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Abstract
We present an implementation of the spin-dependent unitary group approach to calculate spin

densities for configuration interaction calculations in a basis of spin symmetry-adapted functions.

Using S2 eigenfunctions helps to reduce the size of configuration space and is beneficial in studies

of the systems where selection of states of specific spin symmetry is crucial. To achieve this, we

combine the method to calculate U(n) generator matrix elements developed by Downward and

Robb (Theor. Chim. Acta 1977, 46, 129) with the approach of Battle and Gould to calculate U(2n)

generator matrix elements (Chem. Phys. Lett. 1993, 201, 284). We also compare and contrast the

spin density formulated in terms of the spin-independent unitary generators arising from the group

theory formalism and equivalent formulation of the spin density representation in terms of the

one- and two-electron charge densities.
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1 | INTRODUCTION

The unitary group approach (UGA) in quantum chemistry was pioneered by Paldus in 1974,[1] with practical algorithms including the most famous

graphical approach by Shavitt,[2,3] having been developed in the following years. It offered a simple and straightforward way of evaluating the spin-

less generator matrix elements (ME) using implicit Gelfand–Tsetlin basis[4,5] and was suitable for calculating many-electron wavefunction expectation

values for spin-independent Hamiltonians.[6] The growing demand for relativisitc corrections and other spin dependent properties in wavefunction

methods inspired the subsequent development of spin-dependent generator ME in 80–90s by the several groups of authors[7–23] and the latest

work in this field is actually quite recent.[24] In particular, a theory for spin dependent operators formulated entirely within the unitary group formal-

ism has been developed by Gould, Chandler, Paldus, and Battle.[7–15] As we shall discuss, the final formulae are easy to implement and are based on

spin-independent U(n) and well-known U(2) generator ME in terms of the Gelfand–Tsetlin implicit basis. As a special, zero-order case, this theory

provides a rather simple way for calculating spin density.[13,15,25]

An obvious approach to spin density calculation with configuration interaction (CI) wavefunction would be to use the precomputed spin-

dependent generator ME. The general single-particle reduced density operator (in a 2 3 2 matrix form) is given by[13]:

q̂ðr; r0Þlm5
Xn
i;j51

/�
i ðrÞ/jðr0ÞEjm;il; (1)

and the electron spin density operator is defined by:
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q̂Sðr; r0Þ51
2
ðq̂ðr; r0Þ1=2;1=22q̂ðr; r0Þ21=2;21=2Þ: (2)

The spin density can be most easily obtained using Slater determinants (SD) where the ME are a simple sum of spin components. However, the

use of S2 eigenfunctions to give configuration state functions (CSF) is essential in studies of transition metals and other compounds for which states

with high spin quantum number play an important role. They allow for selective calculation of electronic states with the given spin symmetry as well

as reducing the configuration space. Generator ME are, however, more difficult to formulate in this case. In this article, we use the UGA-based algo-

rithm as described by Robb, Downward, and Hegarty,[26,27] and extend it to the spin-dependent case using the approach of Gould et al.,[7] to com-

pute spin densities using Equation 2 in a basis of S2 eigenfunctions.

In their recent paper on the formulation of spin densities for the spin-adapted open-shell coupled-cluster method, Datta and Gauss suggested

that formulae by Gould et al.[7] were rather too complicated and indeed no implementation has been reported so far.[28] (However, note that Battle

has published an implementation of the Gould formalism in his PhD thesis.[29]) Instead, Datta and Gauss used a compact formulation for spin density

from the paper by Luzanov,[30] given in terms of one- and two-particle charge density matrices Rij and Rij;kl (the same formula has been later used by

Shiozaki and Yanai in Ref. [31]). For an N-electron state with spin S andM51S one has

Qij5
1

S11
22

N
2

� �
Rij22

Xn
k51

Rki;jk

 !
: (3)

This expression is reformulated in the same paper in terms of the U(n) spin-independent generator ME as

Qij5
1

S11
21n2

N
2

� �
hWjEijjWi2

X
k

hWjEikEkjjWi
 !

: (4)

Here, Qij is a spin density matrix element, related to Equation 2 by the following definition of spin density arising from a given molecular wave-

function W:

qSðrÞ5hWjq̂Sðr; rÞjWi5 M
2S

Xn
i;j51

/�
i ðrÞ/jðrÞQij

5
1
2

Xn
i;j51

/�
i ðrÞ/jðrÞhWjEj1=2;i1=22Ej21=2;i21=2jWi:

(5)

Such an expression for a one-electron property may at first seem rather strange since the difference of the one-particle spin-dependent genera-

tors is defined via a contraction over the two-body spin-independent generators. We shall show that the Luzanov formula (Equation 4) in fact corre-

sponds to an intermediate result obtained by Gould et al. Indeed, Gould obtains the same result which he then simplifies by applying group theory

(i.e., spin coupling) techniques thereby lifting the necessity to perform explicit contraction over the two-particle generator ME. It is, however, signifi-

cant that Luzanov et al. obtained Equations 3 and 4 in framework of a fundamentally different formalism from the UGA approach by Gould et al.[32]

Our main objective is to discuss our implementation of the formulae for spin-dependent generators within the Robb, Downward, and Hegarty for-

mulation.[26,27] However, as a secondary objective of this article, we shall give a unified overview of Gould’s spin-dependent UGA formalism and

compare it with the reduced density matrix formalism by Luzanov et al.

This article is structured as follows. In theory section we give an overview of the spin-dependent UGA formalism of Gould et al. and reduced

density formalism of Luzanov et al., emphasizing the resulting relation of the one-electron spin density to the one- and two-electron charge density.

In implementation and test case section we describe the algorithm to calculate the spin-dependent generator ME implemented within the Robb,

Downward and Hegarty formulation.[26,27] A model calculation of CASSCF spin density for a metal-containing complex is given as a demonstration.

Finally, in discussion and conclusion section we provide a brief discussion of the implemented algorithm and the two formalisms described in theory

section.

2 | THEORY

2.1 | Spin dependent UGA

Initially applied in the context of nuclear physics by Moshinsky,[33] the unitary group representation theory has been used as a formalism in elec-

tronic structure CI calculations since the seminal work of Paldus in 1974.[1] He exploited the fact that spin-independent electronic Hamiltonian can

be expressed as

H5
X
i;j

hi j z j jiEij11
2

X
i;j;k;l

hij j v j kliðEikEjl2djkEilÞ; (6)

in terms of the spin-independent generator operators Eij, given as the sum of products of annihilation and creation operators:
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Eij5
X
l

X†
ilXjl; (7)

where i and j denote orbitals ði; j51; . . . ; nÞ and l denotes the spin of electron ðl5a;bÞ. Paldus further noticed that those generator operators pos-

sess all the properties of the unitary U(n) group generators. Hence, the existing unitary group algebra was adopted for evaluating the Hamiltonian

ME. The basis set for the finite dimensional irreducible representations of the unitary groups as originally discovered by Gelfand–Tsetlin[4,5] and later

developed by Baird and Biedenharn[34] was used as the N-electron CI basis set. The relevant formulae for the U(n) (spin-free) Eii and Ei;i11 generator

ME were provided, with the remaining off-diagonal Eij ME to be evaluated using the simple commutation relations.[1] For the formulae and the

details one should refer to the 1974 Paldus original paper as well as to the several excellent pedagogical reviews indicating historical development

of the subject.[35–38]

To keep our presentation as self-contained as possible, we review the main ideas. First, one needs the various graphical tableaus used to define

the Gelfand–Tsetlin (GT) basis set. We will describe the original Gelfand tableau, and the easier-to-handle Paldus tableau. Each finite-dimensional

irreducible representation of U(n) is uniquely specified by the n integers min: ðm1n;m2n; . . . ;mnnÞ, ordered such that m1n � m2n � . . . � mnn. An indi-

vidual basis vector of this irreducible representation carrier space is given by a triangular pattern, named Gelfand taleau:

m1n m2n m3n . . . . . . . . . mnn

m1;n21 m2;n21 . . . . . . . . . mn21;n21

m1;n22 . . . . . . mn22;n22

. . . . . . . . . . . . . . .

m12 m22

m11

2
666666666664

3
777777777775
; (8)

where the first row labels the given irreducible representation and the remaining rows contain integers that satisfy the “betweenness” conditions:

mi;j11 � mi;j � mi11;j11

i � j51; . . . ; ðn21Þ
;

(
(9)

and label the irreducible representations of the Uðn21Þ;Uðn22Þ; . . . ;Uð1Þ sub-groups. Due to the ordering, the first row (and, therefore, the corre-

sponding irreducible representation) can be labeled by the sum of its elements, also known as the highest weight: kn5
X
i

min. Gelfand tableaus

uniquely specify basis vectors and give an opportunity for their straightforward construction in “lexical” order.

In CI calculations one has a single particle basis set of ð2nÞ spinorbitals jiijli; i51; . . . ; n;l56 1
2

� �
. Then, one has the associated ð2nÞ2 operators

X†
ilXjm corresponding to the U(2n) group. Due to the spin-independent nature of the Hamiltonian (Equation 6), instead of the U(2n) group, its sub-

group UðnÞ3Uð2Þ can be used. Further, if the direct product representation of UðnÞ3Uð2Þ is to be totally antisymmetric (which is the case of the N-

electron problem), then the irreducible representations of U(n) and U(2) must be mutually conjugate. Thus, one needs only the irreducible representa-

tion of the orbital U(n) subgroup with the generators given by Equation 7 and one can restrict consideration to those irreducible representations for

which the conditions 0 � min � 2; ði51; . . . ; nÞ and
Xn
i51

min5N (total number of electrons) hold.

In view of this simplification, the somewhat complicated original general formulae for the generator operator ME in terms of Gelfand–Tsetlin

basis set were reformulated by Paldus using the simplified n33 rectangular tableau:

an bn cn

an21 bn21 cn21

�

a2 b2 c2

a1 b1 c1

2
666666664

3
777777775
: (10)

The integers ai, bi, and ci specify the number of mji entries in the ith row having the values 2, 1, and 0, respectively. For example, the first (high-

est weight) basis vector for a system of three electrons in four orbitals in the two notations will read:

2 1 0 0

2 1 0

2 1

2

2
666664

3
777775 �

1 1 2

1 1 1

1 1 0

1 0 0

2
666664

3
777775: (11)

Paldus has presented the formulae for the Eii and Ei;i11 ME in his original paper in terms of this type of tableau.[1] Specific to the irreps used in

electronic structure calculations, described by the Paldus simplified tableau, are also the two subsequent UGA formalisms involving tensor operator
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techniques such as the one used by Gould et al. (based on works by Green and Bracken)[39,40] as well as the more recent formalism based on

spin-adapted analogues of creation and annihilation operators, developed by Li and Paldus.[24] In addition to Gelfand and Paldus tableaus, another

useful pattern called Weyl tableau being the special form of Young tableau has been used by Downward and Robb for an automated computation

of the generator ME in terms of GT basis vectors.[26]

As described above, Paldus has derived simple formulae for the U(n) (spin-free) group generator operators ME, providing a simple tool for the CI

energy calculations. However, if one wishes to calculate spin-dependent properties such as spin density within the UGA, one must be able to evalu-

ate either the U(2n) group generator operators ME per se (see Equations 1 and 2) or the U(n) adjoint tensor operator D ME (a polynomial of degree

two in the U(n) generators, see below).

A method to calculate either the Uð2nÞ Ejl;il ME or the spin densities directly in terms of ME of Dij, was developed by Gould et al. in a

series of papers.[8–15] The final version of the formulae was given in Ref. [7]. We note that Ref. [12] is in fact an erratum for Refs. [8–10]. Fur-

ther, importantly, the zero-shift components of U(2n) generators are in error in Ref. [9] so we describe below an alternative approach given in

Ref. [14]. This approach, however, still makes use of the vector operator and adjoint tensor operator formalism, given by Gould and Chandler

in Refs. [8,9].

In the first paper, the formulae for the U(n) generator ME were rederived using the properties of a vector operator of U(m), defined as a collection

of operators Wiði51; . . . ;mÞ that satisfy the commutation relation[8]:

½Eij;Wk�5dkjWi: (12)

The Uðm11Þ generators Ei;m11ði51; . . . ;mÞ then constitute a vector operator of U(m) with the components WðmÞi5Ei;m11. With V being the

(fundamental) finite dimensional vector representation of U(m),Wi transforms like its basis vectors ei:

Eijek5dkjei: (13)

If we then denote an arbitrary finite dimensional irreducible representation as VðkÞ and v is a U(m) diagonal generators (Eiiði51; . . . ;mÞ) eigen-
vector, v 2 VðkÞ, it becomes evident that Wkv transforms like the vector ek � v in the tensor product representation V � VðkÞ. This representation
decomposes into a direct sum of three irreducible representations:

V � VðkÞ5�3
r51Vðk1DrÞ; (14)

due to restrictions imposed by the form of the highest weight k allowed for the N-electronic problem.[8] It follows that Wi acting on VðkÞ may be

resolved into a sum of three shift components, out of which only two actually survive according to Gelfand tableau lexicality rules:

WðmÞi5
X2
r51

W
r

m

 !
i

; (15)

which, in terms of Paldus tableau, shift the Paldus labels of the group U(m) according to

W
r

m

 !
: ½am; bm; cm� ! ½am; bm; cm�1dr; r51;2; (16)

where dr dentotes the allowed shifts:

d15½0;1;21�; d25½1;21;0�: (17)

Similarly, one can resolve the U(m) contragredient vector operator W†ðmÞi5Em11;i with shift components, altering Paldus labels of the group U(m)

according to

W†
r

m

 !
: ½am; bm; cm� ! ½am; bm; cm�2dr ; r51;2: (18)

Importantly, each shift component W
r

m

 !
i�m21

is also a component of a vector operator with respect to Uðm21Þ and can be further decom-

posed into Uðm21Þ shift components:

W
r

m

 !
i

5
X2
k51

W
r k

m m21

 !
i

; (19)

and so forth up to the U(i) shift components. Thus, an operator of the form Em;m1pðm<m1p � nÞ may be decomposed into a multiple sum of

shift components that simultaneously alter the Paldus labels of the subgroups Uðm1p21Þ;Uðm1p22Þ; . . . ;UðmÞ and leaving labels of the subgroups

UðnÞ; . . . ;Uðm1pÞ;Uðm21Þ; . . . ;Uð1Þ untouched:
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Em;m1p5
X2
im51

X2
im1151

. . .
X2

im1p2151

W
im1p21 . . . im11 im

m1p21 . . . m11 m

 !
m

: (20)

Gould and Chandler use these properties of the vector and contragredient vector operators and derive explicit formulae for both elementary

and nonelementary generator operators in terms of their product UðmÞ5W†ðmÞWðmÞ, which possesses an important property of being decompos-

able into a product of its segments:

U
im1p21 . . . im

m1p21 . . . m

 !
5U

im1p21 . . . ir

m1p21 . . . r

 !
U

ir21 . . . im

r21 . . . m

 !
nðrÞir ;ir21

; (21)

where nðrÞir ;ir21
is a coefficient that is equal to one in the case when ir5ir21 and has a simple formula in terms of Paldus labels in the other cases.[8]

This gives rise to the relatively easy-to-evaluate segment formulae for the general Eij ME.

In their following paper, Gould and Chandler introduced the formalism of adjoint tensor operators of U(n) (with the formal theory given in

Ref. [41]) that transform like the basis vectors of the n2-dimensional adjoint representation of U(n).[9] Those basis vectors are in fact elementary mat-

rices eij; ði; j51; . . . ; nÞ with one in the (i, j) position and zeros elsewhere. Generators Eij then satisfy:

½Eijekl�5dkjeil2dilekj; (22)

and an adjoint tensor operator X transforms according to:

½EijXkl�5dkjXil2dilXkj: (23)

The authors further notice that the U(2n) generators transform as the representation ½Adj� � ½Adj� under commutation with its subgroup

UðnÞ3Uð2Þ. Since U(2n) generators Eil;jm satisfy

½Eil;jm; Ekq;ls�5dkjdqmEil;ls2dildlsEkq;jm; (24)

and generators of the UðnÞ3Uð2Þ subgroup commute, one obtains

X2
l51

Eil;jl; Ekl;lm

" #
5dkjEil;lm2dilEkl;jm; (25)

Xn
i51

Eil;im; Eiq;js

" #
5dqmEil;js2dlsEiq;jm: (26)

They note further that the adjoint representation of U(m) is equivalent to the representation V � V�, where V� is the contragredient vector

representation of U(m). With feigni51 and f�eigni51 being the corresponding basis sets, the vectors ei � �ej constitute basis for the adjoint represen-

tation, which implies that one may construct a U(m) adjoint tensor operator Xij by coupling the U(m) vector and contragredient vector

operators:

Xij5WiW
†
j : (27)

It was shown above that vector operators can be decomposed into a sum of shift components when acting on an irreducible representation

VðkÞ. Therefore, the adjoint tensor operator may as well be decomposed into a sum of shift components

Xij5
X
r

W
r

m

 !
i

W†
r

m

 !
j

1
X
r 6¼l

W
r

m

 !
i

W†
l

m

 !
j

; (28)

with this equation in a more general and compact notation taking the following form:

Xij5X½0�ij1
X
r 6¼l

X½r; l�ij: (29)

For the U(2n) group we have then

Eil;jm5Eð0Þil;jm1Eð2Þil;jm1Eð1Þil;jm; (30)

where only the zero-shift component Eð0Þil;jm plays a role for the spin-independent systems and will, therefore, solely be considered in the

following.

In the later paper, the zero-shift component was determined by Gould and Paldus as a simple polynomial in the U(n) and U(2) generators.[14] Pre-

viously, Gould and Chandler have shown that on an irrep of U(n) with Paldus labels ½a; b; c�, the U(n) matrix E5½Eij�1�i;j�n satisfies only the third-order

polynomial identity (follows from Equation 14)[8]:

EðE2e1ÞðE2e2Þ50; (31)
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where e1511c and e25n122a. According to the general theory of U(n) adjoint tensor operators,[41] there exist in general at most n independent U(n)

zero-shift adjoint tensors, ðEmÞij , with m50;1; . . . ; n21, where polynomials in the UðnÞ E-matrix are defined recursively according to:

ðEm11Þij5
X
k

EikðEmÞkj; ðE0Þij5dij: (32)

As noted above, for the many-electron problem, one has to deal with only three independent zero-shift U(n) adjoint tensor operators: dij; Eij, and

ðE2Þij. For U(2), one can have at most two independent zero-shft adjoint tensor operators: dlm and Elm and, therefore, taking into account the proper-

ties of the U(2n) adjoint tensor operators one can write Eð0Þil;jm as[14]:

Eð0Þil;jm5ðE2Þijða1E1b1IÞlm1Eijða2E1b2IÞlm1dijðaE1bIÞlm; (33)

where I denotes a 2 3 2 identity matrix, and the coefficients ai;bi;a, and b are the UðnÞ3Uð2Þ-invariant operators, depending solely on the U(n)

Paldus ½a; b; c� labels. Gould and Paldus have then shown in an elegant derivation that Equation 33 reduces to[14]:

Eð0Þil;jm5
1
2
Eijdlm2

0; S50

Dij
~Elm

2SðS11Þ ; S 6¼ 0
;

8><
>: (34)

where S is the system spin, ~Elm denote the SU(2) generators:

~Elm5Elm2
N
2
dlm; (35)

with the Elm ME previously known,[9,34] and D is the polynomial of degree two in the U(n) matrix E, also an adjoint tensor operator, with its ME given

by:

Dij5ðE2Þij1
N
2
2n22

� �
Eij; (36)

with ðE2Þij5
X
k

EikEkj according to Equation 32, N being the number of electrons in the system and n the number of orbitals in the CI space. To be

self-consistent, we provide the formula for the Ell ME (as we are only interested in Eð0Þil;jl ME to be able to calculate the spin densities). The eigen-

value equations for the diagonal U(2) generators read:

E11

���� k1 k2

m

�
5m

����
k1 k2

m

�
; (37)

E22

���� k1 k2

m

�
5k11k22m

����
k1 k2

m

�
; (38)

where k15m5a1b and k25a, with a and b being the U(n) irrep Paldus labels.

One can stop here and implement Equations 34–38 directly. Moreover, if to substitute Equation 34 into Equations 1 and 2 and apply the for-

mula Sz5 1
2 ðE1=2;1=22E21=2;21=2Þ, it turns out that spin density can be directly calculated from the D adjoint tensor operator[13]:

q̂Sðr; r0Þ5 2Sz
2SðS11Þ

Xn
i;j51

/�
i ðrÞ/jðr0ÞDij: (39)

(In reduced density matrix formalism section we will discuss that this directly corresponds to the formula given by Luzanov.[30]) However, based

on the adjoint tensor operator formalism briefly described above, Gould and Battle developed simple segment formulae for evaluating Dij ME that

do not require performing multiple summations over the bilinear terms in Equation 36,[15] which we concisely cover below.

The derivation of the general Dij ME is again based on its property as a U(n) adjoint tensor operator to be decomposable into the well-defined

shift components[15]:

Dðn11Þij5
X
an

D
n

an

 !
ij

; (40)

where the shift components alter Paldus labels according to:

D
n

an

 !
ij

: ½an; bn; cn� ! ½an; bn; cn�1ean ; (41)

with the three possible values of ean :
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e15d12d25½21;2;21�;
e25d22d15½1;22;1�;
e05½0;0;0�:

(42)

However, since we are only considering the zero-shift Eð0Þil;jm component, only e0 leads to the nonzero ME.[14,15] Therefore, Dij ME are repre-

sented here by a single zero-shift component:

Dðn11Þij5D
n

0

 !
ij

: (43)
First of all, Gould and Battle considered the diagonal matrix elements Dii and derived the following recursive relation in terms of the Paldus

labels, based on the general formulae for UðnÞ Eij generators and Equation 36:

D
n

0

 !
ii

5
11bn111Dbn11

11bn11
DðnÞii; (44)

where Dbm5bm2bm21 (with Db15b1). Here, they used the preliminarily derived formula for the U(m) invariant operator DðmÞmm:

DðmÞmm52
Dbm
2

ð11bm1DbmÞ: (45)

Equations 44 and 45 immediately sugest a recursive (segment) formula for a general DðnÞmm ME:

pn

½P�n21

DðnÞmm

pn

½P�n21

�������
1
CA5D

n21 . . . m

0 . . . 0

0
B@

1
CA

mm

5Tmð0ÞD?

n21 . . . m11

0 . . . 0

0
B@

1
CA

mm

5Tmð0Þ
Yn21

r5m11

TðrÞ
0;0 TðnÞð0Þ;

�������
0
B@ (46)

with the segments given as:

Tmð0Þ52
Dbm
2

ð11bm1DbmÞ;

TðrÞ
0;05

11br1Dbr
11br

;

TðnÞð0Þ511bn1Dbn
11bn

:

(47)

In Equation 46, we have introduced a shorthand representation for the GT basis vector, where pn5½an; bn; cn� and ½P�n21 is an allowed Paldus

tableau for the Uðn21Þ subgroup. It should also be understood above that TðnÞ51 if m5 n and
Y
r

TðrÞ
0;051 if m>n22.

Having found the formula for the Dii ME, it is straightforward to obtain the off-diagonal ME using the commutation relation that is satisfied

since DðnÞij forms a component of a U(n) adjoint tensor operator:

DðmÞm;m1p5½Em;m1p;Dm1p;m1p�: (48)

Calculation of Dm;m1p with the use of the above expression involves an in principle expensive matrix commutator evaluation, but due to the

properties of both operators, at most two intermediate states can occur in the summation.[15] This allowed Gould and Battle to derive an analytical

segment formula in terms of Paldus labels, which for the non-zero raising generator ME reads:[7,15]

pn

�

pm1p

pm1p211dim1p21

�

pm1dim

½P�m21

0
BBBBBBBBBBBBBBBBBBBB@

��������������������������

Dm;m1p

pn

�

pm1p

pm1p21

�

pm

½P�m21

��������������������������

1
CCCCCCCCCCCCCCCCCCCCA

5Vð0; im1p21ÞD?
n21 . . . m1p11

0 . . . 0

0
@

1
AN

m1p21 . . . m

im1p21 . . . im

0
@

1
A; (49)

where ik51;2 (see Equation 17) and the new terms read:

Vð0; im1p21Þ51
2
ð21Þim1p21 ðbm1p12Dbm1p12im1p2122Þ; (50)

and
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N
m1p21 . . . m

im1p21 . . . im

0
@

1
A5x

ð11bmÞðbm1422imÞ
ð11bm21Þð11bm1pÞ

� �1
2 Ym1p21

r5m11

ð11brÞ2jir2ir21 j br132ir
br122ir

� �Dbr
2

; (51)

being the usual U(n) raising generator ME,[8] with its phase given as

x5
Ym1p21

q5m11

Sðiq212iqÞð21Þr
iq21
q21 ; (52)

with S(x)5 sign of x (Sð0Þ51) and

r1
q5ð11cq2cq11Þ; r2

q5ðaq112aqÞ: (53)

2.2 | Reduced density matrix formalism

One of the central expressions of spin dependent UGA section is Equation 39—it presents the spin density operator as a function of a U(n) adjoint

tensor operator D, being a second-order polynomial in the U(n) generators (Equation 36). Spin density appears, therefore, to be a function of con-

tracted one- and two-electron spin independent generators with the spin dependence being confined in a simple coefficient in front of the

summation:

qSðrÞ5 M
2SðS11Þ

Xn
i;j51

/�
i ðrÞ/jðrÞð 21n2

N
2

� �
hWjEijjWi2

X
k

hWjEikEkjjWiÞ: (54)

Derivation of this expression as given by Gould et al. bears a purely group theoretical nature.

An identical expression in terms of the one- and two-electron charge densities has been, however, derived by Whyman et al. based on the den-

sity matrix formalism.[32] Its derivation was just one of the results in a wider study of separation of the spin variables in the two-particle reduced

density matrices and conditions of N-representability. Its importance per se has been later emphasized by Harriman,[42] followed by the same

authors generalizing this expression for the arbitrarily high-order reduced density matrices.[43,44] In the expression they obtained the spin density

operator was given as:

Q5
M

SðS11Þ 22
N
2

� �
R122Sp2R

0
12

� �
; (55)

where R1 and R12 are the one- and two-electron charge density operators respectively, Sp2 defines reduction with respect to the second electron

coordinate and prime denotes transposition in the second pair of spatial coordinates. The matrix element form of Equation 55 is given by Equation

3 for the case where M51S. Luzanov has later reformulated this expression by simply expanding the charge density matrix elements in terms of the

unitary group generators,[30] resulting in Equation 4, which, substituted in Equation 5 results in Equation 54.

In this way, derivation of the segment formulae allowing for direct evaluation of the Dij ME in terms of the Gelfand–Tsetlin basis done by Gould

and Battle (Equations 40–53) can be viewed simply as an extension to the formula obtained by Whyman et al. that avoids explicit contraction over

the two-electron generator terms thereby making computation of spin density cheaper. We also acknowledge an elegant derivation of Equation 54

given by Gidofalvi and Shepard in the appendix of Ref. [45] which they then also simplify using the properties of the graphically contracted func-

tions. We however note that the formulation by Whyman et al., while more expensive computationally, is more widely applicable as it only utilizes

density matrices and does not need the UGA techniques to be implemented.

3 | IMPLEMENTATION AND TEST CASE

In this section, we describe our implementation of the spin-dependent UGA used to compute Eil;jl ME in the development version of Gaussian[46]

and provide a short test case of spin density evaluation for electronic states of a chromium complex with different multiplicities in a basis of S2

eigenfunctions. In accordance with the general notation of this article, we will use n to denote the number of orbitals and N-the number of electrons

in the active space.

In their original paper, Gould and Battle described a possible implementation of their segment formulae in frames of Shavitt’s graphical

method,[15] which would involve repeated application of multiple tests to determine the shift type of the final GT state for all the non-vanishing

U(2n) generator ME. In our implementation, we followed what seems to us as a simpler strategy.

By applying Robb and Downward approach that makes use of the Weyl tableau formalism,[26] we first calculate the UðnÞ Eii and Ei;i21 (elemen-

tary) generator ME. A two-column Weyl tableau is especially suited for an automated computation of the U(n) elementary generators since every

basis function can be coded as a short string of N integers, and the only pair of configurations leading to a nonzero Ei;i21 ME will be identical except

for a single integer in the same position, which will be an i for the “left” and an i – 1 for the “right” configuration. This allows for an intuitive
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algorithm that computes generator ME as the basis vectors are being created in successive levels (defined by their total weights) by addition of a

unit to all the possible positions of the previous level tableaus that do not violate the shift rules (Equation 17).

For those pairs of the GT basis vectors that give nonzero U(n) elementary generators, we also calculate the Dii and Di;i21 ME using Equations 46

and 49, obtaining all the necessary input terms via a subroutine that transforms a given Weyl tableau into a Paldus tableau, and construct the corre-

sponding U(2n) generators using Equation 34 in a straightforward manner. Computation of the lower-diagonal part of the generator matrices is suffi-

cient due to the well-known relation E†ij5Eji.

We, then, find it computationally efficient to use the following commutation relations to recursively compute both the remaining U(n) and the

corresponding U(2n) generator ME:

½Eij; Ejl�5Eil; (56)

½Eij; Ejl;ll�5Eil;ll; (57)

with the latter relation being the special case of Equation 25.

The underlying algorithm has the following structure. The two outer loops go over the lower-triangular orbital indices row-by-row. In this way,

commutation relations in Equations 56 and 57 allow for any non-elementary generator ME to be calculated from a ME one row above in the same

column and an elementary generator ME in the same row. The first consecutive pair of the double-nested inner loops, for the given orbital indices,

go over the global indices (in the order in which they have been calculated) of the ME and multiply together the pairs with identical “adjacent” GT

basis vectors, that is, hmjEil;i21ljrihrjEi21;jjni and hmjEi21;jjrihrjEil;i21ljni in the case of the U(2n) generators. The last double-nested inner loop goes

over all the above-calculated parts of commutation relations and substract those corresponding to the same pair of GT basis vectors from each other

according to Equations 56 and 57. Looping over the precomputed Ei;i21 generator ME and using commutation relations allows one to avoid the

level-by-level screening through the GT basis functions to estimate the nonzero elements. Although the presented algorithm contains the undesir-

able fourth-order nested loops, the two outer loops go over the number of orbitals constituting active space, which never grows too large and usu-

ally does not exceed a few tens for MCSCF calculations, so this does not make the overall code inefficient.

FIGURE 1 Spin density for the three different spin states of the Kremer’s chromium dimer complex, labeled by their total spin quantum
number, evaluated at the CASSCF theory level using spin-adapted GT configuration state functions. Isovalue of 0.0004 was used for the
density surface. Atom coloring notation: chromium-purple; oxygen-red; nitrogen-blue; carbon-gray, hydrogen-white. We note that in figure
1 of Ref. [47] the hydrogen atoms on terminal ligands have been omitted
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Finally, the computed U(2n) generator ME are passed to the subroutine that calculates spin density using Equation 5. We note that there is vir-

tually no difference between calculating spin density from the U(2n) generators following Equation 5 or directly from the adjoint tensor operator D

using Equation 54 as U(2n) are a simple function of D (Equation 34). Our choice was simply based on the fact that the subroutine evaluating spin

density from the U(2n) generator ME was already present in the code. We further note that the computational cost of calculating spin densities

using the formalism by Gould et al. is equal to the cost of evaluating the one-particle generator matrix elements in terms of GT functions, that is, no

additional costs are associated with the spin densities computation. Therefore, they can be easily evaluated with any active space tractable by the

corresponding CI algorithm. We further note that one could as well apply the existing direct segment formulas for both the non-elementary U(n) and

U(2n) operators. However, since one has only to loop over the precomputed nonzero generator matrix elements when using commutation relations,

the additional computational costs are rather small and make very small difference overall.

As mentioned in introduction section, using the CSF as opposed to the SD basis is desirable to reduce large configuration spaces, restrict-

ing to a particular spin symmetry solution, which is especially useful when dealing with the manifold of high-spin states. We applied the imple-

mented method to calculate spin densities for the S51, S52, and S53 states of the Kremer’s tris-hydroxo bridged chromium dimer. Broken

symmetry density functional theory (DFT) has been shown in Ref. [47] to give both the wrong spin ladder order and poorly reproduce the

experimental zero field splitting values, while CASSCF yields both the correct order of states and coupled with the quasi-degenerate perturba-

tion theory qualitatively reproduces the splitting values for all the spin states. DFT calculations have further failed to yield a symmetric spin

density distribution.

We performed CASSCF calculations using SVP basis set and the same active spaces as in Ref. [47]: CAS(6,6) for S51 and CAS(6,10) for S52,

and S53 (see the original paper for the active space composition). No effective core potential has been used for chromium atoms. We show the

symmetric distribution of the spin density for the three spin states and its steady spread to the ligands from the chromium atoms with the growth

of the spin quantum number in Figure 1. We further provide the symmetric Mulliken spin density values at the two chromium and three oxygen

atoms in Table 1.

4 | DISCUSSION AND CONCLUSION

A few decades ago the UGA in quantum chemistry provided a unique instrument to perform large-scale CI electronic structure calculations in a basis

of S2 eigenfunctions. Somewhat later, a spin-dependent UGA based on the semi-simple Lie algebra has further pushed the limits of the field by

allowing to compute spin-dependent properties such as spin density and make use of spin-dependent Hamiltonians. However, possibly due to its

“heavy” formalism, there has been only one paper (based on the Shavitt’s graphical aproach[48]), up to now, reporting a spin-dependent UGA imple-

mentation within a general electronic structure program.

In the current article, we report a new implementation of the (zero-order) spin-dependent UGA that allows the calculation of spin-dependent

wavefunction properties for a spin-independent Hamiltonian. Specifically, we use it to calculate electronic spin density. In our implementation, we

combine the Robb and Downward approach to calculate the U(n) generator ME together with the Gould and Battle formalism to calculate the U(2n)

generator ME. An important feature of the Robb and Downward approach is that it utilizes Weyl tableaus, so that it can be used for arbitrarily

restricted active spaces.[27]

Apart from presenting a practical implementation of the spin-dependent UGA, the second aim of this article is emphasize that the two different

formalisms exist that lead to the same expression, namely Equation 54, giving the spin density as a function of contracted spin-independent one-

and two-electron generators. In the works of Gould et al. this relation originates in the third-order polynomial identity (Equation 31) that the U(n)

generators satisfy and the properties of the U(n) and U(2) adjoint tensor operators, therefore, bearing a purely group theoretical nature. Remarkably,

an equivalent expression in terms of one- and two-electron charge densities has been obtained (Equation 55) from a totally different formalism,

namely from the studies of spin separation in the reduced density matrices by Whyman, Luzanov, and Mestechkin. We also acknowledge an elegant

derivation of the same equation by Gidofalvi and Shepard using secondary quantization techniques.[45]

While these relationsips are interesting all, the more so being not intuitive. Moreover, they seem to have been forgotten in the general quantum

chemistry community. However, as we have shown, there are important practical implications since they allow one to calculate spin density from a

variational calculation involving a spin-free Hamiltonian.

TABLE 1 Mulliken spin densities at the chromium and oxygen atoms of the Kremer’s chromium dimer complex for the three different spin
states, evaluated at the CASSCF theory level using spin-adapted GT configuration state functions

Atom S51 S52 S53

Cr1;2 0.986 1.972 2.958

O1;2;3 0.007 0.014 0.021
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