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Abstract 

An extremal principle is formulated for thermodynamic systems near equilibrium subjected to 

various external conditions. It is shown that the principle describes unambiguously the 

kinetics of the thermodynamic system and replaces classical phenomenological equations. 

The global formulation of the principle makes it possible I) to introduce discrete characteristic 

parameters for the proper description of the state and evolution of the system, II) to take into 

account constraints amongst the characteristic parameters of the local or global character and 

III) to derive the evolution equations for the characteristic parameters. These facts turn the 

principle into an effective tool for the treatment of non-equilibrium thermodynamic systems. 

 

Keywords: Non-equilibrium thermodynamics, phenomenological equations, thermodynamic 

extremal principle, evolution equations, reciprocal relations 
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1. Introduction 

 

The classical treatment of linear thermodynamics of irreversible processes represents a 

considerably complicated system of linear relations amongst local thermodynamic quantities 

[1-3]. It is suitable e.g. for modeling of material processing and properties at elevated 

temperatures. However, it is necessary to admit that linear thermodynamics of irreversible 

processes is not a general tool for the treatment of the time evolution of arbitrary systems, for 

a detailed discussion see [4]. 

 The systems treated in material science are usually rather complex. In most cases, 

however, only a limited number of characteristic parameters (CPs) can be used for the 

description of the state and evolution of the system and only a limited number of CPs are of 

interest implying a certain degree of idealization of the system. The number of CPs depends 

on the required accuracy of the description and on the complexity of the system. Moreover, 

constraints of local or global character amongst the CPs must often be taken into account. The 

goal is the determination of the evolution equations for the CPs. 

 The classical way of determining the evolution of a system is represented by the 

solution of phenomenological equations complemented by conservation laws and proper 

boundary and contact as well as initial conditions. By setting some assumptions on the system 

geometry a certain degree of idealization of the system can be achieved, so that the 

phenomenological equations can be solved providing the time evolution of the CPs. However, 

in many practical cases the amount of necessary idealization may completely be lacking of the 

physical substance of the problem. Obviously, the solution of the standard phenomenological 

equations need not to be the most efficient way. This problem could be overcome by the 

application of the Thermodynamic Extremal Principle (TEP), which represents a tool for 

deriving evolution equations for the CPs in a direct way but is very rarely exploited. The 

present paper is aimed to show a concept how the TEP can be applied. 

 The story of TEP starts with the variational formulation of a thermodynamic problem 

by Onsager [5] in 1931, who showed that the equations for heat conduction in an anisotropic 

system can be derived from the requirement of the maximum of a functional having a close 

relation to the total entropy production in the system. During the following 60 years the field 

of extremal principles in thermodynamics has spread in several directions. The Lagrangian [6, 

7] and Hamiltonian [8, 9] structures of the principle as well as the method of path integrals 

[10] have been developed. Furthermore, extremal principles have been formulated for steady-
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state and transient non-linear systems or systems far from equilibrium [7, 11, 12]. The 

important role of entropy production with respect to the proper formulation of constitutive 

laws in a wide field of applications can be recognized in [13-15]. It was also demonstrated, 

that the principle can be generalized to arbitrary processes obeying the laws of linear non-

equilibrium thermodynamics [16-18]. 

During the last 15 years the TEP has been applied to the development of models in materials 

science [19-28]. The authors have demonstrated that the TEP seems to be a handy tool for the 

solution of practical problems of thermodynamics of irreversible processes, which are often 

unsolvable or solvable only with great complications in the conventional way. However, 

apparently the TEP and its application to modeling have still not penetrated sufficiently into 

the material sciences community. Therefore, the aim of this paper is to demonstrate a 

generally applicable concept of the TEP which can be a guide for modeling of a large class of 

problems in material sciences. 

 

 

2. Formulation of the Thermodynamic Extremal Principle (TEP) 

 

Let us consider a body and define in its interior a system occupying the domain V with the 

surface V∂  and the surface normal n  in its actual configuration at time t. The Cartesian 

coordinates x1, x2, x3 are represented by a vector x . Scalar quantities like the temperature θ  

are functions of x  and t, ( )t,xθθ = . Vectors are denoted by e.g. a , second order tensors are 

denoted by e.g. R . We use the Einstein summation convention for double indices meaning 

∑=
=

n

i
iiii baba

0
. The sum 

k

T

k jb ⋅  means the sum of inner products of the vectors 
k

b  and 
k

j  

over k; the superscript "T" refers to a transposed vector, tensor or matrix. The product 

aRa
T ⋅⋅  is a quadratic form in a1, a2, a3, meaning the inner product of the vector a  with the 

vector aR ⋅  being the matrix product of R  and a .  

 Let the thermodynamic system be near the thermodynamic equilibrium. The evolution 

of the system is caused by irreversible processes in the system. These processes are 

represented by fluxes, by the motion of interfaces in polycrystalline and/or multiphase 

systems and finally the rates of eigenstrain components. For simplification we consider only 

the fluxes as kinetic variables in the system. Let ( )t,xjj
kk

= , n,....,2,1,0k = , be the  fluxes 
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occurring in the system, where 
0

j  is the heat flux and 
k

j  for 0k >  are other kinds of fluxes, 

e.g. diffusive fluxes of components, the electric current etc.  

 The total entropy production P in the system is a functional of the fluxes 
k

j  and in 

general can be expanded in a Taylor series with respect to 
k

j  as 

 

 ( )dVtermshigherjRjjBAP
V

k

T

kk

T
k∫ +⋅⋅+⋅+=

ll
. (1) 

 

From the requirement that the entropy production P in any part of the system must be zero in 

the state of thermodynamic equilibrium, 0j
k
≡ , it follows that 0A ≡ . Since for systems not 

in thermodynamic equilibrium the total entropy production P must be positive for arbitrary 

fluxes (Second Law of Thermodynamics), also the second term in the expansion (1) must not 

appear, 0≡kB , and the third term must be a positive definite quadratic form of the 

components of the fluxes 
k

j . For the state near the thermodynamic equilibrium small values 

of fluxes 
k

j  can be expected and, therefore, the higher terms in eqn. (1) are negligible. Then 

P is given by the truncated Taylor series after three terms as 

 

 ( ) 0j,j2dVjRjP
kk

V

T

k
≥≡⋅⋅= ∫ lll

φ . (2) 

 

Let 
kij  be the i-th component of the flux 

k
j , 

jj
l

 be the j-th component of the flux j
l
 and 

k ijR
l

 be the ij element of the matrix 
l

R
k

. Then 
2 21 1

2 2k ij kji

ki j j ki

P P
R R

j j j j

∂ ∂
= = =

∂ ∂ ∂ ∂l l

l l

, and the 

symmetry relation in the form T

k k
R R=

l l
 must be fulfilled. 

l
R

k
 describes the local material 

properties. The quantity P, equation (2), is in its substance the mathematical expression of the 

Second Law of Thermodynamics for systems near the thermodynamic equilibrium being a 

positive definite quadratic form in the fluxes. 

 The rate of the total entropy, S& , of an open system is given by 

 

 extSPS && += , (3) 
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where extS&  is the total flow of the entropy into the system. The rate of the total entropy, S& , 

can then be expressed according to [2] as 

 

 ( )dVjdiv
1

S
V

kk∫= µ
θ

& , (4) 

 

where ( )t,xkµ , n,....,2,1k = , are the chemical potentials of the components k and 10 −=µ . 

The total flow of the entropy into the system follows according to [2] as 

 

 dAnjS
T

kk
V

ext ⋅∫=
∂

µ
θ
1& . (5) 

 

The combination of eqns. (4) and (5) yields, by the application of the Gauss theorem, 

 

 ( )
k

k

V

T

kext jdVgradjSSP ψ
θ
µ

≡






⋅−=−= ∫&& . (6) 

 

The quantity P, equation (6), stemming from balancing the rate of entropy in an open system, 

is obviously a linear form in the fluxes. 

A comparison of eqns. (2) and (6) furnishes the necessary equivalence condition  

 

 ( ) ( )
kk

jj,j2 ψφ =
l

. (7) 

 

Both functionals, ( )
l

j,j2
k

φ  and ( )
k

jψ , represent the total entropy production in the system. 

They have, however, a different physical meaning. As outlined above ( )
l

j,j2
k

φ  is a positive 

definite quadratic form of the components of fluxes and reflects the material properties of the 

system. As a simple example it corresponds to the heat produced in a resistor due to an 

electric current. On the other hand ( )
k

jψ  is a linear form of the components of fluxes and 

reflects the driving forces in the system. In the a.m. simple example it corresponds to the 

energy released by the motion of electrons in an electric field caused by the voltage applied 

on the resistor. 

 Now the Thermodynamic Extremal Principle (TEP)  is formulated as follows: 
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 6 

From all admissible fluxes 
k

j , constrained by some conservation and boundary/contact 

conditions, those are selected in an irreversible process in a thermodynamic system near the 

equilibrium, which maximize the total entropy production in the system, expressed either by 

( )2 ,
k

j jφ
l

 or by ( )k
jψ  and subjected to the equivalence condition (7). 

The last condition (7) involves via the driving force the "physical character" of the problem. 

 

 

3. Derivation of Phenomenological Equations 

 

The requirement of an extremum of the functional ψ  with respect to the fluxes 
k

j , 

constrained by condition (7), leads to the variation 

 

 ( )( ) 02 =−+ ψφαψδ , (8) 

 

with α  being a Lagrange multiplier. Using relations (2) and (6) the variation (8) leads to the 

Euler/Lagrange equations 

 

 2 0k k

k
grad R j grad

µ µ
α

θ θ
    − + ⋅ + =    

    l l
, k=0,1,…,n. (9) 

 

Multiplication of equations (9) by 
k

j  from the left side, their summation with respect to k, 

integration over the volume V of the system and comparison with eqn. (7) yield the value of 

1−=α . Equations (9) can then be rewritten as 

 

 k

k
R j grad

µ
θ

 ⋅ = −  
 l l

, k=0,1,…,n. (10) 

 

Relations (10), representing 3 linear equations for each k and altogether ( )1n3 +  linear 

equations for the ( )1n3 +  unknown components of the fluxes 
n0

j,....j , can formally be 

assembled into a matrix equation fjR =⋅  with a ( ) ( )1n31n3 +×+  matrix R  consisting of 

the submatrices 
k
R

l
, the vector j  consisting of the subvectors 

k
j  and the vector f  
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consisting of the subvectors 






−
θ
µkgrad . The matrix R  is then symmetric due to T

k k
R R=

l l

 The integrand of eqn. (2) can now be rewritten as jRjT ⋅⋅ . Since P must be positive for 

any volume V, this fact leads directly to the positive definiteness of R  allowing an inversion 

of the matrix relation fjR =⋅  to fLj ⋅= . The matrix L  is also positive definite and 

symmetric and can be disassembled into the submatrices 
k
L

l
. Then the kinetic equations can 

be written in the form 

 

 
kk

j L grad
µ
θ

 = − ⋅  
 

l

l
, (11) 

 

which are the linear, phenomenological equations, see e.g. [1-3]. 

Since the properties of the matrices R  and L  are the same, the properties of 
k
R

l
 can be 

identically addressed to 
k
L

l
. Thus the symmetry relation for 

k
L

l
 reads 

 

 T

k k
L L=

l l
. (12) 

 

For the isotropic cases 
k
L

l
 takes the form of ILkl , I  unity tensor. The coefficients 

k
L

l
 have 

the symmetry properties kk LL
ll

=  and can be addressed as the well-known Onsager’s 

reciprocal relations. In general cross-effects are met by eqn. (12) in anisotropic materials. It 

should be emphasized that the symmetry relations are a direct consequence of the application 

of TEP and they were not a priori assumed as strongly criticized e.g. by Truesdell [29], 

Lecture 7. They stem from the assumption that the entropy production is a positive definite 

quadratic form of the kinetic variables for states near the thermodynamic equilibrium.   

 Insertion of 1−=α  into eqn. (8) yields ( 2 2 )φ ψ− +  representing the functional of the 

entropy production, P, constrained by eqn. (7) to be extremized. The functional can be 

rewritten as ( )∫ ⋅+⋅⋅−
V

TT
dVfjjRj 2 . The second partial derivatives of the integrand with 

respect to j  yield the Hessian matrix R2− . Since R  is a positive definite matrix, the 

negative definite Hessian matrix R2−  ensures a maximum of the functional ( 2 2 )φ ψ− + . 
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4. Thermodynamic Potentials 

 

The formulation of the TEP presented in Section 2 is designed for the most general open 

thermodynamic systems. In practice many thermodynamic systems can be considered as 

closed systems. In the following it is shown that for closed systems the rate of a 

thermodynamic potential takes over the role of the total entropy production. 

 The simplest system cannot exchange the entropy with its surroundings enforcing 

0Sext =& , i.e. an insulated closed system with a fixed volume V. Then according to eqn. (3) the 

total entropy production in the system P equals the rate of the total entropy of the system S&  

 

P S= & . (13) 

 

For such a system the TEP can be formulated in terms of S&  replacing P. As a direct 

consequence of the TEP 0S >&  for states out of equilibrium, and S achieves its maximum for 

the equilibrium state of the system.  

 Systems at a constant temperature θ  are often a better approximation of the reality than 

insulated ones. Such a condition can be ensured by a constant environment temperature and 

by a sufficiently high heat conductivity in the system. Assuming a constant volume V of the 

system, it follows according to the first law of thermodynamics that 

 

 extSE && θ= , (14) 

 

E is the total internal energy of the system. According to eqn. (6) 

 

 
θθ

θ FES
P

&&&

−=
−

= , (15) 

 

where F is the total free energy of the system. 

 In the case of a constant temperature θ  and a constant external pressure p, the first law 

of thermodynamics reads  
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 extSVpE &&& θ=+ . (16) 

 

Then according to eqn. (6) 

 

 
θθ

θ GVpES
P

&&&&

−=
−−

= , (17) 

 

where G is the total Gibbs’ energy of the system. 

 

 

5. Formulation of the Thermodynamic Extremal Principle in Terms of 

Characteristic Parameters (CPs) 

 

Let us consider a thermodynamic system under certain external conditions to which a 

thermodynamic potential X corresponds ( SX ≡  for constE =  and constV = , θFX −≡  for 

const=θ  and constV = , θGX −≡  for const=θ  and constp = ). The replacement of the 

total entropy production P by the rate of the thermodynamic potential, X& , simplifies the 

treatment of closed systems. We assume that the thermodynamic potential X, as a global state 

parameter of the system, can be expressed as a function 1 2( , ,..., )
N

X X q q q=  of the set of the 

CPs denoted by iq  ( N,....1i = ). The time evolution of the system is caused by fluxes 
l

j , 

n,.....0=l , introduced in Section 2, and by the motion of the migrating interfaces. The time 

evolution results in the change of CPs described by the rates of the CPs denoted by iq&  

( N,....1i = ), which were denominated as "kinetic variables" in section 2. 

 We expect that using mass conservation laws, proper simplifications and assumptions on 

the geometry of the system, the linear relations (the Einstein summation convention for 

double indices is used again)   

 

 ( )1 2, ,.... , 0,....,ik N ik
j f q q q q k n= =&  (18) 

 

and e.g. for a distinct phase interface with the interface velocity v 
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 ( )1 2, ,....,
i N i

v h q q q q= &  (19) 

 

can be found. The total entropy production due to dissipation in the isotropic system is given 

by a general relation [2, 27] 

 

 
2 2 2

0
2

Interfaces

2 g k

k kV V

R j j v
dV dV dA

c D M
φ

θ λ θ
= + +∫ ∫ ∫ . (20) 

 

Rg is the gas constant, ck the concentration of component k, Dk the tracer diffusion coefficient 

of component k, M the interface mobility and λ the heat conductivity. After inserting eqns. 

(18) and (19) into eqn. (20) and performing the integrals one obtains the functional 2φ  in the 

form 

 

 ( )1 22 , ,....
ij N i j

U q q q q qφ = & & . (21) 

 

The matrix ijU  is positive definite and takes into account the material properties and 

geometry of the system. The functional ψ  can be calculated due to eqns. (13), (15) and (17) 

as 

 

 
i

i

X
X q

q
ψ

∂
= =

∂
& & . (22) 

 

We assume m constraints amongst the rates of CPs having the form 

 

 0
ik i

a q =& ;   1,2,....,k m= . (23) 

 

Then the necessary condition for an extremum of ψ , constrained by eqs. (7) and (23), leads to 

the equations 

 

 ( )2 2 0k ik i

i

a q
q

ψ α φ ψ β
∂

+ − + =  ∂
&

&
, i=1,2,…,N . (24) 
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The quantities α  and kβ  are the Lagrange multipliers. Using eqs. (21) and (22) and 

performing the derivatives one obtains 

 

 2 2 0ij j k ik

i i

X X
U q a

q q
α β

 ∂ ∂
+ − + = ∂ ∂ 

& . (25) 

 

Multiplication of eqn. (25) by iq& , summation over i and the use of eqs. (21), (22) and (23) 

lead to 

 

 ( ) 04 =−+ ψφαψ . (26) 

 

Comparison of eqn. (26) with eqn. (7) gives immediately 1−=α . Then the resulting set of 

linear equations for the system evolution follows as 

 

 
ij j ik k

i

X
U q a

q
β

∂
+ =

∂
& , (27) 

 

which can be solved together with eqns. (23) with respect to ( )N,...,iqi 21=&  and 

( )m,...,,kk 21=β . The integration of iq&  with respect to time provides the description of the 

system evolution by means of evolution of the chosen CPs ( )tqi . 

 

 

6. Comments on the Principle of the Least Dissipation of Energy and the 

Principle of the Minimum Entropy Production  

 

Onsager’s Principle [5] is often called the Principle of the Least Dissipation of Energy. This 

denotation is, however, misleading, since according to Onsager’s Principle the evolution of 

the system corresponds to the constrained maximum of dissipation. Onsager himself tried to 

show [5] that for steady states with prescribed fluxes on the system surface V∂  his Principle 

becomes an assertion that the dissipation assumes a minimum. Onsager’s treatment is, 

however, not correct. The steady states are characterized by ( ) 0
i

div j =  and thus 0S ≡& (see 
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eqn. (4)). Onsager argued that for fixed values of  nj
T

k
⋅  on the whole system surface V∂ also 

extS&  were fixed. This is, however, not the case as the quantity /kµ θ  is not fixed on the 

system surface V∂ , see eqn. (5). Under this wrong assumption ( )
k

jψ  is fixed, and for 

( 2 2 )φ ψ− +  assuming to be a maximum, the quantity φ2=P  assumes a minimum (see the 

end of Section 3). Unfortunately, the same wrong treatment is also used as a key argument by 

Gyarmati (see page 111 in [18]). 

 The steady states are analyzed in detail by means of the Principle of the Minimum 

Entropy Production in [2]. It is shown that for fixed values of µi and θ  on the whole system 

surface V∂ and under the assumption of Onsager’s "reciprocal relations" the steady states 

correspond to the minimum of the entropy production, and these states are stable relative to 

perturbations. To the knowledge of the authors, a conclusive proof is still missing that the 

Principle of the Minimum Entropy Production is a direct consequence of Onsager’s Principle. 

 

 

7. Conclusion 

 

 Based on the application of TEP an alternative approach to the treatment of 

thermodynamic systems near the equilibrium is reported with the following results: 

 

1. On the basis of purely thermodynamic considerations the Thermodynamic Extremal 

Principle (TEP) is formulated and can be considered as a generalized form of Onsager's 

principle [5] for the maximum dissipation rate in the case of heat conduction.  

2. The classical phenomenological equations describing the system evolution on the local 

level and including Onsager’s reciprocity relations are derived from the TEP. This is a 

direct consequence that the dissipation rate is approximated in the sense of a truncated 

Taylor series by a positive definite quadratic form in the thermodynamic fluxes. 

3. Thermodynamic potentials are assigned to closed thermodynamic systems under various 

external conditions. The rates of the thermodynamic potentials take over the role of 

entropy production in the closed systems. 

4. The TEP for closed systems is formulated for a discrete set of CPs allowing an optimal 

description of the state and evolution of the system on the discretized global level. 
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