to 5 and automatic pre-selection

for inputs; (4) the min-leaf is equal to 12 and automatic

pre-selection for inputs. Then raw Chl.a data at each station

were compared with the best result among three lag-times

for four test cases (min-leaf¼ 5; min-leaf¼ 12; min-leaf¼ 5

and pre-selection; min-leaf¼ 12 and pre-selection).
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Depending on the different model settings, this gave a better

understanding of the RF model prediction.

CART model application was also explored for our

study, and showed the RF model outperforming the CART

model. Consequently, only the results for the RF model

are described (see Appendix 4 for the performance test

between the RF and CART models, available with the

online version of this paper).
RESULTS AND DISCUSSION

In this study we applied the RF model to forecast the general

pattern of Chl.a in two different water bodies in Japan. First,

we have summarized the results of sensitivity tests of the RF

model according to the optimal tree number and the mini-

mal number of the predictor (min-leaf parameter). Second,

we have shown the performances of the forecast for both

the Urayama Reservoir and Lake Shinji.

Finding the optimal tree number and leaf size

We calculated the mean-squared error (MSE) from the OOB

errors provided by the TreeBagger toolbox for five different
Figure 3 | Sensitivity tests of the RF model at station U1 in the Urayama Reservoir depending on

each node. In the legend, each min-leaf corresponds to a different color: red for 5, g

this paper to see this figure in color: http://dx.doi:10.2166/hydro.2017.010.

om http://iwaponline.com/jh/article-pdf/20/1/206/238479/jh0200206.pdf
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min-leaf: 5, 10, 12, 20, and 50, and between 1 and 1,000

decision trees for U2 at the Urayama Reservoir. The mini-

mum number of trees required, which is necessary to

achieve the best results, depends on the nature and the qual-

ity of the input dataset. Using a small number of trees

allowed us to minimize the computing time without affect-

ing the final results of this test. In our case, the MSE was

stable for more than 200 trees (see Figure 3, and Figures

A5.1–A.5.5 in Appendix 5, available with the online version

of this paper). Consequently, we decided to use 200 trees in

the rest of our study for three sampling stations. We also see

that after the stabilization phase of these MSE, the min-leaf

values 5 and 12 seemed to have lower MSE than the others.

Therefore, we used these two values for our application. It

should be noted that the results achieved for other two

sampling points were consistent with those presented in

Figure 3 (see Figures A5.6–A5.15 in Appendix 5).

Urayama Reservoir forecast

Station 1 (U1) forecast

In the case of station U1, the correlation coefficients of R2

were generally improved when we used a min-leaf of 12,
the minimal number of the predictor (min-leaf parameter) used for the separation between

reen for 10, blue for 12, cyan for 20, and purple for 50. Please refer to the online version of

http://dx.doi:10.2166/hydro.2017.010
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with and without pre-selection (see Figure 4(a)–4(d)). In

these two cases, when min-leaf was equal to 12, the R2 vari-

ation corresponding to lead-time showed a ‘v’ shape. That is

to say, there was a strong decline of R2 values when lead-

time was two or three months, and the highest R2 values

were performed for a lag of 1: R2¼ 0.41 for a lead-time of

one month and without pre-selection, and R2¼ 0.36 for a

lead-time of five months and with pre-selection (see the

red line in Figure 4(b) and 4(d).

Raw Chl.a data at station U1 were plotted in parallel

with the best results for four different previous cases in

Figure 4 (min-leaf¼ 5; min-leaf¼ 12; min-leaf¼ 5 and pre-

selection; min-leaf¼ 12 and pre-selection) (see Figure 5).

In this figure, we used the same color code as in Figures 7

and 9. The general variations of Chl.a were forecasted in

four cases. Although the first outbreak of bloom at the

fifth month was practically undetected, the second bloom

around the tenth month was predicted. The most severe

bloom, around the seventeenth month, was also underesti-

mated in each case. Regarding the two last blooms

(months 28 and 34), all the outputs of the model were coher-

ent, despite the overestimation found around the twenty-fifth

month. The best correlation coefficient (R2¼ 0.41) of the
Figure 4 | Evolution of R2 coefficient depending on lead-time and lag-time for station U1 in the

and with/without pre-selection.

://iwaponline.com/jh/article-pdf/20/1/206/238479/jh0200206.pdf
forecast among the four different settings was the solid

blue line (min-leaf of 12 without pre-selection).
Station 2 (U2) forecast

The different tendencies for the variations of R2 were

found at station U2 compared with station U1 (see Figures

4 and 6). In the case of station U2, the correlation coeffi-

cients of R2 were not improved by using a min-leaf of 12

instead of 5 (see Figure 6(a)–6(d)). Moreover, the highest

R2s were mainly observed for a lead-time of three

months. The lowest values were generally seen around

lead-times of two and five months. In these cases, the R2

variations follow a pattern of a ‘w’ shape, and we see

the highest value with a min-leaf 5 and with pre-selection

(R2¼ 0.61) (see Figure 6(c)). Even though these two

stations were located in the same reservoir, we found

that the best lead-times differed and the best result was

obtained with a lag-time of one month. We also found

overestimations for several blooms (months eight and

17), and an underestimation around the twenty-fifth

month at stations U1 and U2 in Urayama Reservoir

(Figures 5 and 7, respectively).
Urayama Reservoir. Each panel corresponds to a different setup: min-leaf equal to 5 or 12



Figure 5 | Comparison between the raw Chl.a data at station U1 in the Urayama Reservoir and the best result of each setup used in Figure 4. Color code: the raw Chl.a data in green; the

min-leaf is equal to 5 in red (see Figure 4(a)); the min-leaf is equal to 12 in blue (see Figure 4(b)); the min-leaf is equal to 5 with pre-selection in cyan (see Figure 4(c)); the min-leaf

is equal to 12 with pre-selection in magenta (see Figure 4(d)). Please refer to the online version of this paper to see this figure in color: http://dx.doi:10.2166/hydro.2017.010.
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Lake Shinji station (S1) forecast

For Lake Shinji, the best results were obtained with a lag of

1 and 2 (see Figure 8). In Figure 8(a)–8(d), the highest R2
Figure 6 | Evolution of R2 coefficient depending on lead-time and lag-time for station U2 in the

and with/without pre-selection.

om http://iwaponline.com/jh/article-pdf/20/1/206/238479/jh0200206.pdf
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coefficients were located for a lead-time of one month.

The strongest correlation (R2¼ 0.52) was found with the fol-

lowing settings: min-leaf is equal to 12 with pre-selection for

a lag-time of two (see Figure 8(d)). The correlation
Urayama Reservoir. Each panel corresponds to a different setup: min-leaf equal to 5 or 12

http://dx.doi:10.2166/hydro.2017.010


Figure 7 | Comparison between the raw Chl.a data of for station U2 in the Urayama Reservoir and the best forecast results (lead time of three months) of each setup we used in Figure 6.

Color code is the same as in Figure 5.
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coefficients R2 were generally improved when we used a

min-leaf of 12 instead of 5. We can see this output of

model forecast (lead time of one month) in Figure 9 via

the purple solid line. Overall, the raw Chl.a data dynamics
Figure 8 | Evolution of R2 coefficient depending on lead-time and lag-time in Shinji Lake. Each p

://iwaponline.com/jh/article-pdf/20/1/206/238479/jh0200206.pdf
were well forecasted by the RF model, with the exception

of the underestimations of blooms around the twenty-third

and fortieth month. It can be noticed that the best R2 of

0.52 was slightly higher than the Urayama Reservoir’s case
anel corresponds to a different setup: min-leaf equal to 5 or 12 with/without pre-selection.



Figure 9 | Comparison between the raw data of Chl.a in Lake Shinji and the best forecast results (lead-time of one month) of each setup we used in Figure 8. The color code is same as in

Figures 5 and 7. Please refer to the online version of this paper to see this figure in color: http://dx.doi:10.2166/hydro.2017.010.
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(R2¼ 0.41). It may also be noted that the increase in a min-

leaf does not always increase R2 coefficients (see Figure

8(a)–8(d)). This tendency was the same as for station U2

but different from station U1.

Lake Shinji has much longer datasets than the Urayama

Reservoir. In order to examine the impact of the data length

on the forecast capability of the RF model, we reduced the

original dataset of 30 years for the learning period to 80,

60, and 40% for the case of min-leaf¼ 12 and with pre-

selection. We can see that the correlation coefficient

decreased as the dataset for the learning period reduced

(see Figure 10). This shows that the dataset volume is one

of the key factors that affects the model performance.

Importance of parameters

The ranking of predictor importance for each station was

summarized based on an average of OOB permutated

error after 100 runs (see Table 2). The RF model uses a

bootstrap approach, and we obtained a slightly different

predictor importance for each run. To minimize the

random effect linked to bootstrap, we used average

values. For stations U1 and U2 at the Urayama Reservoir,

the following four parameters were commonly important
om http://iwaponline.com/jh/article-pdf/20/1/206/238479/jh0200206.pdf
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for the forecast of Chl.a: BOD (0.67, 0.71), COD (0.63,

0.65), pH (0.43, 0.31) and TN/TP (0.30, 0.26). For S1 at

Lake Shinji, the two parameters of COD (0.43) and pH

(0.23) showed important roles as found for the Urayama

Reservoir, even though Turb. (0.51) showed a higher

value than COD.

In the scientific literature, we found several studies

which are in-line with the results obtained in Table 2. The

COD, which strongly influenced the RF model in our two

types of aquatic ecosystems, is commonly used for highlight-

ing the organic contamination and the phenomena of

eutrophication. A study based on a long-term monitoring

(nine years) of this parameter in Tokyo Bay (Kawabe &

Kawabe ) demonstrated that, first, amplitude variations

of COD concentration are associated with the nitrogen and

phosphorus concentrations, and second, the seasonal vari-

ation of COD (spring bloom and winter period) are related

to the solar radiation and water temperature with a lag of

one month. Another study, which used a machine learning

model (ANN) to perform predictions of BOD in a Turkish

river, showed that the COD was the most influential par-

ameter for this model (Dogan et al. ). As regards pH,

a study showed that it could influence the diatom growth

rate (Chenl & Durbin ). Another author suggested that

http://dx.doi:10.2166/hydro.2017.010


Figure 10 | Correlation coefficient depending on the percentage of the learning period for Lake Shinji. The dataset for the learning period of 30 years was reduced by up to 40% in the case

of min-leaf¼ 12, and pre-selection.
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the pH could also have an impact on the species succession

of phytoplankton (Hansen ). In the case of predicting

cyanobacteria abundance in a eutrophic reservoir using

the RF model (Harris & Graham ) compared with the

Urayama Reservoir case, pH and TN/TP were not impor-

tant (they did not have BOD and COD as parameters).

Also, temperature was one of the top three important par-

ameters, it was not in the Urayama Reservoir’s case.

These differences may be due to a different constitution
Table 2 | Ranking of predictor importance for each station based on an average of out-of-

bag (OOB) permutated error after 100 runs

Ranking Station U1 Station U2 Station S1

1 BOD (0.67) BOD (0.71) Turb. (0.51)

2 COD (0.63) COD (0.65) COD (0.43)

3 pH (0.43) TP (0.36) SS (0.41)

4 DIP (0.35) CHLORO (0.33) Chl.c (0.36)

5 BACILLARIO (0.34) pH (0.31) Chl.b (0.29)

6 TN/TP (0.30) TN/TP (0.26) TN (0.26)

7 Pheop. (0.29) SS (0.24) pH (0.23)

8 WL (0.28) W. Temp. (0.19) TP (0.22)

9 SS (0.27) WL (0.16) NO3 (0.19)

10 CHLORO (0.25) DIP (0.13) Transp. (0.13)

Values in parentheses indicate average OOB after 100 runs. Detailed figures are shown in

Appendix 6 (available with the online version of this paper).

://iwaponline.com/jh/article-pdf/20/1/206/238479/jh0200206.pdf
of phytoplankton, a different limiting factor for phyto-

plankton: nitrogen or phosphorus, or hydrological

conditions. More importantly, the different dataset of

input parameters as predictors may have affected more

than these. However, it is difficult to clarify the reason

because of the nature of the RF model.

We also calculated the correlation matrix between par-

ameters for each sampling station to compare OOB

rankings (see Appendix 7, available with the online version

of this paper). In the case of the Urayama Reservoir, impor-

tant parameters with correlation coefficients R2> |0.75|

between Chl.a were BOD (0.87, 0.91) and COD (0.80,

0.92) for both U1 and U2. They ranked first and second by

OOB ranking (see Table 2). In the case of Lake Shinji,

R2> |0.75| were TN (0.96), COD (0.93), SS (0.93) and TP

(0.82), which were ranked second, third, sixth and eighth

by OOB ranking, respectively (Table 2). While the turbidity

was ranked first, the correlation coefficient with Chl.a was

0.31. Therefore, a strong correlation with Chl.a was not

necessarily the most important parameter for the RF

model. This is one of the advantages of machine learning

models, which are able to detect conditional linkages

between some parameters that cannot be found directly

with basic statistics. In addition, the RF model is used for

forecasting rather than prediction, which may explain
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some of the differences observed between the OOB ranking

and the correlation matrix.

Forecast capability of RF model

Usually RF models are used to perform predictions (Jiang

et al. ; Harris & Graham ). That is to say, learning

periods are the same for the target signal and the predictors.

In our case, we separated the datasets into two stages of the

learning period and test period. We also introduced a lead-

time for forecasting and lag-time for predictors (see Figure 2

and Appendix 3). This allowed us to test the forecast capa-

bility of this model. The best correlation coefficients

results were 0.41, 0.61, and 0.52 for U1, U2, and S1, respect-

ively. We could not forecast Chl.a values accurately. The

main reason for this may be due to the data availability on

a monthly basis. The hydrological and water quality

conditions can significantly change in a month and

the abundance of each phytoplankton taxa can vary

substantially as well. Moreover, non-uniform horizontal dis-

tribution, or even diurnal vertical distribution for the

phytoplankton existence, could affect the results. These

issues can be solved if applying output datasets calculated

by a detailed ecosystem simulation model, as was examined

for the Urayama Reservoir, using a 3D hydrodynamic and

ecosystem model (Yajima & Choi ). In the case of fore-

casting, as long as we can predict the evolution of

phytoplankton, and know the algal bloom in advance, this

model will be useful for water quality management.
CONCLUSIONS

We applied the RF model to both natural and artificial eco-

systems, and we could forecast the general trend of the Chl.a

signal. When Chl.a became relatively high, the model

tended to make overestimates or underestimates. This kind

of bloom can be interpreted as an extreme event, or it can

be interpreted as a stochastic process at the level of their

probability density. Consequently, it was difficult to make

an accurate modeling for these events with a non-regular

monthly basis data.

In the process of applying the RF model to the three

stations, with two different types of water bodies, we obtained
om http://iwaponline.com/jh/article-pdf/20/1/206/238479/jh0200206.pdf
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some important information. For the choice of tree number, it

was enough to use 200 trees per forest in the model. As to the

min-leaf number, we examined 5, 10, 12, 20 and 50 leafs, and

a min-leaf of 12 generally performed well. Moreover, we

tested a selection of input parameters for predictors. In gen-

eral, the pre-selection outperformed without pre-selection

application. This allowed us to save some computation time

for the analysis. As to the lead-time for the forecast, we

obtained the best results at one month lead-time for stations

U1 and S1, and a three month lead-time for station U2,

even though it is difficult to understand the reason for this.

From the ranking of predictor importance analysis, a

strong correlation with Chl.a was not necessarily the most

important parameter for the RF model forecast in the case

of Lake Shinji. This suggested that the most important pre-

dictors did not necessarily have a strong statistical

correlation with a target parameter. In addition, the size

of the database had a great impact on the forecast perform-

ance in Lake Shinji and a smaller dataset decreased the

performance. Although we only studied two different

types of ecosystems, the number of predictors used in the

inputs of the model, as well as the size of the datasets,

may have affected the model’s performance rather than

the type of the ecosystem.

In our future work, we will use long-term high fre-

quency time series in order to evaluate the effect of

database contents for the forecast capability of the RF

model. Moreover, we need to explore a new technique

for forecasting, as shown in a recent study, which used a

cubist model in the prediction of high-intensity-cyanobac-

teria-bloom that excelled the RF model (Harris &

Graham ). In our next study, we would also like to

include the most representative phytoplankton taxa inde-

pendently as predictors, instead of grouping, which might

be helpful in considering phytoplankton competition and

coexistence. Furthermore, other predictors that have a con-

nection with the specific characteristics of each taxon, in

the form of morpho-functional characteristics (presence

of flagella, cell shape, colonial or solitary species, and so

on), may be included. In this way we would add a layer

of information which could greatly improve the learning

performed by the RF model. In this case, we will not only

have quantitative but also qualitative data, which can be

handled easily by the RF model.
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