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Abstract 

The data acquired from available system sensors forms the 
foundation upon which any health management system is 
based, and the available sensor suite directly impacts the 
overall diagnostic performance that can be achieved. While 
additional sensors may provide improved fault diagnostic 
performance there are other factors that also need to be 
considered such as instrumentation cost, weight, and 
reliability. A systematic sensor selection approach is desired to 
perform sensor selection from a holistic system-level 
perspective as opposed to performing decisions in an ad hoc or 
heuristic fashion. The Systematic Sensor Selection Strategy is 
a methodology that optimally selects a sensor suite from a 
pool of sensors based on the system fault diagnostic approach, 
with the ability of taking cost, weight and reliability into 
consideration. This procedure was applied to a large 
commercial turbofan engine simulation. In this initial study, 
sensor suites tailored for improved diagnostic performance are 
constructed from a prescribed collection of candidate sensors. 
The diagnostic performance of the best performing sensor 
suites in terms of fault detection and identification are 
demonstrated, with a discussion of the results and implications 
for future research. 

Introduction 
Aircraft turbine engine gas path diagnostics are typically 

performed utilizing the available control sensor measurements. 
This set of instrumentation is primarily chosen to permit 
control of the engine to satisfy performance and safety 
requirements. Consequently, additional sensors, optimally 
selected and placed, should improve diagnostic performance. 

Any instrumentation added to an engine must be rugged 
enough to endure the harsh operating environment. Modern 
commercial off-the-shelf (COTS) sensor technologies expand 
the possible measurement locations throughout the engine, but 
restrictions remain. COTS sensors can function in such areas as 
the fan or compressor, but would normally fail in higher 
temperature sections. Sensor technology development is 
necessary for instrumentation to survive in these harsher engine 

locations. Technology research is costly and justification is 
required to augment the existing sensor suite. A demonstration 
of improvements in system health monitoring could help justify 
and direct research efforts for advanced sensors. 

Reference 1 provides a historical overview of sensor 
selection methodologies and justifies the selection of the 
Systematic Sensor Selection Strategy (S4) (refs. 2 and 3) for 
aerospace health assessment needs. S4 is a model-based 
procedure that methodically determines measurement type and 
location to optimize the host system sensor suite toward a 
particular goal. For this paper, S4 (refs. 1 to 3) was used to 
demonstrate the utility of optimally placing sensors in an 
aircraft engine in order to enhance diagnostic performance. In 
this preliminary investigation, the S4 methodology was used 
to evaluate and arrive at optimal sensor suites that show 
marked improvement in the detection and identification of a 
prescribed set of fault scenarios. To create the pool of 
candidate sensor solutions, two classifications of sensors were 
considered beyond the existing (baseline) Full Authority 
Digital Electronic Control (FADEC) sensor suite: optional 
sensors that are available with current COTS technology; and 
advanced sensors that are not currently available in a flight 
qualified form. Figure 1 shows a notional engine sensor 
diagram partitioning candidate sensors into the three 
categories: typical control, optional, and advanced sensors. A 
description of the sensor parameters is given in table 1. 

This preliminary study had two central objectives. First, the 
applicability of S4 to aircraft engine diagnostics is to be 
verified since S4 has traditionally been applied to rocket 
engine health monitoring (ref. 2). Secondly, a functional S4 
framework is to be established that will explore and quantify 
the benefits of including additional sensors to diagnose a 
specific list of fault conditions. 

To support these goals, the following initial assumptions 
were made:  

 
 Only a single steady-state engine operating point with no 

variation in ambient conditions is to be used. 
 Each fault case is composed as a single system fault modeled 

as a deviation in a single engine health parameter.  
 Diagnostic timing considerations are to be ignored. 
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 Fault accommodation, in terms of designing and simulating a 
control strategy to accommodate or remove the fault from 
the system is not considered.  

 Only diagnostic performance metrics are incorporated. 
Metrics associated with sensor cost, reliability or precision 
are not included. 
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Figure 1.—Engine representation with generic sensor type, 

location and classification. 
 

TABLE 1.—DESCRIPTION PF SENSOR PARAMETERS 

Parameter Description 
N1 Low Pressure Shaft Speed 
N2 High Pressure Shaft Speed 
P0 Ambient Pressure 

PS13 Bypass Discharge Static Pressure 
P2 Fan Inlet Pressure 
P25 High Pressure Compressor Inlet Pressure 
PS3 High Pressure Compressor Exit Static Pressure 
P41 High Pressure Turbine Inlet Pressure 
P45 Low Pressure Turbine Inlet Pressure 
P5 Low Pressure Turbine Exit Pressure 
T0 Ambient Temperature 

T12 Fan Inlet Temperature 
T13 Bypass Discharge Temperature 
T25 High Pressure Compressor Inlet Temperature 
T3 High Pressure Compressor Exit Temperature 

T41 High Pressure Turbine Inlet Temperature 
T45 Low Pressure Turbine Inlet Temperature 
T5 Low Pressure Turbine Exit Temperature 
WF Fuel Flow Rate 
W25 High Pressure Compressor Inlet Flow Rate 
W3 High Pressure Compressor Exit Flow Rate 
W41 High Pressure Turbine Inlet Flow Rate 
W45 Low Pressure Turbine Inlet Flow Rate 
W2 Fan Inlet Flow Rate 
W5 Low Pressure Turbine Exit Flow Rate 

This paper is organized as follows. First, an overview of the 
S4 process is given. The S4 turbofan engine diagnostic 
application is then described and details are provided on how 
this investigation was conducted. Next, results from the sensor 
selection process are presented with relevant discussion. 
Finally, future work is proposed that highlights areas of 
interest for follow-on research. 

Systematic Sensor Selection Strategy 
Overview 

S4 is best described as a general architecture structured to 
accommodate application-specific components and 
requirements to perform sensor selection. A knowledge base, 
an iterative down-select process, and a final selection process 
comprise the main functions of the S4 framework. Each 
function is intended to be customized for the host system 
application. Their general relationships are depicted in figure 2 
and a brief description of each S4 component is given in the 
following sub-sections.  

Knowledge Base 

The knowledge base contains health-related information 
about the system under evaluation and a system simulation. If 
historical information or test data on the host system is not 
available, experience from similar systems provide a basis 
from which to define and collect pertinent health-assessment 
information.  

Health-related information is extracted from domain 
experts, manufacturer reports, and failure modes and effects 
analysis and hazard analysis studies. The type of information 
gathered includes fault signatures, fault progressions, 
component/sensor reliabilities, and sensor characteristics (e.g. 
noise). These data are used as inputs to establish the system 
diagnostic model, and define key optimization parameters for 
the sensor suite merit algorithm and down-select algorithm. In 
addition, this health-related information is used to define the 
required system simulation. 

The system simulation provides input in the form of data 
sets for the iterative down-select process and statistical 
evaluation algorithm. This module may be a collection of 
simulations of varying fidelities that are applicable at various 
stages of the system operation. The system simulation for S4 
can be developed using a process model, which may be as 
simple as algebraic relations between the monitoring variables 
and fault conditions, or contain more complicated dynamic 
system models that incorporate health parameters. When 
available and appropriate, test or flight data could be provided 
from this module. 

Iterative Down-Select Process 

The down-select process is an iterative procedure to select a 
group of near-optimal sensor suites for health assessment. The  
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Figure 2.—Systematic Sensor Selection Strategy Architecture 

 
process involves sequentially generating and evaluating a 
collection of candidate sensor suites, eventually converging 
towards a more optimal sensor suite. The process can be 
repeated with systematic permutations to the initialization of 
the search process, until the results stabilize to a small set of 
near-optimal suites. The procedure includes a system 
diagnostic model, a sensor suite merit algorithm and a down-
select algorithm. 

The system diagnostic model represents the diagnostic 
analysis to be applied to the host system. The performance of 
the diagnostic model is measured for each candidate sensor 
suite at each relevant operational mode. The measures of 
performance are provided to the sensor suite merit algorithm. A 
key feature for this model is that it must be complete and 
capable of providing diagnostic analysis for all or any subset of 
the possible sensors. Developments of applied system 
diagnostic models to date have used system simulations and 
health-related information for fault characterization. During the 
down-selection process, the system diagnostic model receives 
sensor suite configuration information from the down-select 
algorithm and outputs diagnostic performance information for 
these sensor suites to the sensor suite merit algorithm.  

The sensor suite merit algorithm assigns an evaluation score 
or merit value for each candidate sensor suite. It generates 
quantified metrics utilizing performance information from the 
system diagnostic model along with other pertinent 
characteristics such as life cycle cost of the measurement suite 
being evaluated. It receives sensor suite diagnostic 
performance information from the system diagnostic model 
and it outputs sensor suite merit values to the down-select 
algorithm. The merit algorithm is normally in the form of an 
algorithmic unction, where performance criteria of interest to 
the particular system can be combined. 

The down-select algorithm is a search algorithm that 
utilizes an optimization technique to select sensor suites that 
will allow progression toward an optimal or near-optimal 
solution. Because the search space grows factorially with the 
number of sensors to be evaluated, a search algorithm must be 
utilized capable of conducting an effective global search 
within an acceptable amount of time. Optimization techniques 
such as Genetic Algorithms (ref. 4) are generally well-suited 
for this function. While a Genetic Algorithm has typically 
been utilized, this particular module in the methodology can 
be replaced with any search algorithm suitable to the user. The 
down-select algorithm receives system and sensor information 
from the knowledge base to establish any specific guidelines 
or constraints used in the sensor suite search. During the 
iterative process, merit values from the sensor suite merit 
algorithm are used by the down-select algorithm to generate a 
collection of new candidate sensor suites that should converge 
toward the optimum solution. 

Final Selection 

In the final selection process, a collection of the best 
candidate sensor suites generated from the iterative down-
select process is challenged further. The user inspects the 
output and determines how well the optimal sensor suite 
satisfies the performance criteria and whether some of the 
performance objectives, within the merit algorithm, need to be 
modified. Often times these results yield trends that encourage 
further trade studies to enhance the selection process and the 
overall final sensor suite selection. 

The statistical evaluation algorithm is intended as a final 
test of each candidate sensor suite. When constructing the 
iterative loop of the down-select process, often there is a 
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tradeoff between fidelity and speed with importance placed on 
speed. During the final selection process, fidelity is desired. 
Therefore additional uncertainty effects such as sensor and 
system noise characteristics and variations in fault dynamics 
are incorporated. The system diagnostic model and sensor 
suite merit algorithm utilized in the down-select process can 
be used to evaluate each sensor suite. The statistical evaluation 
algorithm uses input from the health-related information and 
the system simulation data to establish the high fidelity fault 
scenario data sets. Results from the statistical evaluation 
enable a ranking or stratification of the near-optimal sensor 
suite for final selection. 

Application 

A large commercial turbofan engine computer simulation 
was selected as the host platform for the initial S4 aircraft 
engine demonstration. A cruise operating point was selected to 
investigate single fault scenarios at a steady state condition.  

The assortment of candidate sensors and failure scenarios 
were prescribed by the engine simulation. The notional sensors 
in figure 1 were mapped to the appropriate variables within the 
model. The sensors which measure ambient and inlet conditions 
(i.e., P0, P2, T0, and T12) were not included as they were 
assumed to remain constant during the fault scenarios. For the 
purpose of this study, 10 single health parameter fault cases 
were considered as shown in Table 2. Each fault case was 
modeled as a single system fault which was induced in the 
simulation by changing the value of one of the health 
parameters within the model. The 10 single health parameter 
fault cases were composed of an efficiency and flow capacity 
modifier for each major module of the engine. While these 
simulated fault conditions are not necessarily identical to more 
complex fault conditions that may be experienced in an actual 
aircraft engine application, they are representative and serve as 
an example to illustrate the functionality of the S4 methodology. 
Additional and/or different fault cases can be readily 
incorporated into the S4 methodology. Appropriate fault 
influence coefficients relating changes in sensed engine outputs 
to the various fault conditions were extracted from the model 
over a range of fault magnitudes.  

 
 

TABLE 2.—LIST OF SIMULATION FAILURE DESCRIPTIONS 

Failure Description 
FANeff Fan efficiency loss 
FANflow Fan flow restriction 
BSTeff Booster efficiency loss 
BSTflow Booster flow restriction 
HPCeff High pressure compressor efficiency loss 
HPCflow High pressure compressor flow restriction 
HPTeff High pressure turbine efficiency loss 
HPTflow High pressure turbine flow restriction 
LPTeff Low pressure turbine efficiency loss 
LPTflow Low pressure turbine flow restriction 

 

Specific host system information is necessary for proper 
construction, execution, and analysis of results of the S4 
framework. The diagnostic philosophy of the host system is to 
be understood in order to select sensors that will be effective 
based on the system fault detection and identification strategy, 
and the missed detection and false alarm requirements. A 
catalog of failure conditions of interest is required, and 
furthermore can be prioritized to direct the sensor selection 
procedure toward those faults that are critical or have a higher 
probability of occurrence. Critical failures can include a fault 
condition that would trigger a maintenance event, or one that 
would require immediate action in order to prevent a serious 
situation. The latter fault type would require diagnostic latency 
considerations in the sensor selection study, which is not 
considered in this initial demonstration. Through all of this, 
relevant engine operating environments are to be characterized 
including closed-loop control effects. 

With the information available, the S4 process for the 
turbofan application was designed and implemented based on 
the framework described in the Systematic Sensor Selection 
Strategy (S4) User’s Guide (ref. 3). The system simulation 
was utilized to run fault simulations of various types and 
magnitudes. Data from these simulations were processed to 
develop a system diagnostic model in the form of an inverse 
model. A sensor suite merit value algorithm was formulated to 
evaluate the candidate sensor suites. For the down-select 
algorithm, a genetic algorithm was implemented. Finally, a 
statistical evaluation algorithm was applied to more 
thoroughly evaluate the diagnostic performance of the 
resulting measurement sets.  

The inverse model uses a piece-wise linear approximation 
to compute a vector of estimated sensor values. The estimated 
value for each sensor, ˆiy , is given by, 

 
( )

( )
1 2

1

ˆ ˆ ˆ ˆ, , ,

ˆ

i i n
n

p p p
jij j ij

j

y f x x x

A x x y
=

=

⎡ ⎤= − +⎢ ⎥⎣ ⎦∑
  (1) 

where p
ijA  is the influence matrix at interpolation point p,  that 

relates the magnitude of the jth fault condition, xj, to the 
corresponding ith sensor value, yi. p

ijy  is the value for sensor i 

for fault condition j at interpolation point p and p
ijx is the fault 

condition magnitude for interpolation point p and fault 
condition j. From the vector of predicted sensor values, a 
residual summation term, sumy , is calculated by, 

 
1

ˆ
m

sum i i
i

y y y
=

= −∑    (2) 

where m is the number of sensors. 
A Levenberg-Marquardt optimization technique (ref. 5) is 

used to isolate the most plausible single fault case given a set 
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of sensor measurements. For each of the possible fault 
hypothesis cases, the Levenberg-Marquardt optimization 
technique is applied in an attempt to minimize the actual vs. 
estimated sensor error by adjusting the estimated magnitude of 
the fault condition, ˆ jx , so that the estimated sensor value ˆiy  
closely matches the actual sensor measurement yi. A residual 
summation term at or near zero indicates good agreement 
between the estimated and actual fault condition—an 
indication that the hypothesized fault is indeed the true fault 
condition. A large residual summation term indicates poor 
agreement—an indication that the hypothesized fault 
condition is incorrect. Through this process fault 
discrimination takes place and a diagnosis of the most 
plausible fault cause is produced. 

The elementary merit value calculation for a sensor suite 
is given by, 

 
1

n

j
j

Merit U P D
=

= × ×∑  (3) 

where n is the number of fault conditions. 
In Eq. (3), U is the utility weighting term; and is a measure 

of the benefit of a particular sensor suite. This utility term may 
incorporate factors such as cost, weight, power requirements, 
etc. As shown in Eq. (4), U is an average of the utility of a 
given sensor, Ui, in a suite with m sensors. In this preliminary 
study, each sensor was assigned a utility value of 1.0 since 
detailed sensor information was not available. 

 1

m

i
i

U
U

m
==
∑

 (4) 

Also, in Eq. (3), the penalty term, P, quantitatively defines 
the importance of a particular characteristic which in this 
application is the number of measurements in the optimal 
sensor suite. As shown in Eq. (5), the penalty term is 
calculated by comparing the desired number of sensors, 
Ndesired, to the actual number of sensors, Nactual with a penalty 
weighting value, Wpenalty, and a normalization term, K. The 
normalization term, K, was assigned a value of 1.0. The 
penalty weighting value, Wpenalty, was set to the lowest value 
(between 0.001 and 0.1) that would give a solution with the 
desired number of sensors  

 
( )penalty desired actual

KP
K W N N

=
+ −

  (5) 

The diagnostic term, Dj, is the final term used in Eq. (3). Dj 
is a measure of the fault detection and identification capability 
of the sensor suite for fault condition j. The method for 
calculating Dj is given in Eq. (6) and is described as follows. 
A fault detection level FDL,j, is used to rate the fault detection 
sensitivity of the sensor suite. The magnitude at which a 

sensor suite can sense a fault condition is its fault detection 
level. Because fault sensitivity is desired, a large fault 
detection level will decrease the diagnostic term. The fault 
identification value, FID,j, is a fault discrimination measure 
from the inverse model diagnostic algorithm (ref. 3), which is 
a measure of the ability of the sensor suite to distinguish 
between known failure conditions. This measure is based on 
the residual calculations discussed above. The fault criticality 
value, FCRIT,j, is a user defined measure of the criticality of 
detecting and identifying fault condition j. In this exercise, 
each of the fault conditions was assigned an arbitrary fault 
criticality value of 0.333. 

 , ,

,

ID j CRIT j
j

DL j

F F
D

F
×

=   (6) 

The diagnostic term calculation applied in this study is a 
modification to the merit algorithm described in the S4 User’s 
Guide (ref. 3). A detectability study is normally performed 
before the sensor selection procedure is employed to 
determine the fault magnitudes for each fault test scenario. 
Once the fault magnitude is set, it does not change to account 
for the different sensor measurements available. By 
determining the magnitude at which a particular candidate 
sensor suite can detect a fault condition, a more realistic 
methodology is employed. In the fault detection check, a 
measurement observation vector is constructed using data only 
available from the sensors in the candidate suite. At first, the 
data for the minimum fault perturbation is used. If the fault is 
not detectable at this level, then the observation vector is 
reassembled and reevaluated with the observable data for the 
next larger increment of the fault. The process is repeated until 
the fault becomes observable using the system’s fault 
detection criteria.  

The embedded fault detection check has two components 
that both rely on a change in the measurement value from the 
nominal baseline. Violation of either check component will 
cause a fault detection declaration. In the first, a change in 
value for each sensor measurement from the baseline is 
computed and compared to a threshold limit. If the limit is 
exceeded, then fault detection is declared. In the second, the 
root mean squared, RMS, value of the shift of the entire 
measurement set is calculated for the fault condition and 
compared to another threshold limit. If the value exceeds the 
limit, then fault detection is stated. The calculation is shown in 
Eq. (7) where m is the number of sensors in the suite, and 
ybaseline,i is the nominal baseline value of sensor i.  

 ( ) 2
,

i 1

1 m

i baseline iRMS y y
m =

= −∑  (7) 

The procedure to detect faults in a particular system 
primarily depends on the system fault detection requirements 
or the health monitoring philosophy of the system. Differences 
in the applied fault detection procedure will influence sensor 
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selection results. In previous studies, fault detection is 
declared when two sensors exceeded a prescribed value of 3σ 
where σ is the standard deviation of sensor uncertainty. The 
shift in value of two sensors is intended to safeguard against 
sensor failures being declared as system faults. However, 
when this detection criterion is used during a preliminary 
sensor selection evaluation, three of the fault scenarios were 
not detectable within the prescribed fault magnitude limits as 
shown in table 3. Enhancements were made to the fault 
detection methodology which included the addition of the root 
mean squared method as presented in Eq. (7). With the 
modifications, all of the fault conditions become detectable, 
though these three fault conditions remain difficult from a 
diagnostics perspective. 

 
 
 

TABLE 3.—INITIAL DETECTABILITY STUDY RESULTS FOR 
OPTIONAL AND ADVANCED SENSOR SETS 

Failure Fault Magnitude at Detection 
FANeff 2.2 % 
FANflow 1.2 % 
BSTeff Not detectable within limits 
BSTflow Not detectable within limits 
HPCeff 2.6 % 
HPCflow Not detectable within limits 
HPTeff 1.9 % 
HPTflow 1.4 % 
LPTeff 1.6 % 
LPTflow 2.1 % 

 
 
 
With the establishment of the S4 framework for the 

turbofan engine system, the preliminary study procedure was 
structured as follows. The merit value of the current control 
sensor suite is measured and established as the baseline. Next, 
the sensor selection procedure is performed using optional 
sensors only. Without any requirements for the size of the 
ideal sensor suite, the full range of possible sensor suite sizes 
are to be examined. The procedure incrementally adds a 
sensor to the desired sensor suite size until all of the candidate 
sensors are included. Stated in another way, the S4 process 
can be used to find the optimal sensor suite for a given desired 
number of sensors. The desired number of sensors ranges from 
one additional sensor to all of the candidate sensors. The merit 
value of each of the resulting optimum measurement sets is 
measured and compared to the baseline. The process is to be 
repeated until all the candidate sensors that encompass the 
optional and advanced sensor sets are included. In this way, 
the quantitative benefits of adding more sensors can be 
evaluated and the selection of advanced sensors can be 
compared to COTS only sensor suites for this application 
example.  

Results 
The sensor selection studies were executed and the results 

were documented and analyzed. A plot of the merit value in 
Eq. (3), for the optimum sensor suite for each desired number 
of sensors is given in Figure 3. While Tables 4a and 4b show 
the corresponding sensors lists with their merit values. Tables 
4a and 4b respectively correspond to the Optional Sensors 
data and the Optional and Advanced Sensors data shown in  
Figure 3. The first data point in both sets represents the 
baseline control sensor set of seven sensors. Table 4a shows 
that, for the second point, P25 is selected, for the third point, 
P25 and P5 are selected, and so on. The best merit value, for 
the study that includes the optional sensors, is found at two 
additional sensors. When advanced sensors are included in the 
potential sensor pool, also see Table 4b, the first sensor 
selected is still P25. However with two additional sensors, P5 
from the optional sensors and P45 from the advanced sensors 
are selected, while P25 is not selected. The merit value 
indicated in Figure 3 and Table 4b increases as more sensors 
are added, until a maximum performance is reached at point 5 
with four additional sensors. 

 

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Additional Sensors

D
ia

gn
os

tic
 M

er
it 

Va
lu

e

Optional Sensors

Optional and Advanced Sensors

 
Figure 3.—Diagnostic merit value for  

each optimum sensor suite. 
 
 

TABLE 4A.—SENSOR LIST FOR THE  
BEST OPTIONAL SENSOR SUITES 
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TABLE 4B.—SENSOR LISTING FOR THE BEST OPTIONAL 
AND ADVANCED SENSOR SUITES 

A
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5

P5 T5 W
2

W
25

W
3

P4
1
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W
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5

W
45

W
5

M
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0 15.75
1 X 17.10
2 X X 17.94
3 X X X 19.40
4 X X X X 19.56
5 X X X X X 19.44
6 X X X X X X 19.40
7 X X X X X X X 18.98
8 X X X X X X X X 18.61
9 X X X X X X X X X 18.21

10 X X X X X X X X X X 18.25
11 X X X X X X X X X X X 18.05
12 X X X X X X X X X X X X 17.43
13 X X X X X X X X X X X X X 17.35
14 X X X X X X X X X X X X X X 17.18

Optional Sensors Advanced Sensors

 
 
 
 
Past the maximum diagnostic merit value, performance 

generally tends to decrease with the inclusion of more sensors 
in the selected sensor suite. Conventional wisdom would 
expect performance to increase, or at a minimum, to plateau 
with each additional sensor. These merit value reductions 
could stem from the fact that the sensors being added do not 
provide significant diagnostic information relative to other 
measurements within the set. This seems to effect the merit 
value calculation in two ways. First, even though both fault 
detection criteria are being used, faults are normally detected 
with the root-mean square test. Since this calculation is 
essentially an average of the measurement perturbation from 
the nominal condition, Eq. (7), adding a sensor with a 
relatively lower observable measurement shift lowers the 
overall root mean square value thereby, making the fault more 

difficult to sense with this detection check. To a lesser degree 
in fault discrimination, the inverse model diagnostic system 
performance can be degraded when the sensors are not 
measuring independent variables. Sensors that measure 
parameters with inter-dependence will cause a shifting of the 
solution during the optimization process.  

Another interesting observation seen in Tables 4a and 4b is 
that some sensors are consistently selected as the size of the 
sensor suite is increased, while some other sensors are not 
selected as often or they are only selected when the size of the 
sensor pool is substantially increased. This gives an indication 
of the importance of these sensors in the particular diagnostic 
system. An effective sensor selection scheme should be able to 
distinguish those measurement sets with sensors which are 
useful from those which are nonessential. 

A statistical evaluation algorithm was developed to 
determine how the resulting sensor suites would function in an 
increasingly realistic evaluation environment. The sensor 
suites were assessed against ten fault test conditions with fault 
magnitude perturbations that progressed from 3.0 to 5.0% in 
0.5% increments. At each fault magnitude, the evaluations 
were repeated 100 times with random noise added; therefore 
each fault test condition was evaluated 500 times. Sensor 
signal statistics were used to apply a Gaussian distribution for 
determination of the random noise values. In addition to the 
fault test cases, 100 nominal (no fault) test cases were 
evaluated to examine the potential of false alarms. Data for 
each of the fault and no-fault test cases were regenerated for 
each sensor suite evaluation. This statistical evaluation was 
conducted for three different sensor suites, which includes the 
baseline control sensor suite, a suboptimal sensor suite and an 
optimal sensor suite. The suboptimal suite with a merit value 
of 19.40, see Table 4b, includes two optional sensors and one 
advanced sensor. The optimal sensor suite with a merit value 
of 19.56 includes two optional and two advanced sensors. 
Results were tabulated in a confusion matrix and are shown in 
Tables 5a, 5b and 5c, with a summary of their fault 
discrimination accuracy presented in Table 6.  

 

 

TABLE 5A.—CONFUSION MATRIX FOR BASELINE CONTROL ONLY SENSOR SUITE 

FANeff FANflow BSTeff BSTflow HPCeff HPCflow HPTeff HPTflow LPTeff LPTflow
None 

Detected Accuracy
FANeff 126 261 0 0 0 0 0 0 113 0 0 25%

FANflow 66 377 0 0 0 0 0 0 57 0 0 75%
BSTeff 0 0 13 0 0 0 0 0 0 0 487 3%

BSTflow 0 0 0 0 0 0 0 0 0 0 500 0%
HPCeff 0 0 0 0 499 0 1 0 0 0 0 100%

HPCflow 0 0 0 0 0 145 0 0 0 0 355 29%
HPTeff 0 0 0 0 0 0 500 0 0 0 0 100%

HPTflow 0 0 0 0 0 0 0 500 0 0 0 100%
LPTeff 128 137 0 0 0 0 0 0 235 0 0 47%

LPTflow 0 0 0 0 0 0 0 4 0 496 0 99%
Nominal 0 0 0 0 0 0 0 0 0 0 100 100%
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TABLE 5B.—CONFUSION MATRIX FOR SUB-OPTIMAL SENSOR SUITE WITH THREE ADDITIONAL SENSORS  
(OPTIONAL AND ADVANCED) 

FANeff FANflow BSTeff BSTflow HPCeff HPCflow HPTeff HPTflow LPTeff LPTflow
None 

Detected Accuracy
FANeff 400 72 0 0 0 0 0 0 28 0 0 80%

FANflow 27 462 0 0 0 0 0 0 11 0 0 92%
BSTeff 0 0 0 0 0 0 0 0 0 0 500 0%

BSTflow 0 0 0 248 0 0 0 0 0 0 252 50%
HPCeff 0 0 0 0 500 0 0 0 0 0 0 100%

HPCflow 0 0 0 0 0 7 0 0 0 0 493 1%
HPTeff 0 0 0 0 0 0 500 0 0 0 0 100%

HPTflow 0 0 0 0 0 0 0 500 0 0 0 100%
LPTeff 31 58 0 0 0 0 0 0 411 0 0 82%

LPTflow 0 0 0 0 0 0 0 0 0 500 0 100%
Nominal 0 0 0 0 0 0 0 0 0 0 100 100%

Inferred Fault Condition

Tr
ue

 F
au

lt 
C

on
di

tio
n

 
 

TABLE 5C.—CONFUSION MATRIX FOR THE BEST SENSOR SUITE WITH FOUR ADDITIONAL SENSORS  
(OPTIONAL AND ADVANCED) 

FANeff FANflow BSTeff BSTflow HPCeff HPCflow HPTeff HPTflow LPTeff LPTflow
None 

Detected Accuracy
FANeff 426 55 0 0 0 0 0 0 19 0 0 85%

FANflow 26 468 0 0 0 0 0 0 6 0 0 94%
BSTeff 0 0 0 0 0 0 0 0 0 0 500 0%

BSTflow 0 0 0 225 0 0 0 0 0 0 275 45%
HPCeff 0 0 0 0 500 0 0 0 0 0 0 100%

HPCflow 0 0 0 0 0 5 0 0 0 0 495 1%
HPTeff 0 0 0 0 0 0 500 0 0 0 0 100%

HPTflow 0 0 0 0 0 0 0 500 0 0 0 100%
LPTeff 16 39 0 0 0 0 0 0 445 0 0 89%

LPTflow 0 0 0 0 0 0 0 0 0 500 0 100%
Nominal 0 0 0 0 0 0 0 0 0 0 100 100%

Inferred Fault Condition
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TABLE 6.—SUMMARY OF SENSOR SUITE  
ACCURACY FROM CONFUSION MATRIX RESULTS 

Baseline

3 Additional
Sensors

(Sub-Optimal)

4 Additional
Sensors
(Optimal)

FANeff 25% 80% 85%
FANflow 75% 92% 94%
BSTeff 3% 0% 0%
BSTflow 0% 50% 45%
HPCeff 100% 100% 100%
HPCflow 29% 1% 1%
HPTeff 100% 100% 100%
HPTflow 100% 100% 100%
LPTeff 47% 82% 89%
LPTflow 99% 100% 100%
Nominal 100% 100% 100%
Overall 62% 73% 74%  

 
 

A confusion matrix is a visualization tool showing the 
results of the diagnostic algorithm. In the matrix, the rows list 
the true fault condition while the columns have the inferred 
fault condition. The matrix displays any “confusion” between 
the inferred and true fault conditions through non-zero values 
in the off-diagonal elements. The baseline control sensor suite, 
Table 5a, displays difficulty in discriminating between the fan 
efficiency, fan flow and low pressure turbine efficiency faults 
as the inferred and true fault conditions do not match as well. 
With the optimum and sub-optimal sensor suites, Tables 5b 

and 5c, these faults are better discriminated as indicated by the 
improved matching of the inferred and true fault conditions. 
All of the sensor suites had difficulty in sensing the failure 
conditions which were not detectable in the original 
detectability study shown in Table 3, which were booster fan 
efficiency and flow, and high pressure compressor flow.  

The optimal sensor suite from Figure 3 and Table 4b shows 
improved accuracy as seen in Table 5c. But the overall or the 
averaged fault discrimination accuracy, Table 6, is not 
significantly different between the suboptimal and optimal 
sensor suites. However, the optimal sensor suite shows 
improved fault diagnostic accuracy for those cases which are 
closer to 100%. This is more important because it implies that 
this sensor suite could discriminate all these faults with near 
100% accuracy if the health parameter shift limits (from 
nominal) for declaring a fault are relaxed a bit. And the main 
difference between the suboptimal and optimal sensor suites is 
how much more the health parameter shift limits would need 
to be relaxed in order to isolate these faults within the desired 
accuracy for a given system. On the other hand, for faults with 
low diagnostic accuracy, like the high pressure compressor 
flow for which the diagnostic accuracy has not improved from 
baseline to the suboptimal to the optimal sensor suite, this 
would suggest that the pool of candidate sensors is insufficient 
to properly detect and identify these types of faults. This could 
also mean that a different diagnostic method could provide 
somewhat different results. If it turns out that the given pool of 
sensors is inadequate to accurately diagnose all the faults, then 
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one or more sensors sensitive to those faults would need to be 
added to the available pool of sensors. The reason that adding 
more sensors starting from the baseline sensor suite Table 5a, 
causes the fault detection accuracy for the high pressure 
compressor flow to deteriorate is due to the RMS measure of 
Eq. (7) that is being utilized for fault detection. When 
additional sensors are included in the sensor suite which do 
not improve fault detection for that particular fault, the RMS 
value can effect decrease because it is averaged by the number 
of sensors. 

Generally, as expected, the optimal and sub-optimal sensor 
suites exhibit improved performance for fault discrimination. 
All three sensor suites exhibited perfect performance in 
generating no false alarms for the nominal (no fault) cases 
evaluated in this study.  

These types of studies can help to identify trends such as 
the importance of each candidate sensor measurement based 
on the given diagnostic approach. It also helps to identify 
whether the available pool of sensors is sufficient to identify 
the desired set of fault conditions, within the desired fault 
detection accuracy and health parameter shift limits. Finally, it 
establishes a vehicle to quantify the benefits of adding certain 
sensor measurements and provides a basis to support further 
sensor research.  

Future Work 
With the objectives of the preliminary S4 investigation 

being achieved, the goals of this effort are being expanded. An 
ambition of this study was to determine the applicability of the 
S4 methodology to aero-vehicle propulsion systems. With the  
framework established, the research can continue with more 
specific details of the host system being incorporated. This 
particular study essentially provides the proof of concept, but 
it also opens more questions and provides some guidance for 
further research.  

Opportunities to expand on this preliminary effort include 
the investigation of fault conditions at additional engine 
operating points. Data can be obtained for the nominal and 
fault conditions over a range of operating conditions and 
power settings. The merit algorithm would be modified to 
account for the expanded operating envelope. 

Future investigations could also focus on the merit 
algorithm to improve upon the general assumptions. 
Importance can be given to false alarm and missed detection 
 

 rates for each of the fault scenarios. Sensor statistics such as 
reliability, desirability, availability and possibly cost could be 
incorporated if available. Furthermore, results from this study 
could be used to refine the general fault detection and 
identification procedures employed in any future work.  

Conclusion 
This preliminary investigation serves as a proof of concept 

for the applicability of the optimal sensor selection 
methodology Systematic Sensor Selection Strategy (S4), for 
aircraft turbofan engine health monitoring applications. When 
applied to a turbofan engine simulation, results show that there 
is a diagnostic benefit when the current baseline control sensor 
suite is augmented by additional sensors and that the 
diagnostic benefit varies with the number of additional 
sensors. The flexibility of the Systematic Sensor Selection 
Strategy is evident in these studies and the methodology is 
closely tied to the system fault diagnostic philosophy, which is 
highly desirable. The methodology could ultimately be used to 
justify new sensor research by quantifying its benefits in terms 
of additional diagnostic capability, and cost in terms of sensor 
cost or preventive maintenance. Additionally, the 
methodology can expose fault conditions that are difficult to 
diagnose suggesting improvements to either the diagnostic 
philosophy or expansion of the pool of candidate sensors. 
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