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The paper presents a review of the Wigner distribution function (WDF) and of some of its applications to optical
problems, especially in the field of partial coherence. The WDF describes a signal in space and in spatial frequency
simultaneously and can be considered the local spatial-frequency spectrum of the signal. Although derived in
terms of Fourier optics, the description of an optical signal by means of its WDF closely resembles the ray concept in
geometrical optics; the WDF thus presents a link between partial coherence and radiometry. Properties of the
WDF and its propagation through linear optical systems are considered; again, the description of systems by WDF's
can be interpreted directly in geometric-optical terms. Some examples are included to show how the WDF can be
applied to practical problems that arise in the field of partial coherence.

1. INTRODUCTION

In 1932 Wigner introduced a distribution function in me-

chanics that permitted a description of mechanical phe-
nomena in a phase space. Such a Wigner distribution func-
tion (WDF) was introduced in optics by Walther in 1968,2 to
relate partial coherence to radiometry. A few years later,
the WDF was introduced in optics again3 (especially in the
area of Fourier optics), and, since then, a great number of
applications of the WDF have been reported. It is the aim
of this paper to review the WDF and some of its applications
to optical problems, especially in the field of partial coher-
ence.

In Section 2 we describe how we represent partially coher-

ent light. We introduce its positional power spectrum (or
cross-spectral density function) and the spatial Fourier
transform of that function: the directional power spectrum.

The WDF for partially coherent light is defined in Section
3, where its concept is elucidated with some simple examples

and where some of its most important properties are given.

Although derived in terms of Fourier optics, we see that the
description of a signal by means of its WDF closely resem-
bles the ray concept in geometrical optics and that the prop-
erties of the WDF have clear physical meanings.

In Section 4 we introduce a modal expansion for the cross-

spectral density function of partially coherent light and de-
rive a similar expansion for the WDF. This modal expan-
sion allows us to formulate more properties of the WDF,
especially in the form of inequalities.

The transformation of the WDF when a signal propagates
through an optical system is described in Section 5. An
optical system is treated there in two distinct forms: (1) as a

black box, with an input plane and an output plane, for
which an input-output relationship in terms of the WDF's is
formulated and (2) as a continuous medium, for which a

transport equation for the WDF is derived. We observe
again that both the input-output relationship and the trans-
port equation can be given a geometric-optical interpreta-
tion.

Finally, in Section 6, we describe some applications of the
WDF to problems that arise in the field of partial coherence.

We conclude this introduction with some remarks about
the signals with which we are dealing. We consider scalar
optical signals, which can be described by, say, 0(x y, z, t),

where x, y, z denote space variables and t represents the time
variable. Very often, we consider signals in a plane z =

constant, in which case we can omit the longitudinal space
variable z from the formulas. Furthermore, we restrict our-
selves to the one-dimensional case in which the signals are
functions only of the transverse space variable x; in general,
the extension to two dimensions is straightforward. The
signals with which we are dealing are thus described by a
function (x, t).

2. DESCRIPTION OF PARTIALLY COHERENT
LIGHT

Let partially coherent light be described by a temporally
stationary stochastic process ¢(x, t); the ensemble average of
the product k(x1, t) *(x 2, t2) is then only a function of the
time difference t -t2:

E0(xl, tl)7*(x 2, t 2) = '(x1, x2, t - t2), (2.1)

where the asterisk denotes complex conjugation. The func-
tion I(xI, X2, ) is known as the (mutual) coherence func-
tion4-7 of the process ¢(x, t). The (mutual) power spec-
trum67 or cross-spectral density functions r(x 1, x2, W) is
defined as the temporal Fourier transform of the coherence
function

P(xl, X2, CO) = J P (x 1 , X2, ) exp(iwT) dr. (2.2)

(Unless otherwise stated, all integrations in this paper ex-
tend from - to +.) The basic property 78 of the power
spectrum is that it is a nonnegative definite Hermitian
function of x and x2, i.e., (x1 , x2, ) = *(x 2 , x1, w) and
if f(xl, )r(xl, x2,)f*(x2, )dxdx 2 > Ofor anyfunction f(x,

).
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Instead of describing a stochastic process in a space do-

main by means of its power spectrum P(x1, X2, ), we can

represent it equally well in a spatial-frequency domain by
means of the spatial Fourier transform (u, u2 , a) of the
power spectrum

r(ul, 2, w) = r(xl, X2, c)exp[-i(ux, - u2X2)]dxdX2

(2.3)

(Throughout we represent the spatial Fourier transform of a
function by the same symbol as the function itself but
marked with a bar on top of the symbol.) Unlike the power

spectrum r(xl, x2, co), which expresses the coherence of the

light at two different positions, its spatial Fourier transform
r(u, U2 , c) expresses the coherence of the light in two differ-
ent directions. Therefore we call r(x 1, x2, a) the positional

power spectrum9 and P(u, U2, a) the directional power spec-
trum9 of the light. It is evident that the directional power
spectrum (u, u2, a) is a nonnegative definite Hermitian
function of ul and u2.

Apart from the pure space representation of a stochastic
process by means of its positional power spectrum or the

pure spatial-frequency representation by means of its direc-
tional power spectrum, we can describe a stochastic process

in space and spatial frequency simultaneously. In this pa-
per we therefore use the WDF, which is introduced in Sec-

tion 3. Since, in the present discussion, the explicit tempo-
ral-frequency dependence is of no importance, we shall, for

the sake of convenience, omit the temporal-frequency vari-
able X from the formulas in the remainder of the paper.

3. WIGNER DISTRIBUTION FUNCTION

It is sometimes convenient to describe an optical signal not
in a space domain by means of its positional power spectrum

but in a spatial-frequency domain by means of its directional
power spectrum. The directional power spectrum globally
shows how the energy of the signal is distributed as a func-

tion of direction (i.e., spatial frequency). However, instead
of in this global distribution of the energy, one is often more

interested in the local distribution of the energy as a func-

tion of spatial frequency. A similar local distribution occurs
in music, for instance, in which a signal is usually described

not by a time function nor by the Fourier transform of that
function but by its musical score.

The score is indeed a picture of the local distribution of

the energy of the musical signal as a function of frequency.

The horizontal axis of the score clearly represents a time

axis, and the vertical one a frequency axis. When a compos-

er writes a score, he prescribes the frequencies of the notes

that should be present at a certain time. We see that the
musical score is something that might be called the local
frequency spectrum of the musical signal.

The need for a description of the signal by means of a local

frequency spectrum arises in other disciplines too. Geomet-
rical optics, for instance, is usually treated in terms of rays,

and the signal is described by giving the directions of the
rays that should be present at a certain position. It is not
difficult to translate the concept of the musical score to
geometrical optics: We simply have to consider the horizon-
tal (time) axis as a position axis and the vertical (frequency)

axis as a direction axis. A musical note then represents an
optical light ray passing through a point at a certain position
and having a certain direction.

Another discipline in which we can apply the idea of a

local frequency spectrum is in mechanics: The position and
the momentum of a particle are given in a phase space. It

was in mechanics that Wigner introduced in 1932 a distribu-

tion function' that provided a description of mechanical
phenomena in the phase space.

In this section we define the WDF in optics, we elucidate
its concept by some simple examples, and we give some of its

properties.

A. Definition of the Wigner Distribution Function

The WDF of a stochastic process can be defined in terms of

the positional power spectrum by

F(x, u) = f r(x + l/2x', x - /2 x')exp(-iux')dx' (3.1a)

or, equivalently, in terms of the directional power spectrum,
by

F(x, u) K J P(u + /2u', u - '/2u')exp(iu'x)du'. (3.1b)

A distribution function according to definitions (3.1) was
first introduced in optics by Walther,2 who called it the
generalized radiance.

The WDF F(x, u) represents a stochastic signal in space
and (spatial) frequency simultaneously and is thus a mem-
ber of a wide class of phase-space distribution functions.10"'1

It forms an intermediate signal description between the pure
space representation (x,, x2) and the pure frequency
representation Pu,, u2). Furthermore, this simultaneous
space-frequency description closely resembles the ray con-
cept in geometrical optics, in which the position and direc-
tion of a ray are also given simultaneously. In a way, F(x, u)

is the amplitude of a ray passing through the point x and
having a frequency (i.e., direction) u.

B. Examples of Wigner Distribution Functions

Before we mention some properties of the WDF, we first
illustrate its concept with some simple examples.

(1) Spatially incoherent light can be described by its
positional power spectrum, which reads as r(x + /2x', x -
'/2x') = p(x)5(x'), where the intensity p(x) is a nonnegative
function. The corresponding WDF takes the form F(x, u) =
p(x); note that it is a function only of the space variable x
and that it does not depend on u.

(2) As a second example, we consider light that is dual to

incoherent light, i.e., light whose frequency behavior is simi-
lar to the space behavior of incoherent light and vice versa.
Such light is spatially stationary light. The positional pow-
er spectrum of spatially stationary light reads as rF(x + 1/2x', x
-

1/2x') = s(x'); its directional power spectrum thus reads as
C(u + /2u', u - /2u') = s(u)6(u'), where the nonnegative
function s(u) is the Fourier transform of s(x'):

s(u) = J s(x') exp(-iux')dx'. (3.2)

Note that, indeed, the directional power spectrum of spatial-
ly stationary light has a form that is similar to the positional
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power spectrum of incoherent light. The duality between
incoherent light and spatially stationary light is, in fact, the
van Cittert-Zernike theorem.

The WDF of spatially stationary light reads as F(x, u) =

s(u); note that it is a function only of the frequency variable
u and that it does not depend on x. It thus has the same
form as the WDF of incoherent light, except that it is rotated
through 90 ° in the space-frequency plane.

(3) Incoherent light and spatially stationary light are
special cases of so-called quasi-homogeneous light. 9 12"13

Such quasi-homogeneous light can be locally considered as
spatially stationary, having, however, a slowly varying inten-
sity. It can be represented by a positional power spectrum
such as r(x + 1Ax2x, x - 1/2x) p(x)s(x'), where p is a slowly

varying function compared with s. The WDF of quasi-
homogeneous light takes the form of a product: F(x, u) 
p(X)s(u); both p(x) and s(u) are nonnegative, which implies
that the WDF is nonnegative. The special case of incoher-
ent light arises for s(u) = 1, whereas for spatially stationary
light we have p(x) = 1.

(4) Let us consider Gaussian light, also known as Gauss-
ian Schell-model light,14"15 whose positional power spectrum
reads as follows:

r(x1, x2) = Fexp 2A[o(Xl + X)2 +I(X -X2)2]}

(p > 0, 0 < < 1); (3.3)

the positive factor p is a mere scaling factor, whereas a is a

measure of the coherence of the Gaussian light. The non-
negative definiteness of the power spectrum requires that af
be bounded by 0 and 1; a = 1 leads to Gaussian light that is

completely coherent, whereas a -> 0 leads to the incoherent
limit. The WDF of such Gaussian light takes the form

F(x, u) = 2 exp[- (k X2+ ft u2)] (p > 0, < 1),

(3.4)

which is again Gaussian both in x and in u.

(5) Completely coherent light is our final example. Its
positional power spectrum r(x1, x2) = q(xl)q*(x2) has the
form of a product of a function with its complex-conjugate
version.7 The WDF of coherent light thus takes the form

f(x, u) = J q(x + 1/2x')q*(x - /2 x')exp(-iux')dx'. (3.5)

We denote the WDF of coherent light throughout by the
lower-case letter f.

C. Properties of the Wigner Distribution Function

Let us now consider some properties of the WDF. We con-

sider only the most important ones; they can all be derived
directly from the definitions (3.1). Additional properties of
the WDF, especially of the WDF in the completely coherent
case, as defined by Eq. (3.5), can be found elsewhere.3, 6-23

(1) The definition (3.1a) of the WDF F(x, u) has the
form of a Fourier transformation of the positional power
spectrum r(x + l/2x', x - /2x'), with x' and u as conjugated
variables and with x as a parameter. The positional power
spectrum can thus be reconstructed from the WDF simply
by applying an inverse Fourier transformation; a similar

property holds for the directional power spectrum. The
latter property follows from the general remark that space
and frequency, or position and direction, play equivalent
roles in the WDF: If we interchange the roles of x and u in

any expression containing a WDF, we get an expression that
is the dual of the original one. Thus, when the original
expression describes a property in the space domain, the
dual expression describes a similar property in the frequency
domain and vice versa.

(2) The WDF is real. Unfortunately, it is not necessar-
ily nonnegative; this prohibits a direct interpretation of the
WDF as an energy density function (or radiance function).
Friberg has shown24 that it is not possible to define a radi-
ance function that satisfies all the physical requirements
from radiometry; in particular, as we see, the WDF has the
physically unattractive property that it may take negative
values.

(3) If the signal is limited to a certain space or frequency
interval and vanishes outside that interval, then its WDF is
limited to the same interval. Indeed, if the positional power
spectrum r(x,, x2) vanishes for xl or x2 > x0, say, then its
WDF F(x, u) vanishes for x > x0 as well; a similar property

holds for the directional power spectrum. Hence, for in-
stance, for a light source with a finite extent, the WDF
vanishes outside the source, which is surely a physically
attractive property.

(4) A space or frequency shift of the signal yields the
same shift for its WDF. Indeed, if the WDF F(x, u) corre-
sponds to the positional power spectrum r(xi, x2), then F(x
- x 0, u) corresponds to r(xi - xo, x 2 - xo); a similar property
holds for the directional power spectrum.

(5) Several integrals of the WDF have clear physical
meanings and can be interpreted as radiometric quantities.
The integral over the frequency variable, for instance,

1 F(x, u)du = r(x, x) (3.6a)

represents the positional intensity of the signal, whereas the
integral over the space variable

J F(x, u)dx = (u, u) (3.6b)

yields the directional intensity of the signal, which is, apart
from the usual factor cos 2 0 (where 0 is the angle of observa-

tion), proportional to the radiant intensity.'2 "13 The total

energy of the signal follows from the integral over the entire
space-frequency plane

* J F(x, u)dxdu = r(x, x)dx = 21 (u, u)du. (3.6c)

The normalized second-order moment of the WDF with
respect to the space variable x yields the effective width d of
the positional intensity r(x, x):

f[ x2F(x, u)dxdu J x2
r(x, x)dx

2 _ _ _ _ _ _ = d 2. 
I 4F(x, u)dxdu Jr(x, x)dx

(3.7)

a similar relation holds for the effective width do of the
directional intensity P(u, u). The radiant emittance 2 1 3

is

equal to the integral
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J'(X) = 27r J k F x, u)du, (3.8a)

in which k represents the usual wave number 2r/X. When
we combine the radiant emittance J, with the integral

eigenvalue. As a matter of fact, the modal expansion (4.1)
expresses the partially coherent light as a superposition of
coherent modes.

As an example, we remark that the eigenvalues of the
Gaussian light [Eq. (3.3)] take the form15 30'3'

Jx(x) = 2 j k F(x, u)du, (3.8b)

we can construct the two-dimensional vector

J(x) = [Jx(x), Jz(x)], (3.8c)

which is known as the geometrical vector flux.2 5 The total
radiant flUX'

2 follows from integrating the radiant emit-
tance over the space variable x.

(6) An important relationship between the WDF's of
two signals and the power spectra of these signals reads as

f f F,(x, u)F2 (x, u)dxdu = | P,(x,, x 2)F*2(x,, x2)dxdx2

2 | rJ(ul, u2)F*2(ul, U2)dudu2. (3-9)

This relationship has an application in averaging one WDF
with another one, which averaging always yields a nonnega-

tive result. We show this in Section 4, after having intro-
duced the modal expansion for the power spectrum.

4. MODAL EXPANSIONS

To derive more properties of the WDF, we introduce modal
expansions for the power spectrum and the WDF.

A. Modal Expansion of the Positional Power Spectrum

We represent the positional power spectrum r(x,, x2) by its
modal expansion2 6 [see also, for instance, Refs. 15 and 27, in

which a modal expansion of the (nonnegative definite Her-
mitian) mutual intensity Nx1, x2, 0) is given]:

r(x1, X2) =- Xmq(x1/p)q*.(x2/P);
m=0

(4.1)

a similar expansion holds for the directional power spec-
trum. For the mathematical subtleties of this modal expan-
sion, we refer to the standard mathematical literature.2 8 29

In the modal expansion (4.1), the functions q, are the eigen-

functions, and the numbers Xm are the eigenvalues of the
integral equation

J r(x1 , X2)q(x2p)dx2 = Xmqn(xl/p) (m = 0, 1, ..

(4.2)

the positive factor p is, again, a mere scaling factor. Since

the kernel r(xi, x2 ) is Hermitian and under the assumption
of discrete eigenvalues, the eigenfunctions can be made
orthonormal:

I qn()q*n()d4 = m =n
f 10~{ man

(m, n = 0,1, .. .). (4.3)

2a 1-a mA = 1 + )(O < a 1, m = . 1, . ..), (4.4)

whereas the eigenfunctions q are just the Hermite func-

tions tm defined, for instance, by means of the generating
function

exp 7rt - 2nr(Q - W)2 = 2-1/4 > (m!)y1/2(4r)-/ 2
wm1[km(a).

m=0

(4.5)

Note that, for = 1, the eigenvalue Xo is the only nonvanish-

ing eigenvalue and that the Gaussian light is completely
coherent.

B. Modal Expansion of the Wigner Distribution Function

When we substitute the modal expansion (4.1) into the defi-
nition [Eq. (3.1a)], the WDF can be expressed as

(4.6)F(x, a) = 3 Xfm (-X'- Pu)
mn=0 

where

fm( n) = J qm( + l/ 2 )q*(4 - /4')exp(-i-q4')d4'

(m = 0,1,...) (4.7)

are the WDF's of the eigenfunctions q, as in the completely
coherent case [see definition (3.5)]. By applying relation
(3.9) and using the orthonormality property [Eq. (4.3)], it
can easily be seen that the WDF's fm satisfy the orthonor-
mality relation

f JJ fm( , t,)f(, n1 )dtd, = J q.)q*,2)dt

|1 m=n
l mr n

(m, n = 01,...

(4.8)

As an example, again, it can be shown that the WDF's of
the Hermite functions 4'm, and thus the WDF's fm that ap-
pear in the modal expansion of Gaussian light, take the
form

3 2

fm(. = 2(-l)m exp[-(2irt2 + )Lm 2 272 +

(m = 0, 1,...), (4.9)

where Lm are the Laguerre polynomials. 3 3

The modal expansion (4.6) allows us to formulate some
interesting inequalities for the WDF.

Moreover, since the kernel (x1, X2) is nonnegative definite
Hermitian, the eigenvalues are nonnegative. Note that the
light is completely coherent if there is only one nonvanishing

C. Inequalities for the Wigner Distribution Function

(1) Using the expansion (4.6), it is easy to see that de

Bruijn's inequality3 4
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1 I)7 (22 X2 + f2 U2) F(x, u)dxdu > n!4 4 F(x, u)dxdu

(4.10)

holds not only in the completely coherent case but also for
the WDF of partially coherent light. In the special case n =
1, relation (4.10) reduces to (27r/p2)dx2 + (p2/2ir)du2 > 1,

which leads to the ordinary uncertainty relation 6 2dxdu 1,

by choosing p2 = 2-7rdx/du. The equality sign in this ordinary

uncertainty relation occurs for completely coherent Gauss-
ian light [or = 1 in Eq. (3.4)]; for all other signals, the product

of the effective widths in the space and the frequency direc-
tion is larger. We thus conclude that the coherent Gaussian
WDF occupies the smallest possible area in the space-fre-
quency plane. A more sophisticated uncertainty principle
for partially coherent light, which will take into account the
overall degree of coherence of the light, is derived in Subsec-

tion 6.A.

(2) Using the relationship (3.9) and expanding the power
spectra F(xi, x2) and 2(x1 , x2) in the form (4.1), it can
readily be shown that

t JJ F1 (x, u)F2(x, u)dxdu Ž 0. (4.11)

Thus, as we remarked before, averaging one WDF with an-
other always yields a nonnegative result. In particular, the
averaging with the WDF of completely coherent Gaussian
light is of some practical importance 3 43 6 since the coherent

Gaussian WDF occupies the smallest possible area in the
space-frequency plane, as we concluded before.

(3) An upper bound for the expression that arises in
relation (4.11) can be found by applying Schwarz's inequal-
ity

6
:

21 ff F1 (x, u)F2 (x, u)dxdu

<I JJ || F
1

N(x, u)dxdu [ Fl(C

(4.12a)

The right-hand side of relation (4.12a) again has an upper
bound, which leads to the inequality

1 Fl(x, u)F2 (x, u)dxdu

• [4-H|| F1 (x, u)dxdu][9ff F2 (x, u)dxdu] (4.12b)

where the right-hand side is simply the product of the total
energies of the signals; indeed, we have the important in-
equality

4-4 F2 (x, u)dxdu < f F(x, u)dxdu] . (4.13)

To prove this inequality, we first remark that, by using the
expansion (4.6), the identity

2 ffF(x, u)dxdu = 3 X?, (4.14a)

holds. Second, we observe the identity

(4.14b)27r F
2 (x, u)dxdu = I 3 M 

m=O

which can be easily proved by applying expansion (4.6) and
by using the orthonormality property (4.8). Finally, we
remark that, since all eigenvalues Xm are nonnegative, the
inequality

m \m2 <

m=O

(4.15)

( 2

m=O

holds, which completes the proof of relation (4.13). Note
that the equality sign in relation (4.15), and hence in relation
(4.13), holds if there is only one nonvanishing eigenvalue,

i.e., in the case of complete coherence. The quotient of the
two expressions that arise in relation (4.13) or relation (4.15)
can therefore serve as a measure of the overall degree of

coherence of the light.

5. PROPAGATION OF THE WIGNER
DISTRIBUTION FUNCTION

In this section we study how the WDF propagates through
linear optical systems. In Subsection 5.A we therefore con-
sider an optical system as a black box, with an input plane
and an output plane, whereas in Subsection 5.B we consider
the system as a continuous medium, in which the signal
must satisfy a certain differential equation.

A. Ray-Spread Function of an Optical System

We consider the propagation of the WDF through linear
systems. A linear system can be represented in four differ-
ent ways, depending on whether we describe the input and
the output signals in the space or in the frequency domain.
We thus have four equivalent input-output relationships,
which for completely coherent light read as

qo(xo) = | h.,,{Xo, xi)qi(xi)dx

qo(uo) = J h..(uo, xj)qj(xj)dxj,

qo(x0) = J | hxu(xo, ui)4,i(ui)du,

q(o) = 4- f hu(u u)q i(ui)dui.

(5.1a)

(5.1b)

(5.1c)

(5.1d)

The first relation (5.la) is the usual system representation in
the space domain by means of the point-spread function
hxx; we remark that the function hxx is the response of the
system in the space domain when the input signal is a point
source. The last relation (5.1d) is a similar system represen-
tation in the frequency domain, where the function h10 is the
reponse of the system in the frequency domain when the
input signal is a plane wave; therefore we can call h. the

wave-spread function of the system. The remaining to
relations (5.1b) and (5.1c) are hybrid system representations
since the input and the output signals are described in dif-
ferent domains; therefore we can call the functions h,. and
hu hybrid spread functions.
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For partially coherent light, the four input-output rela-
tionships that are equivalent to relations (5.1a)-(5.1d) read
as

F0(x1, X2) = IS h.X(x1, 1)Pg(4j, 0h*,x(x 2, 4dtjd4 2,

(5.2a)

ro(ul, U2) = Jf hux(u1 , Wr)l(tl Os)h*ux(u2 2 )d41de2,

(5.2b)

ro(x1 , X2 ) 2 f h(x, n1 W)i(n1l n2)h*x.(X2, 2 )dnjdnq2,

(5.2c)

PO(u1, 2) - ft h~ul, n1)P6i(771, 2)h*,1(us, n2)dn1 dn2-

(5.2d)

Unlike the four system representations [Eqs. (5.1) or (5.2)]
described above, there is only one system representation
when we describe the input and the output signals by their
WDF's. Indeed, combining the system representations
[Eqs. (5.2)] with the definitions (3.1) of the WDF results in

the relation

F0 (x 0 , uo) if ft K(xo, uo, xi, ui)FJ(xi, uj)dxidui, (5.3)

in which the WDF's of the input and the output signals are
related through a superposition integral. The function K is
completely determined by the system and can be expressed
in terms of the four system functions h~x, huxp hxu, and huu.

We find that

K(xo, uo, xi, ui) = J| hx(xo + %x'0, xi + /2x'i)

X h*xx(x( - %x'o, Xi -/2X 'i)

X exp[-i(uox' 0 - uix'i)]dx' o dx'i (5.4)

and similar expressions for the other system functions.3 7

Relation (5.4) can be considered as the definition of a double
WDF; hence the function K has all the properties of a WDF,
for instance, the property of realness.

Let us think about the physical meaning of the function K.
In a formal way, the function K is the response of the system
in the space-frequency domain when the input signal is
described by a product of two Dirac functions Fi(x, a) =

27r6(x - xi)b(u - u); only in a formal way, since an actual
input signal yielding such a WDF does not exist. Neverthe-
less, such an input signal could be considered as a single ray
entering the system at the position x with direction ui.
Hence the function K might be called the ray-spread func-

tion of the system.
It is not difficult to express the ray-spread function of a

cascade of two systems in terms of the respective ray-spread
functions K, and K2. The ray-spread function of the overall
system reads as

K(xo, uo, xi, u) = f t K2(XO, uo, x, u)KI(x, us xi, ui)dxdu.

(5.5)

Some examples of ray-spread functions of elementary op-
tical systems3 83 9 might elucidate the concept of the ray-
spread function.

(1) First, let us consider a thin lens with a focal distance
f. Its point-spread function takes the well-known form
h..(xo, xi) = exp[-i(k/2f)Xo2]6(xo - xi). Clearly, a thin lens
is a modulator, whose modulation function is a quadratic-

phase function. The corresponding ray-spread function
takes the special form of two Dirac functions, K(xo, uo, xi, us)

= 2r3(xi - xo)6(ui - uo - kxo/f), and the input-output
relationship of a thin lens becomes very simple, Fo(x, u) =

Fi(x, u + kx/f). The ray-spread function represents exactly
the geometric-optical behavior of a thin lens: If a single ray
is incident upon a thin lens, it will leave the lens from the
same position, but its direction will change according to the
actual position; in any event, there is only one output ray.

(2) Our second example will be the dual of a thin lens,
namely, a section of free space over a distance z in the
Fresnel approximation. Its point-spread function reads as
h..(xo, xi) = (k/27riz)/ 2 exp[i(k/2z)(xo - xi)2]. Clearly, a
section of free space is a shift-invariant system, and the
point-spread function is again a quadratic-phase function.
The corresponding ray-spread function again takes the spe-
cial form of two Dirac functions, K(xo, uo, xi, ui) = 27r(xi - xo

+ zuo/k)5(uj - uo), and the input-output relationship of a
section of free space becomes very simple, Fo(x, u) = Fi(x -
zu/k, ). The ray-spread function represents exactly the
geometric-optical behavior of a section of free space: If a
single ray propagates through free space, its direction will
remain the same, but its position will change according to
the actual direction; in any event, there is again only one
output ray.

(3) For a Fourier transformer whose point-spread func-
tion reads as hx(xo, x) = (/2iri)1/2 exp(-ixoxj), the ray-
spread function takes the form K(xo, uo, xi, uj) = 2in5(xi + uo/O)-

6(ui- lxo), and the input-output relationship reduces to
Fo(x, u) = Fi(-u/f, 3x). We conclude that the space and

frequency domains are interchanged, as can be expected for
a Fourier transformer.

(4) Let a magnifier be represented by a point-spread
function hx(xo, xi) = ml/2(mxO - xi); then its ray-spread
function will read as K(xo, uo, xi, ui) = 2r6(xi - mxo)6(ui -

uo/m), and the input-output relationship becomes Fo(x, u) =
Fi(mx, u/m). We note that the space and frequency do-
mains are merely scaled, as can be expected for a magnifier.

(5) A thin lens, a section of free space in the Fresnel
approximation, a Fourier transformer, and a magnifier are
special cases of Luneburg's first-order optical systems,4 0

which will be our final example. A first-order optical system
can, of course, be characterized by its system functions h.,,

hux, hxu, and huu: They are all quadratic-phase functions.
(Note that a Dirac function can be considered as a limiting
case of such a quadratically varying function.) A system

representation in terms of WDF's, however, is far more ele-
gant. The ray-spread function of a first-order system takes
the form of two Dirac functions,

K(xo, uo, xi, ui) = 27r(xi - Ax - Buo)(ui - Cx0 -Du)

(5.6)

and the input-output relationship reads very simply as

F0 (x, u) = F,(Ax + Bu, Cx + Du). (5.7)
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From the ray-spread function [Eq. (5.6)], we conclude that a
single input ray, entering the system at the position xi with
direction ui, will yield a single output ray, leaving the system
at the position x0 with direction uo. The input and output
positions and directions are related by the matrix relation-
ship

(xi )(A B) (XO

UJ C D u 
(5.8)

Relation (5.8) is a well-known geometric-optical matrix de-
scription of a first-order optical system40 ; the ABCD matrix
in this relation is known as the ray-transformation matrix.41

We remark that this ABCD matrix is symplectic4 04 2 ; for a 2
X 2 matrix, symplecticity can be expressed by the condition
AD - BC = 1. We observe again a perfect resemblance to
the geometric-optical behavior of a first-order optical sys-
tem (see also, for instance, Ref. 43).

B. Transport Equations for the Wigner Distribution

Function

In the previous subsection we studied, in example (2), the
propagation of the WDF through free space by considering a
section of free space as an optical system with an input plane
and an output plane. It is possible, however, to find the
propagation of the WDF through free space directly from
the differential equation that the signal must satisfy. We
therefore let the longitudinal variable z enter into the formu-
las and remark that the propagation of coherent light in free
space (at least in the Fresnel approximation) is governed by
the differential equation (see Ref. 6, p. 358)

-i q = k + 2 q
Oz x2x9

(5.9)

partially coherent light must satisfy the differential equa-
tion

LQ= + ox:) Q m-2 )J . (5.10)
[( 2k aX12) 2k dX2 2)]-(-0

The propagation of the WDF is now described by a trans-
port equation,4 4A49 which in this case takes the form

u aF + 0F 0. (5.11)

[Relation (5.11) is a special case of the more general trans-

port equations (5.14), which are studied below.] The trans-
port equation (5.11) has the solution

F(x, u; z) = F(x - Vt ; O) (5.12)

which is equivalent to the result in the previous subsection.
The differential equation (5.10) is a special case of the

more general equation

-i-- [L x1, -i y-; Z) -L* yx2 -t ; z)JrP(5.13)

where L is some explicit function of the space variables x and
z and of the partial derivative of P contained in the operator
0/Ox. The transport equation that corresponds to this dif-
ferential equation reads as

OF i ax ]- - = 2 Im[L x + - i - ; z uP,
Oz 20au 20ax 

(5.14a)

in which Im denotes the imaginary part; a derivation of this
formula can be found in Appendix A. In the elegant, sym-
bolic notation of Besieris and Tappert,46 the transport equa-
tion (5.14a) takes the form

= 2 Im (x, u; z)exp nII a F)],
Oz LM '4 2 x Oau du xJj

(5.14b)

where, depending on the directions of the arrows, the differ-
ential operators on the right-hand side operate on L(x, u; z)
or F(x, u; z). In the Liouville approximation (or geometric-
optical approximation) the transport equation (5.14b) re-
duces to

OF 2 ImIL(x, ; z) + 1 IF.
az t2''LTIx u aitax/Ji

(5.15a)

Again, in the usual notation, the latter equation reads as

OF OReLOF OReLOF
=-2 (Imn L)F +

az a~~x Ou Oau Ox
(5.15b)

in which Re denotes the real part. Relation (5.15b) is a first-
order partial differential equation, which can be solved by
the methods of characteristics50 : Along a path described in
a parameter notation by x = x(s), z = z(s), and u = u(s) and

defined by the differential equations

dx 0 ReL

ds Otu

dz du a ReL

ds ' ds Ax I
(5.16)

the partial differential equation (5.15b) reduces to the ordi-
nary differential equation

_ 41 = 2 (Im L)F.
ds

(5.17)

In the special case that L(x, ; z) is a real function of x, u, and

z, Eq. (5.17) implies that, along the path defined by relations
(5.16), the WDF has a constant value (see also, for instance,
Ref. 51).

Let us consider some examples of transport equations.
(1) In Free Space in the Fresnel Approximation. The

signal is governed by equation (5.10), and the function L
reads as L(x, t; z) = k-u 2/2k. The corresponding transport
equation (5.11) and its solution (5.12) have already been
mentioned in the first paragraph of this subsection.

(2) In Free Space (But Not Necessarily in the Fresnel
Approximation). A coherent signal must satisfy the Helm-
holtz equation, whereas the propagation of partially coher-
ent light is governed by the differential equation

ar [( 2 2 \1/2 (2+ 02 )1 
Oz a x,2) Ox2

2 (5.18)

In this case, the function L reads as L(x, ; z) = (k2
-

2
)1/

2
.

We can again derive a transport equation for the WDF; the

exact transport equation is rather complicated, but in the
Liouville approximation it takes the simple form

u F (k2
-

2)/ 2 OF (5.19)
k x k Oz
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This transport equation can again be solved explicitly, and
the solution reads as

F(x, u; z) = Fx -2 u 2 , 2 z, u; o. (5.20)

The difference from the previous solution (5.12), in which we
considered the Fresnel approximation, is that the sine u/k
has been replaced by the tangent u/(k2

- u2)1/2. Note that,
in the Fresnel approximation, relations (5.18)-(5.20) reduce
to relations (5.10)-(5.12), respectively. When we integrate
the transport equation (5.19) over the frequency variable u
and use definitions (3.8), we get the relation aJ,/9x + OJz/oz
= 0, which shows that the geometrical vector flux J has zero
divergence. 25

(3) In a Weakly Inhomogeneous Medium. The differ-
ential equation that the signal must satisfy again has the
form of Eq. (5.18) but now with k = k(x, z). The transport

equation in the Liouville approximation now takes the form

u F (k2 -u 2)12 F +k F 0

k ax k Oz ax u
(5.21)

which, in general, cannot be solved explicitly. With the

method of characteristics we conclude that, along a path
defined by

dx u dz (k 2
- U1)11I

ds k ds k

du -A

ds ax

the WDF has a constant value. When we eliminate the
frequency variable u from Eqs. (5.22), we are immediately
led to

d (hdx\ A
ds ds Ox

dsk dz) Ok

dsk ds) z

which are the equations for an optical light ray in geometri-
cal optics.5 2 We are thus led to the general conclusion that,
in the Liouville approximation, the WDF has a constant
value along the geometric-optical ray paths. Note that, in a
homogeneous medium, i.e., Ok/dx = Ok/az = 0, the transport

equation (5.21) reduces to Eq. (5.19) and that the ray paths
become straight lines.

bound but that this lower bound depends on the overall
degree of coherence of the light: The better the coherence,

the smaller the lower bound. Hence we need a measure of
the overall degree of coherence of the light. To define such a
measure, we use the modal expansion (4.6) and choose Shan-
non's informational entropy defined by the expression (see,
for instance, Ref. 27)

(6.1)

to measure the overall degree of coherence.
To find a more advanced uncertainty principle, we formu-

late the important relationship54 ' 55

Z Xm(2m + 1)

2d.dŽ mo (6.2)

Xm

m=O

proof of which can be found in Refs. 54 and 55. The equality

sign in this relation holds if the eigenfunctions qn are just
the Hermite functions A'm. We now wish to solve the follow-
ing problem: among all partially coherent wave fields with
the same informational entropy, find the wave field that
minimizes the product d.du. To solve this problem, we have
to find that distribution of eigenvalues Xm for which the
right-hand side of relation (6.2) takes its minimum value,
under the constraints that the eigenvalues are nonnegative
and that the informational entropy is constant. Using stan-
dard variation techniques, it is not difficult to show that the
minimum of this right-hand side occurs when the eigenva-
lues are proportional to expression (4.4) and that this mini-
mum takes the value 1/2a; the quantity a in expression (4.4)
is related to the informational entropy through the formula

2a a 12 - 1/2a

,f1 +ff21 0

6. APPLICATIONS

We have already considered a number of simple applications
of the WDF in the previous sections of the paper. In fact,
any example that we have considered represents such an
application. In this section we study some more-advanced
applications.

A. Uncertainty Principle and Informational Entropy

The ordinary uncertainty principle 2dd, > 1 tells us that
the product of the effective widths of the intensity functions
in the space and the frequency domain has a lower bound
and that this lower bound is reached when the light is com-
pletely coherent and Gaussian.6 We found the same uncer-
tainty relation for partially coherent light in Subsection 4.C.
In this subsection we derive a more sophisticated uncertain-
ty principle,5 3 by taking into account the overall degree of
coherence of the light. As a matter of fact, what we expect

from an uncertainty principle for partially coherent light is
that the product of the effective widths still has a lower

(6.3)

Note that the case a = 1 corresponds to the case of complete
coherence for which there is only one nonvanishing eigenval-

ue and for which the informational entropy is zero.

If the eigenvalues are given by Eq. (4.4) and, moreover, if
the eigenfunctions q,,, are the Hermite functions 'Pm, then the
corresponding power spectrum of the partially coherent
light is Gaussian and can be expressed in the form of Eq.
(3.3). For such Gaussian light, we have (27/p2)dx2

= (p2/
27r)d,2 = 1/2a, and thus 2d.du = 1/a. We conclude that an

uncertainty principle for partially coherent light reads as

2d~dU 2ŽA2 a. , (6.4)

where a is related to the informational entropy through Eq.
(6.3) and where the equality sign holds if the light is Gauss-

ian. (but not necessarily coherent).
We can, of course, choose other quantities to measure the

overall degree of coherence of the light54' 55 ; however, an
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overall degree of coherence based on the informational en-

tropy has certain advantages.5 3 All the quantities that mea-
sure the overall degree of coherence of the light, which are

based on the eigenvalues Xm (and not on the eigenfunctions
qtm), have an interesting property: Since a lossless sys-

tem38 39 does not alter the eigenvalues of the power spec-

trum, 9 an overall degree of coherence that is based on these

eigenvalues remains invariant when the light propagates
through such a system. In particular, the informational
entropy, as defined by expression (6.1), is preserved in loss-

less systems.

B. Gaussian Beams and First-Order Optical Systems

If a Gaussian signal whose WDF has the form (3.4) is the

input signal of a first-order optical system described by a
symplectic ray-transformation matrix, according to relation
(5.8), then the output WDF has the form

F(x, u) = 2r exp-or 2 (Ax + Bu)2 + 2 (Cx + Du)2]})

(6.5)

Since the ray-transformation matrix is symplectic, which
implies the property AD - BC = 1, this output WDF can be
expressed in the form

F(x, u) = 2a exp{-a [(13+B)x2 +2: xu + u2]}

(3> 0), (6.6)

where the parameters a and , are related to A, B, C, D, and p
through the formulas

1 2n B2+kD2
P2 2w

a 2w 2

a AB + P CD. (6.7)
P2 2w

The WDF of the form (6.6) is the WDF of a cross section

through a Gaussian beam. 4 ' When this beam propagates
through first-order optical systems, the parameters a and 3
change, but the general form [Eq. (6.6)] of the WDF is pre-

served. To be more specific, if a Gaussian beam with input

parameters ai and pi forms the input of a first-order optical
system with a ray-transformation matrix as in relation (5.8),

then the Gaussian beam at the output of the system has
parameters ao and gAo that are related to ei and pi by the
relations

Oi/go = (Bai + D)2 + B
2 fI,

ao P = (Acei + C)(Bai + D) + AB32. (6.8)

Relations (6.8) can be combined into one relation that has
the bilinear form42

A(a + i) + C

a0O + ipo B(a + ifi) + D (6.9)

The third beam parameter a, which is related to the informa-
tional entropy of the beam by means of Eq. (6.3), does not
change when the beam propagates through first-order opti-
cal systenjs-this is obvious, since a first-order optical system

is lossless and the informational entropy in such a system is
preserved.

C. Geometric-Optical Systems
Let us start by studying a modulator described by the coher-
ent input-output relationship qo(x) = m(x)qi(x); for partial-
ly coherent light, the input-output relationship reads as
r0 (x1, x2) = m(x)ri(xi, x2)m*(x 2). The input and output
WDF's are related by the relationship

Fo(x, uo) = 2I F(x, ui)dui f m(x + l/2 x')m*(x- /2 x')

X exp[-i(uO - ui)x']dx'. (6.10)

This input-output relationship can be written in two dis-
tinct forms. On the one hand, we can represent it in a
differential format reading as follows:

Fo(x, u) = m(x + f-)m*(x - j .aix, u). (6.11a)

On the other hand, we can represent it in an integral format
that reads as follows:

Fo(x, u) = f f(x u - ui)F(x, ui)dui, (6.11b)

where fm(x, u) is the coherent WDF [as defined by Eq. (3.5)]
of the modulation function m(x). Which of these two forms
is superior depends on the problem.

We now confine ourselves to the case of a pure phase-

modulation function m(x) = exp[iy(x)]. We then get

m(x + /2 x')m*(x - /2X')

= exp[i 2 + (2+1)(x)(x'/2))2k+ I (6.12)

where the expression y(n)(x) is the nth derivative of y(x). If
we consider only the first-order derivative in Eq. (6.12), we

arrive at the following expressions:

m + i )m*(x-2 di ) exp(- dy )\u 2u/\2u] dx u

fm(x, it) 2u -d)

(6.13a)

(6.13b)

and the input-output relationship of the pure phase modu-
lator becomes

(6.14)

which is a mere coordinate transformation. We conclude
that a single input ray yields a single output ray.

The ideas described above have been applied to the design
of optical coordinate transformers5 6 by Jiao et al. and to the
theory of aberrations5 7 by Lohmann et al. Now, if the first-
order approximation is not sufficiently accurate, i.e., if we
have to take into account higher-order derivatives in Eq,
(6.12), the WDF allows us to overcome this problem. In-
deed, we still have the exact input-output relationships Eqs.
(6.11), and we can take into account as many derivatives in
Eq. (6.12) as necessary. We thus end up with a more general
differential form58 than expression (6.13a) or a more general
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integral form59 than expression (6.13b). The latter case, for
instance, will yield an Airy function instead of a Dirac func-
tion, when we take not only the first but also the third
derivative into account.

From expression (6.14) we concluded that a single input
ray yields a single output ray. This may also happen in more
general-not just modulation-type-systems; we call such
systems geometric-optical systems. These systems have
the simple input-output relationship

(6.15)

where the sign becomes an = sign in the case of linear

functions gx and gu, i.e., in the case of Luneburg's first-order
optical systems, which we have considered in Subsection
5.A. There appears to be a close relationship to the descrip-
tion of such geometric-optical systems by means of the
Hamilton characteristics.37

Instead of the black-box approach of a geometric-optical
system, which leads to the input-output relationship (6.15),
we can also consider the system as a continuous medium and
formulate a transport equation, as we did in Subsection 5.B.
For geometric-optical systems, this transport equation takes
the form of a first-order partial differential equations
which can be solved by the method of characteristics. In

Subsection 5.B we reached the general conclusion that these
characteristics represent the geometric-optical ray paths
and that along these ray paths the WDF has a constant
value.

The use of the transport equation is not restricted to
deterministic media; Bremmer4 7 has applied it to stochastic
media. Neither is the transport equation restricted to the
scalar treatment of wave fields; Bugnolo and Bremmer6l
have applied it to study the propagation of vectorial wave
fields. In the vectorial case, the concept of the WDF leads to
a Hermitian matrix rather than to a scalar function and
permits the description of nonisotropic media as well.

We have already considered some examples of geometric-
optical systems in Section 5; two more-advanced examples
are studied in Subsections 6.D and 6.E. Other examples are
described by Ojeda-Castafieda and Sicre.62

D. Flux Transport through Free Space
Let us consider, in the z = 0 plane, a quasi-homogeneous

planar Lambertian source12 13 whose positional intensity is
uniform in the x interval (-xmax, +Xmax) and vanishes out-
side that interval and whose radiant intensity has the direc-
tional dependence cos 0 in the a interval (Oman, +Omax) and
vanishes outside that interval; as usual, 0 is the observation
angle with respect to the z axis. The WDF of such a source is
given by

2
xmaxk sin Omax

X rect Irect U I

2xmai / (2k sin Omax/ (k2 - 2) 1/2

(6.16)

where rect(t) = 1 for -'/2 < t < /2 and rect(t) = 0 elsewhere;

for convenience, we have normalized the total radiant flux'2

to unity

IF(x, ) (k2
-U) dxdu=1.

2 rJJff j J
(6.17)

We wish to determine the radiant flux through an aperture
with width 2Xma,, parallel to the source plane, and symmetri-
cally located around the z axis at a distance z from the
source plane. In the geometric-optical approximation, the
WDF at the z = z0 plane reads as F[x + zou/(k2

-
2)'/2, U],

and the radiant flux through the aperture follows readily
from the integral

x. dx duF [x + u( U(k2 - U2)/2

sin - 2 (1 - cos y)
2
Xmax

sin 0Oax
- (6.18)

where y = min[Omax, arctan(2xmax/zo)I.

Similar techniques can be applied in the more general case
when the source and the aperture have different widths and
when the optical axes of the source and the aperture planes
are translated or even rotated with respect to each other.
Such problems arise, for instance, when two optical fibers
are not ideally connected to each other and we want to
determine the energy transfer from one fiber to the other.63

E. Rotationally Symmetric Fiber
As our last example, let us consider-by way of exception-a

two-dimensional example. In an optical fiber that extends
along the z axis, the signal depends, at a certain z value, on

the two transverse space variables x and y; its WDF depends
on these space variables and on the two frequency variables
u and v. The transport equation in the fiber now has the
form

u•+ vt + [k 2_(u2 u2)]S2 F + k k + k =0,
ax Oy Oz ax u Oy v

(6.19)

which is the two-dimensional analog of the transport equa-
tion (5.21). We now assume that the index of refraction has
a rotationally symmetric profile; hence = k[(x

2 + y
2

)1/
2

].

When we apply the coordinate transformation x = r cos A,
y = r sin A, h = vx - uy, k2

= U2 + v2 + w2, we arrive at the

transport equation

/2 W2_ h2 '12)F + h F + w F 0k~2 w- - --- +-0
O2 r r

2
O4 Oo4z

(6.20)

We remark that the derivatives of the WDF with respect to
the ray invariants h and w do not enter the transport equa-
tion (6.20). From the definition of the characteristics

dh = dw dr ( 2 _ 2 h1)
0z 'dz ~ dz -kr2)

doh
w- -,

dz r2
(6.21)

we conclude that dh/dz = dw/dz = 0, and h and w are,

indeed, invariant along a ray.
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APPENDIX A: DERIVATION OF THE
TRANSPORT EQUATION

We start with the differential equation (5.13)

[ aZ 
i 1ax,'J

X r(x 1 , x2; z) 0. (Al)

Expressing the power spectrum r(x 1, x2; z) in terms of the

WDF F(x, u; z) through an inverse Fourier transformation
yields

!- f[i + 1 -i -; z)- -i 4- ; 9]
/X1 + X2 \X F 2 'U 0; z exp [iu(x 1- x2)]duo = 0, (A2)

which can be expressed as

± J [i a + L(x + 1/2x , uit - 4; Z)

-L (x-2X~u02 x ;Z)]

X F(x, u; z)exp(iuox')duo 0. (A3)

Multiplication of relation (A3) by exp(-iux') and writing
the integral over x' yields

4[' a + L(x + /2X , uo -2; z)

-L( /2x' uO _ Z d 

X F(x, u0; z)exp[i(u 0 - u)x']duodx' = 0, (A4)

which can be expressed as

-L*( + 2 a u-2 Z)

X F(x, ui; z)exp[iiuo - u)x']duodx' 0.

Carrying out the integrations in relation (A5) leads to

F + 2 Im[L( + 2 a - a d F= 0az [L(X au {2-;x)]Fo

(A5)

(A6)

which is equivalent to the desired result [Eq. (5.14a)].
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