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ABSTRACT 

The Wigner-Ville distribution, a new tool in the time-frequency analysis of signals, is applied to temperature 
gradient microstructure records. In particular, the Wigner-Ville distribution is used to compute the local in­

stantaneous and maximum frequencies of the signal as a function of depth, and these frequencies are then 
related to the dissipation of turbulent kinetic energy. The method is applied to two temperature gradient mi­
crostructure records from the Wellington Reservoir. It is shown that a high resolution estimate of the dissipation 

is obtained that provides insight into the patchiness, the wavenumber content, and the Reynolds-Froude number 
variability of the integral scales of motion in a strongly stratified water column. 

1. Introduction 

Improved instrumentation has led, in the last ten 
years, to an increased effort in the study of turbulent 
microstructure in the ocean, lakes and reservoirs. Nu­
merous techniques have been developed which allow 
estimation of some of the terms in the turbulent kinetic 
energy budget. Osborn ( 1980) was the first to estimate 
the energy dissipation directly from measurements of 
the velocity fluctuation spectrum (see also Oakey, 
1982). Thorpe ( 1977) introduced the concept of a dis­
placement scale and used it to estimate the dissipation 
indirectly. This indirect technique has been further de­

veloped by Dillon (1984) and lmberger (1985). 

An alternative method was developed by Caldwell 
et al. (1980, 1981), Dillon and Caldwell (1980) and 
Caldwell and Dillon ( 1981 ), who focused on the tracer 
gradient spectrum. These authors proposed the use of 
the temperature gradient microstructure spectrum and 
its comparison to the theoretical spectrum derived by 
Gibson and Schwarz ( 1963). For homogeneous isotro­
pic turbulence, the one-dimensional spectrum function 
has the form 

S(k) = (if2~~>, (1) 

where k is the wavenumber (rad m- 1 
), kB the Batchelor 

wavenumber (E/vn2)114 (rad m-1), D the thermal dif­
fusivity (m2 s-1

), v the kinematic viscosity (m2 s- 1
), E 

• On leave at the Keck Laboratory, California Institute of Tech­
nology, Pasadena, CA 91125. 

the energy dissipation (m2 s-3
), q the rate of strain pro­

portionality constant taken to be 3.4, and a the non­
dimensional wavenumber (2q) 112k/kB. The rate of dis­
sipation of temperature variance x is defined as 
6D((aT 1/az)), T'beingthetemperature fluctuation and 
the angle brackets denoting an appropriate averaging 
process. The function/( a) is defined by 

/(a)= a( e-112a2 - a f" e-112112d,B). (2) 

The method basically fits the experimental spectral 
peak and rate of roll-off to that predicted by (2) using 

the dissipation E as the free parameter. 
The success of all the above techniques hinges on 

the ability to find subsections of the microstructure 
record with well-defined stationary properties. The 
proposed use of the Wigner-Ville distribution is essen­
tially a systematic way of achieving this search. The 
technique is equally suitable for temperature or velocity 
gradient signals. In this presentation we shall concen­
trate on temperature microstructure records. 

The temperature gradient microstructure is usually 
measured using thermistor sensors (Caldwell and Dil­
lon, 1981) that have a time constant of around 11 ms. 
The signals from such a sensor may be digitally en­
hanced (Fozdar et al., 1985) to yield a frequency re­
sponse of around 40 Hz. The optimum travel speed of 
the sensor is determined by a compromise between 
"freezing" the turbulence and matching this upper-fre­
quency response to the Kolmogorov scale. Typically, 
the vehicle speed used ranges around 0.1 m s- 1

• 
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In order to compute the spectral density, a fast Fou­
rier transform is required of a subsection of the signal. 
As is well known (Otnes and Enochson, 1978), in­
creasing the length of the record T increases the reso­
lution in the frequency domain. Band averaging is used 
to further smooth the spectral estimate in order to im­
prove the statistical stability of the estimate. Band av­
eraging in this way is exactly analogous to limiting the 
lag of the covariance function in the method of Black­
man and Tukey (1958). 

In a stationary process, arbitrary statistical stability, 
at a given frequency bandwidth, may thus be achieved 
by increasing the record length. However, temperature 
gradient microstructure is not stationary; the signal 
may vary over a few tens of centimeters from an active 
turbulence signature to one characteristic of internal 
wave motions (Caldwell et al., 1980). Further, as shown 
by Perry and Chong (1982), even for turbulence in a 
homogeneous fluid, a single realization must be taken 
over a record long enough to ensure that all wavelengths 
of the motion contributing to the physical processes 
are included. Otherwise, as detailed by Imberger ( 1985) 
and Dillon and Park ( 1986), the choice of length of 
record and starting time greatly influences the spectral 
shape and thus the estimate of the mechanical dissi­
pation. Most importantly, it must be remembered 
(Armi and Flament, 1985) that the information de­
scribing the distribution of the signal in time is con­
tained in the phase spectrum, which is discarded in 
normal spectral time-series analysis. Information con­
cerning the distribution in time of energy is thus com­
pletely lost .in the spectral energy analysis. 

Two competing factors must therefore be noted. 
First, the turbulence as envisaged in the Batchelor 
(1959) theory is characterized by a single turbulent ki­
netic energy dissipation, which is given by a volume 
average over many Kolmogorov scales. A record must 
thus be long enough to contain many realizations of 
the highest strain rates so that it represents an ensemble 
of strain rate regions.· Second, this average dissipation 
will have its own length scale of variation and the length 
of record should be short compared to this length scale. 

Unfortunately, in a stratified fluid we do not, a priori, 
know the length scale over which the dissipation varies, 
and so a spectral analysis with a fixed record length 
algorithm will often include turbulence signatures from 
a number of different populations (different mean dis­
sipation) or be out of phase with the boundaries sep~ 
arating different populations. 

For a particular length of record for a particular re­
alization, the problem of nonstationarity may be clar­
ified by example. Spectral analysis assumes that any 
signal may be represented by the idealization 

N 

x(t) = L aneiw,,t. (3) 
n=I 

The Fourier transform of this process is given by 
(Lighthill, 1962) 

N 

X(f) = L anfJU- Wn), (4) 
n=I 

yielding energy at definite frequencies. However, ifthe 
spectral bandwidth, defined by the 3 db point, of the 
signal is changing with time (or space, as is the case 
here), reflecting the variability in the energy dissipation, 
then a better model of a particular realization is given 
by 

N 

x(t) = L anei"",,rllr.(t- nTn), (5) 
n=I 

where Tn is the length of the time interval over which 
the spectral bandwidth is constant, and Ilr. is the box­
car function oflength Tn. The Fourier transform of(5) 
is given by (Lighthill, 1962) 

X(f) = f sin7r(f-wn)Tn e-2,,;(f-w,JnT.. (6) 

n=I 27r<f-wn) 

In this "patchy" model, spectral energy is "leaked" 
into neighboring frequencies, and the location of a 
particular record interval (with frequency w~) is com­
pletely specified by the phase of ( 6). Comparison of ( 6) 
with a known theoretical spectrum derived under the 
assumption of a single energy dissipation (single fre­
quency in this model) thus leads to severe errors in the 
dissipation estimate as well as a lack of definition of 
the variability within the record. 

Techniques have been developed to estimate the in­
stantaneous frequency of a gliding tone signal defined 
as the frequency of that Fourier component of the tone 
for which the phase is stationary with respect to vari­
ations of frequency at the given instant. The time at 
which the instantaneous frequency of a gliding tone 
(chirp signal) takes a certain value may be determined 
by passing the tone through a Qarrowband filter and 
noting the instant of maximum response. Barber and 
Ursell (1948) showed that the response of the filter is 
sharpest and the peak signal-to-noise ratio of its output 
the greatest if its bandwidth is set equal to the square 
root of the rate of change of the frequency. 

These results may be generalized and applied to the 
computation of the spectral density since the short­
time Fourier transform is equivalent to a band-limited 
filter. This may be seen by examining the short~time 
Fourier transform of a gliding tone (chirp signal). 

The short-time energy spectrum (STES) of a signal 
z(t) is defined as 

IL
l+t!J./2 12 

E(t,f) = z(8)e-i2"
18d8 , · · 

t-!1/2 

(7) 

where A is the length of record. It represents the spectral 
energy of a slice of signal of width A, calculated around 
time t. 

The linear FM signal z(t) of duration Tis expressed 
by 

z(t) = llr(t)ei<1>(1>, (8) 
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where the phase 

~(t) = 2?r0t + ~ ~)' (9) 

and B represents the bandwidth of the signal. The in­
stantaneous frequency is defined by (Ville, 1948) 

1 d~ 
f;= 21r dt. (lO) 

The STES of the chirp signal z(t) is given by Papoulis 
(1973) and Bouachache (l978b): 

E(t,f)= 2 ~{[qx+~)-qx-~)r 

+[~x+~)-~x-~)rJ. 01) 

for - T/2 ~ t ~ T/2, 

where 

x = (2:) i12 [f;(t)-f]; o = (2:) 112 A, ( 12) 

and C and S represent the cosine and sine Fresnel in­
tegrals. The influence of the parameter o on E(t, f) is 
shown graphically in Fig. l, where it is seen that the 
STES represents a main lobe around the instantaneous 
frequency f;(t) and that the resolution of the method 
is determined by the width of this lobe. Figure 1 in­
dicates that the resolution is fixed by the parameter o 
and therefore by the choice of the width A. If the width 
is too large, the main lobe of the energy spectrum is 
widened to the "large spectral content" within the slice. 
On the other hand, if the width is too small, the main 
lobe is also widened, as a consequence of the uncer-
tainty relations (Gabor, 1946). · 

The optimum width corresponds to the best com­
promise. We find graphically that the optimum is given 

by o = (2)1
'
2 corresponding to 

A=(~r2 =~1-112., (13) 

~-
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FIG. I. The normalized energy spectrum of the chirp signal 
for different values of the parameter o. 

x 

This result implies that the constancy of the instanta­
neous frequency may be used as a discriminator in the 
search for the optimum subrecord lengths for nonsta­
tionary signals. In other words, an optimum spectral 
analysis can only be obtained with the spectrogram by 
choosing a variable window length. This requires an a 
priori knowledge off;(t), information tha~ can only be 
obtained from a time-frequency analysis. An alter­
native way of carrying out the analysis is to execute a 
sliding short-time Fourier transfo~ and pass ~he rec­
ord through the algorithm, each time changing the 
window length. The optimum window is achieved 
when the variability of the dissipation estimate matches 
the window length. However, such an algorithm is 
computationally unattractive. 

To overcome the above constraints of the spectral 
methods, the concept of time-frequency distributions 
was introduced by Gabor (1946), Page (1952), Blanc 
Lapierre and Picinbono (1955), Priestley (1965), Bou­
achache (l978a, 1979b), Escudie (1979), Claasen and 
Mecklenbrauker (1980) and Friedman ( 1985). These 
methods take into account variation in both time and 
frequency and allow the determination of the distri­
bution and evolution of the energy of the observed 
phenomenon in a time-frequency domain. 

Several time-frequency distributions have been 

proposed, and a comparative study ?Y B~m~cha~he 
(l979b) has shown that the Wig~er-Ville d1stnb~tton 

is theoretically the best tool for a time-frequency signal 
analysis. It does not depend on any window width de­
fined a priori (and can be interpreted as an auto­
adaptative frequency demodulation) and exhibits the 
best resolution in the time-frequency domain around 
the true time-frequency law of the signal (see also 
Bouachache l 979a). Bouachache ( l 978a) successfully 
implemented the technique and applied. it to .emitted 
chirp signals used in the study of the dispersion and 
absorption of acoustic signals within the earth. 

The present work is an adaptation of the above al­
gorithm to particular mierostructure realizations and 
an attempt to give the Wigner-Ville distribution a sim­
ple physical interpretation. The technique is shown to 
yield useful insight into the spatial vai:1ation ~f the 
temperature gradient field at scales previously hidden 
by the record length consideratioris of the spectral den­
sity techniques. Attention is focused completely on 
particular realizations of the microstructure, and em­
phasis is placed on the understanding of particular rec­
ords rather than on the statistics of many records. 

' 

2. Definition of the Wigner-Ville distribution and its 
relationship to the derivative of the energy spec­
trum 

The Wigner-Ville distribution is defined as (Wigner, 
1932; Ville, 1948) 

Wz(t,f) = 1: z(t + ~)z*(t- ~)e-.:i,,fT dr, ( 14) 
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where z(t) is the analytic signal associated with the real 
signal x(t). It is seen that Wz(t,f) is the Fourier trans­
form of the kernel z(t + r/2)z*(t - r/2) with respect 
to the variable r. The instantaneous frequency is then 
given by 

L:fWz(t,f)df 

/;(!) = Joo • 
_

00 

Wz(t,f)df 

(15) 

The analytic signal is constructed by taking the Fou­
rier transform of the signal x(t), removing all contri­
butions on the negative frequency axis, and then taking 
the inverse of twice the contribution remaining on the 
positive axis. The relationship between x(t) and z(t) is 
easily constructed as follows. Suppose the Fourier 
transfoim of x(t) is X(f), then we must find the Fourier 
inverse of the function 2X(f)U(f), where U(f) is the 
Heaviside step function. This inverse is, however, just 
the convolution of the inverse of X(f), which is x(t), 
and the inverse of U(f), which is given in Lighthill 
( 1962): 

so that 

z(t) = x(t) +-!;PL: (;~r~) df, ( 17) 

where P stands for the principal part. It is shown in 
Titchmarsh (1937) that the imaginary part defines the 
Hilbert transform of the signal x(t). 

Hence, 

z(t) = x(t) + iH[x(t)], (18) 

where H[x(t)] is the Hilbert transform of x(t). The an­
alytic signal at time t thus depends on the signal in a 
neighborhood around the point defined by the inte-
gral (17). ' . 

An alternative time-frequency distribution was pro­
posed by Page ( 1952): 

a I I 2 
p(t,f) =at f_OO z(r)e-i2rfT dTI ' (19) 

where z(t) is the analytic signal associated with the real 
signal x(t). This represents the derivative of the energy 
spectrum and is usually referred to as the instantaneous 
power spectrum. 

Escudie ( 1979) and Bouachache (1979a) showed that 
p(t,f) is related to W(t,f) as follows: 

p(t, f) = W z(t, f) 1 ~ 1 P(t, f), (20) 

where 1 ~ 1 is the two-variable convolution and P(t,f) is 

the two-dimensional Fourier transform of p(1/, r) de­
fined by 

(21) 

This characteristic function appears when we calculate 
the two-dimensional Fourier transform of p(t,f). From 
(20), 

R(71, r) = Wi11, r)p(71, r), (22) 

where R and Wz are the two-dimensional Fourier 
transform of p and Wand 1J and r are the independent 
Fourier variables. From (21) and (22) it fo1lows that 

Wz(71, r) = R(1/, r)e-;.,,.~1T1. (23) 

Taking the two-dimensional Fourier transform of(23) 
leads to the result 

Wz(t, f) = p(t, f) 1 ~fg(t, f), (24) 

where g(t, f) is the inverse two-dimensional Fourier 
transform of e-i .. ~ITI, given by 4 cos(47rft)U(t), and U(t) 
is the Heaviside step function. The Wigner-Ville dis­
tribution is thus the filtered instantaneous power spec­
trum. 

The analytic signal is used throughout for two rea­
sons. First, by introducing the imaginary part of the 
signal we define the phase, and second, the use of the 
analytic signal, distinct from the real signal, eliminates 
low-frequency artifacts in Wz(t, f) that are otherwise 
created by the interference of the energy spectrum from 
the negative part of the frequency axes with those from 
the positive side. As seen from property 1 (Appendix) 
removing the component of the energy spectrum from 
the negative axis eliminates this interference (Boashash, 
1985). 

3. Computation of the Wigner-Ville distribution 

The analytic signal is first calculated in the frequency 
domain by computing the fast Fourier transform of 
the signal, discarding the values for negative frequen­
cies, and then inverting the results in accordance with 
( 18). For computational convenience the record was 
divided into sections oflength T equal to 0.512 sec in 
order to calculate the analytic signal. This yielded ac­
ceptable results since the sampling frequency of 100 
Hz (folding frequency 50 Hz) yielded product BT 
(=250) greater than 10 (Bouachache, 1979b). The 
Wigner-Ville distribution was then computed by taking 
the fast Fourier transform with respect to r of the kernel 

S(t;r) = w(r)z(t+i)z*(t-i), (25) 

where w(r) is a cosine-bell filter applied to minimize 
energy leakage. In order to preserve the amplitude of 
the result, the filter weights were chosen such that 

1 rr 
T Jo w(r)dr = l, 

where Tis the window length. 

4. Examples of test signals 

(26) 

A number oftest signals have already been presented 
by Page (1952) and Claasen and Mecklenbrauker 
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( 1980). However, it is convenient here to discuss one 
of their trial signals and present a more unified solution 
in order to illustrate the connection between the Wig­
ner-Ville distribution and the instantaneous power 
spectrum. Following this, two further test signals are 
used to identify the frequency and time resolution of 
the numerically computed Wigner-Ville distributions. 

Consider first the test signal 

x(l) = COS211"wl. (27) 

The Fourier transform X(f) is given by 

X(f)=i[o(f+w)+o(f-w)]. (28) 

Eliminating the values for negative frequency and in­
verting leads to the following expression for the analytic 
signal: 

(29) 

It is noteworthy that the real part is the same as the 
original signal. Substituting the analytic signal (29) into 
(14) leads to the following expression for the Wigner­
Ville distribution: 

W(l,f) = o(f-w), (30) 

which is no longer a function of time. 
The instantaneous power spectrum is most conve­

niently computed from the expression 

gi(f) = f
00 

z(r)e-2"if'dr. (31) 

Substituting (29) into (31) yields 

(f) 
= ! o(f- ) sin27r( w - f)l 

g, 2 w + 27r(w-f) 
.COS27r(w-f}l 
l f . 27r(w- ) 

(32) 

The value of the instantaneous power spectrum then 
follows directly from (19) and (32): 

p(l, f) = o(f-w). (33) 

This is the same as the Wigner-Ville distribution, but 
it also follows directly that · 

41: 1: o(f- f-w) cos(47rfr)U(r)dfdr = o(f-w), 

(34) 

illustrating that in this case the Wigner-Ville distri­
bution, the instantaneous power spectrum and the 
simple energy spectrum are all identical. In general, 
this is not the case. 

The chirp signal defined by (9) may be rewritten in 
the form 

x(l)= COS7rw(l-l0)
2

, (35) 

and it is a convenient tool to see the advantages of the 
Wigner-Ville distribution over that of spectral meth­
ods. The instantaneous frequency f;(l) is given by ( 10): 

f;(l) = w(l- lo). (36) 

This signal was processed to compute the Wigner-Ville 
distribution, and the results are shown in Fig. 2. The 
linear spectrum clearly shows the presence of energy 
from about 5 to 45 Hz. The Wigner-Ville distribution, 
however, is able to separate the frequency contribution 
as a function of time, and it is seen that the distribution 
is a smoothed sine function centered around the in­
stantaneous frequency given by (36). There is some 
evidence of a start and end effect, but by choosing the 
cosine bell to extend over the actual window these ef­
fects are kept to a minimum. The algorithm is thus 
successful at revealing the frequency content at any 
particular time. 

An example to assess the temporal resolution of the 
algorithm is provided by the function 

x(l) = sin211"h(l), (37) 

where 

(
l-lo) 

h(l) =fol+ fib arctan -b- , 

and Jo, Ji, b and lo are constants. The instantaneous 
frequency of this signal is again given by ( 10): 

Ji 
f;(l) = fo + 1 + [(l- lo)/ b]2. (38) 

Hence, the frequency reaches a maximum at lo and 
decreases for larger and smaller times. The rate of de­
crease is measured by the constant b. The Wigner­
Ville distributions for three different window sizes are 
shown in Fig. 3a-c. The constants were chosen to reflect · 
the likely range of frequencies encountered in a typical 
temperature gradient microstructure signal; informa-
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FIG. 2. The Wigner-Ville distribution for the chirp signal x(t) 

= cos.,,.w(t - t0)
2

, where w = -15.625 and t0 = +2.88 s. The solid 
line is the instantaneous frequency. 
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tion below 5 Hz seldom contributes to the Batchelor 
spectrum, and information above 45 Hz is unattainable 
with present thermistor technology (see Caldwell and 
Dillon, 1981 ). It is seen from these results that the rapid 
change in frequency produces cross terms that are felt 
about 0.16 sec either side of the frequency maximum 
for the 0.64 sec window and 0.08 sec for the 0.32 sec 
window, but without any loss in amplitude in the 
smaller window. As expected from pro~rty 8ii (Ap­
pendix) the instantaneous frequency is not affected by 
the window length. The results with the smallest win­
dow are shown in Fig. 3c. The window corresponds to 
a spatial resolution of0.016 m since the microstructure 
profiler moves, in our case, with a vertical velocity of 
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FIG. 3. The Wigner-Ville distribution for the test signal x(t) 

= sin211"h(t), where h(t) = 4.0t + 36.0 X 0.32 arctan[(t - 1.28)/0.32). 
The frequency tracking is excellent, but energy leakage is apparent 
near peak frequency. Results are for a window of (a) 0.64 s, (b) 0.32 
s, and (c) 0.16 s. In (b) frequency resolution h~ not been impaired, 
but leakage has been reduced. Deterioriation of the frequency reso­
lution in ( c) is noticeable at all frequencies. 

0.1 m s-1
• The smallest window, however, also causes 

a general smoothing over the whole frequency range, 
removing the cross terms. The window size for micro­
structure records with the best compromise between 
time and frequency resolution thus appears to be 
0.32 sec. · 

Problems may arise in the computation of the in­
stantaneous frequency, as is illustrated by the following 
example: 

x(t) = COS271'"W1l- COS27rw2t. (39) 

It is not difficult to show that the analytic signal is 
given by 

(40) 
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resulting in the Wigner-Ville distribution: 

W(t,f) = o(f-w1) + o(f-w2} 

~ 2ov- Wi; w2
) COS21r(w2-w1)t. (41) 

The instantaneous frequency follows from the def­
initions (15): 

f; = (w1+W2)[1 - COS21r(W2 - W1}t) 
1 

2[1-cos21r(w2-w1}t] ' <
42

> 
so that 

f;=W1;W2
0 

( 43) 

Both the first moment and the area of the Wigner­
Ville distribution are thus zero for certain values of 
time (at the nodes), and the numerical evaluation of 
f;, at these times, may lead to unstable estimates. A 
test was inserted into the numerical algorithm for such 
ill-conditioned points in time; interpolation, as sug­
gested by the results from the example (35), was used 
to bridge the gaps. 

The third term in ( 41) is a consequence of the non­
linearity of the Wigner-Ville transform and is an il­
lustration of a cross term. In the present study the Wig~ 
ner-Ville transform is only used as a vehicle to estimate 
the maximum frequency at which there is energy and 
the instantaneous frequency, both of which are not 
strongly influenced by the presence or absence of cross 
terms. The general formation of cross terms is discussed 
more comprehensively by Berry ( 1977). 

5. Application to microstructure temperature gradient 
signals 

Microstructure data from two profiles, taken in the 
Wellington Reservoir, were chosen to illustrate the 
usefulness of the Wigner-Ville distribution as an in­
dicator of the patchiness of the energy dissipation 
throughout the water column. 

The Wellington Reservoir is a medium-size lake 
(Imberger, 1985) south of Perth, Western Australia. In 
February 1985, a ten-day intensive investigation was 
completed of gravitational adjustments induced by 
spatially varying surface heating and cooling. The re­
sults from the study will appear elsewhere. The partic­
ular profiles chosen were taken from this dataset and 
were collected on the afternoon (17 48 and 17 5 7 LST) 
of Monday, 25 February 1985, near the center of the 
main reservoir valley approximately 300 m from the 
dam wall. 

The data were collected from the research vessel, 
Djinnang II, with the new vertically rising microstruc­
ture profiler (RMP) described in Carter and lmberger 
( 1986). Briefly, the profiler is equipped with two FP07 
fast-response thermistors spaced at a distance of 25 
mm. Adjacent (within 3 mm) to each thermistor is a 
microconductivity sensor (Head, 1983), allowing 
measurement of the density microstructure. The ve-

hicle rises at 0.1 m s-1
, with a sampling rate of 100 Hz, 

through a 16-bit analog-to-digital conversion. There is 
no umbilical cord; all data is stored internally. De­
ployment consists of jettisoning the vehicle from the 
mother ship with a ballast weight. On the downward 
path the vehicle glides at an angle of approximately 
45° to the vertical, and upon reaching a preset depth, 
the microprocessor releases the ballast and the profiler 
commences its rise. Upon retrieval, the data is trans­
mitted to the on-board computers, where the signals 
are corrected for sensor roll-off (Fozdar et al., 1985) 
and where the adiabatically corrected density and den­
sity gradient channels are added to the data file. In the 
present case, salinity fluctuations added little to the 
density pertutbations. All subsequent computations are 
then carried out on the enhanced signals. To assist in 
the assessment of amplifier noise, one of the temper­
ature gradients is redundantly amplified. By calculating 
the in-phase power between the two channels, a check 
is obtained on the noise introduced at the amplifier 
stage. The results from the two casts are shown in 
Fig. 4a-d. 

The first method of computing the energy dissipation 
was via the now standard spectral technique (Dillon 
and Caldwell, 1980). The temperature gradient micro­
structure records were partitioned into subsections, 
each containing 512 points. The sections were chosen 
with a 256-point overlap, and the dissipation was com­
puted by matching the theoretical spectra given by ( 1) 
to the computed short-time spectra by adjusting the 
dissipation that formed the free parameter. The values 
so obtained from thermistor number 1 are shown in 
Figs. Sa and 5b for the two profiles. 

The second technique involved computing the max­
imum frequency of the Wigner-Ville transform. The 
maximum frequency fm was obtained by choosing the 
maximum frequency at which the Wigner-Ville dis­
tribution reached 1

/ 10 of the absolute maximum of the 
distribution value over the complete frequency band­
width. Given the interpretation of the Wigner-Ville 
distribution as the smoothed instantaneous power 
spectral density (24), this frequency represents the 
maximum frequency at which the energy budget is ad­
justing and so is directly related to the smallest scales 
of the temperature fluctuations: 

">..9={jT/9, (44) 
where 

-(vD2)114 
T/8- - (45) 

I: 

is the Batchelor length scale (Batchelor, 1959) and {j is 
a constant. 

Given that the profiler rose with nearly constant ve­
locity v (0.1 m s-1

), the maximum frequency, measured 
in cycles per second (Hz), will be related to the above 
minimum length scale as follows: 

1 v 
fm=--. (46) 

21r X8 
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FIG. 4. (a) Temperature microstructure gradient from thermistor number 1 taken at 1748 

GMT. Zone A: surface layer; zone B: central mixed layer; zone C: active thermocline; zone D: 

stratified base. (b) Temperature versus depth from thermistor number 1 taken at 1748 LST. (c) 

and (d) as in (a) and (b) but for 1757 LST. 
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Inserting the expression for Xe from (44) into (46) 
and solving for the dissipation E yields 

small scales the fluctuations are isotropic and homo­
geneous (Gibson, 1986a), so that the intersection will, 
in general, be at an angle of, say, 8 to the vertical. The 
measured maximum frequency fzm is thus related to 
the true maximum frequency of the turbulence through 
the relation 

(211")4{3 4vD2fm 4 

t= (47) v4 

So far, however, we have assumed that the sensor 
intersects the smallest scales perpendicular to the fil­
ament orientation. It may be expected that at these 
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FIG. 5. Logarithm of the dissipatiol). of turbulent kinetic energy versus depth from thermistor 
number 1 for the profile taken at (a) 1748 and (b) 1757 LST. Dissipation was measured in m 2 

s-3
• Solid circles indicate estimates obtained from the spectral method, solid line indicates estimate 

obtained from the instantaneous frequency, and dotted line indicates estimate obtained from the 
maximum frequency. 

(48) 
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If it is now assumed that the probability of any par­
ticular orientation being realized is equal, then the av­

erage frequency fzm for a particular profile is related to 
the local maximum as follows: 

- f2.. f.-/2 . d() di/; 
fzm =Jo Jo fm sm(J 7r/2 27r, (49) 

where 1/1 is the azimuthal angle. 

Evaluating the integral and substituting the result 
into (47) yields the final expression for the dissipation 
in terms of the measured average maximum frequency: 

(SO) 

Equation (SO) provides a direct measure of the local 

dissipation rate once the factor ~ is known. This factor 

was determined by matching the dissipation values ob­
tained from (SO) to those from the spectral method in 

regions where the dissipation was reasonably constant. 
The dissipation so obtained (with ~ = 0.699) from 

thermistor 1 is shown in Fig. Sa and Sb. 

The last method investigated involved utilizing the 

instantaneous frequency as defined by (IS). Ifit is as­

sumed that the instantaneous frequency is a measure 

of the "frequency content" or the average of the fre­
quency bandwidth at a particular time t0 , then it is 
possible to continue the signal on either side of t0 with 
a substitute stationary signal characterized by the same 
dissipation. With this extension it is then possible, at 

least intuitively, to assume that the average frequency 
of the spectral form (2) (given by a= 0.93) is equal to 
the average of the instantaneous frequency. Since both 

the measured and theoretical averages are derived for 
a one-dimensional trace, 

-[27r(q)l/2]4 4 

E - 0.93v vD2f; · (S 1) 

So far, it has not been possible to prove this intu­
itively appealing assumption, but the good comparison 

between the estimate from (SO) and (S 1) (see Fig. Sa 
and Sb) lends considerable support to this assumption. 
The latter estimate has the advantage that it is inde­

pendent of the window length and cross terms of the 
analysis. ' 

The improved resolution of the two methods based 
on the Wigner-Ville distribution has brought out the 

patchy nature of the vertical distribution of the energy 
dissipation. The changes in the characteristics of the 
turbulence may now be investigated. This may be done 
by analyzing the variation with depth of the Froude­
Reynolds number relationship. In order to demonstrate 
this relationship, it is convenient to review some simple 
scaling arguments that characterize the turbulence in 
the water column. 

Let Nbe the buoyancy frequency of the fluid defined 

by 

·. g iJp 
N2=--­

PoiJz' 
(S2) 

where pis the background ambient density of the fluid 

and z is the vertical coordinate expanded geometrically 
upward. Further, let I be the vertical scale of an over­

turn event and u the integral velocity scale. As a patch, 
defined by a particular overturn event, grows from the 
time of initiation, the kinetic energy will first be larger 
than the buoyancy or potential energy inherent in the 
density profile. However, as demonstrated by Ozmidov 
( 196S), a stage is quickly reached where the two energies 

balance, so that 

Nl=u. (S3) 

During this initial stage the turbulence "inside" the 
patch will not be greatly influenced by buoyancy and 

the Taylor ( 193S) hypothesis should hold: 

(S4) 

Combining (S3) and (S4) leads to the well-known 

result: 

=(-E )1/2 
I N3 ' 

(SS) 

as the scale for the maximum height of the overturns. 

By contrast, the smallest scales of motion 11 and tem­

perature variation 718 are given by the Kolmogorov 
scales (see Friedlander and Topper, 1962) and Batch­

elor ( l 9S9) scales: 

-(v3)1/4 
11- - ' 

E 

(S6) 

-(vD2)114 
719- - • 

E 

(S7) 

The associated time scale for the rate of strain is 

known to be (Gibson and Schwarz, 1963) 

(S8) 

On the other hand, the time t K taken, after initiation 

of the overturn event, for the turbulence to become 
fully developed over the whole range of length scales 
was deduced by Broadwell and Breidenthal ( 1982). For 

large Reynolds numbers this becomes 

I 
tK=-. (S9) 

u 

Substituting the velocity scale from (S3) into (S9) leads 
to the simple result: 

tK=N- 1
, (60) 

which is precisely the time scale of the overturning 
event itself (Corcos and Sherman, 1976). It is therefore 
seen that the development of the smallest scales of tur­
bulent motion keeps pace with the growth of the event, 
and (S3) and (S4) are consistent. 

Once the patch has reached the size given by (SS), 

and in the absence of a continual energy source, the 
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larger-scale motions are increasingly influenced by 
buoyancy forces, and viscous forces progressively erase 
the smallest scales. This process continues (Gibson, 
1982) until the two scales (55) and (56) are equal and 
the turbulence has essentially decayed. This will occur 
at a vertical length scale, 

( 

v )1/2 
o= N . (61) 

Last, it is necessary to introduce the displacement 
scale h, defined as the average vertical excursion of 
particles at a particular point in the profile (Thorpe, 
1977). Different definitions exist, but we define it here 
as the average of the modulus of the displacement scale 
calculated from a reordering of the density profile; the 
reordering was achieved with a bubble-sorting algo­
rithm that monotonizes the density profile. 

First efforts at applying the displacement-scale tech­
nique to such detailed analysis failed in that it yielded 
large displacements for the profile taken at 1757 LST 
at 1.63, 1.2, 0.7, 0.4 and 0.0 m, these points being the 
boundaries of the overturning regions (minimum in 
the instantaneous frequency). The reason for this is 
easily understood by examining an ideal overturning 
signature as shown in Fig. 6a. Reordering the profile 
to make it monotonically increasing leads to the profile 
shown in Fig. 6b with a corresponding displacement 
scale shown in Fig. 6c. Since the value used is equal to 
the distance a particle has moved from the original 
profile, the largest displacements are calculated for the 
end boundaries of the event. The normal procedure is 
to perform heavy filtering on the calculated displace­
ment in order to smooth out these artifically introduced 
spikes. Alternatively, as suggested by Dillon and Park 
( 1986), the available potential energy can be calculated 
from the displacement scale and the density anomaly. 
However, once again, this technique requires averaging 
over many events. A simple solution is to move the 
displacement-scale values to the center of the event. 
This may be achieved by displacing the values up or 
down by one-half of the displacement scale itself and 
then taking the average of the result. This results in the 
distribution shown in Fig. 6d. The displacement scale 
together with the buoyancy frequency, as calculated 
for the two profiles for one sensor pair, is shown in 
Fig. 7. 

Given the above scales, it is now possible to inves­
tigate the nature of the turbulent motion by defining 
the Froude and Reynolds numbers of the integral scales 
of the observed signatures. 

The Froude number Fr is most usefully defined by 

u 
Fr= Nh. (62) 

Substituting (53) into (62) leads to the interpretation, 

I 
Fr=h, (63) 

which shows that this Froude number may be viewed 

z1 P1 (z7,p7) · 
z2 P2 (z5,p5) 
z3 P3 (z5,p5) 
Z4 P4 (z4,p4) 
Z5 P5 (z3,p3) 

. zs Ps (z2,P2) 
Z7 

P7 
(z1 ,p1) 

(a) (b) 

z1. Z7 

z7- z1 

(c) (d) 

FIG. 6. Model calculation for the displacement scale. (a) An ideal 
density profile for an overturn event. (b) The reordered profile. Note 
changes in original depths Z; to Z+ (c) The displacement scale (Z; 

- Z;). (d) The centralized displacement scale. 

as the ratio of the Ozmidov length, at the actual dis­
sipation rate, to the measured length scale of the density 
fluctuations. 

This Froude number also has two convenient energy 
interpretations. First, eliminating the length scale I us­
ing (55) leads to 

( 
E )1/2 

Fr= N3h2 . (64) 

This expression shows that the square of this Froude 
number is the ratio of the energy dissipation to the 
maximum rate at which the available potential energy 
(N2h2

) is utilized. Second, from (62) the square of the 
Froude number is seen to be the ratio of the kinetic 
energy in the overturn events to the available potential 
energy in the unstable fluctuations of the density pro­
file. This is why Gibson ( l 986b) has termed the Froude 
number the activity parameter. 

Lastly, by using the local dissipation result from the 
Cox model (Osborn and Cox, 1972), 

Nh2 ,.._,DC, (65) 

where C is the Cox number (\TT2)/(\TT)2, the Froude 
number may be written, 

Fr-(~N2r
2

• (66) 

This last version was first introduced by Gibson ( 1982). 
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FIG. 7. (a) Centralized displacement scale h calculated for the profile taken at 1748 LST. Density was 
calculated from the matched temperature and conductivity pair number I. (b) Buoyancy frequency N cal­
culated from monotonized density for the profile taken at 1748 h LST. (c) and (d) As in (a) and (b) but for 
1757 LST. 

Some of the above scaling arguments, in spectral 
form, have previously been applied by Gibson (19S6c) 
to the experimental work of Stillinger et al. ( 19S3) and 
Rohr et al. (19S4). Gibson showed that in order to 
have the transition from a buoyancy-dominated flow 
to an inertial-dominated flow at a unit value of the 
Froude number, a factor of 1.4 must be introduced 
such that 

Fr= i.,,4/. (67) 

The Reynolds number of the large turbulent motion 
may also be derived from the above scales: 

ul 
Re=-. (6S) 

v 

Substituting from (53) and (61) leads to 

Re=(~f, (69) 

and using (55) yields 

(70) 

The Reynolds number thus represents the ratio of 
dissipation to the dissipation at the point where the 
Ozmidov and Kolmogorov scales are equal. Once 
again, Gibson ( l 9S6a) suggested the introduction of a 
numerical factor, so that a Reynolds number of unity 
corresponds to the transition between viscous- and 
nonviscous-dominated flow. He suggested the following 
definition: 

R - E 

e- 24.5vN2 • 
(71) 

The only remaining difficulty is the definition of the 
buoyancy frequency N. It should be representative of 

the buoyancy frequency of the background density 
gradient before the overturn events introduced insta­
bilities into the profile. Ideally, N should be computed 
from the monotonic, unstrained original profile over 
a length scale equal to the overturn length scale h. We 
have chosen to approximate this with N computed from 
the monotonized profile using a filter with a 3 db point 
for all variables of 1.6 Hz (or about 0.06 m) in order 
to obtain maximum resolution. 

The data from the two profiles was used to compute 
both the Froude and the Reynolds number. The results 
are plotted in Fig. Sa and Sb for the profile taken at 
17 4S LST and in Fig. 9a and 9b for the data from the 
profile taken at 1757 LST. 

6. Discussion 

The day on which the two profiles were collected 
had been cloud free and extremely hot with the short­
wave radiation reaching about 950 W m-2 just after 
midday. The air temperature reached 42°C during 
midafternoon, and between 0936 and 1545 LST the 
surface water friction velocity, calculated from the me­
teorological data corrected for atmospheric stability, 
was almost constant and below 0.0014 m s-1

• However, 
at 1545 LST the wind rose sharply, sending the friction 
velocity to a peak of 0.0052 m s-1 30 min later. Ten 
minutes after this ( l 62S LST), the gust had passed and 
the wind decreased and then remained roughly con­
stant, with a surface friction velocity of0.0033 m s- 1

, 

for another 70 min to l 73S LST. At l 73S LST the 
wind generally decreased to nothing, leaving the water 
surface once again glassy smooth. Around the time the 
profiles were taken, from 17 4S to l S l S LST, the wind 
decrease temporarily ceased and the wind remained 
constant with a friction velocity ofO.OOlS m s-1

• The 
microstructure cast, taken at l 74S LST, was thus made 
at a time of generally decreasing wind, but by the time 
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FIG. 8. Froude number versus Reynolds number (a) for sensor pair 
number I and (b) for sensor pair number 2 for the profile taken at 
1748 LST (Fr = 1.4//h and Re = E/24.5vN2

). The symbols have the 
following meanings: 0: data from 0 to 0.48 m depth (zone A); !J.: 
data from 0.48 to 0.72 m depth (zone B); 'il: data from 0.72 to 1.0 
m depth (zone C); and <>: data from 1.0 to 3.2 m depth (zone D). 
The dissipation used here was computed from the instantaneous fre- . 
quency. 

the second cast, at 1757, was completed, the wind had 
remained roughly constant for 10 min. At the time of 
the data acquisition, the incoming solar radiation had 
fallen to 174 W m-2

, and the net heat loss due to ra­
diation (130 W m-2

), to latent heat loss (48 W m-2
), 

and to sensible heat gain (10 W m-2
) was 168 W m-2

• 

The water was relatively clear for most of the day with 
the visible light decreasing to 10 percent of the surface 
value at a depth of approximately 6 m. 

The results from the two casts are shown in Fig. 4. 
The depth of the mixed layer may be obtained from 
either the temperature gradient signal (Figs. 4a and 4c) 

or the temperature curves shown in Figs. 4b and 4d. 
In the first profile ( 17 48 LST) the depth to whlch mix­
ing was active was about 1.2 m, and in the second, the 
depth was 1.6 m, even though the distance between 
the two profiles was only on the order of 30 rn and the 
time interval less than 10 min. 

It is useful to compute some global parameters before 
proceeding with a discussion of the signals. For this 
purpose it is sufficient to assume a mean mixed-layer 
depth of 1.5 m and reduced acceleration due to gravity 
g' at the base of the mixed-layer equal to 9.8 X 10-4 

m s-2
• Using these values, and the given magnitude of 

the surface fluxes, leads to a surface Monin-Obukhov 
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FIG. 9. Froude number versus Reynolds number (a) for sensor pair 
number I and (b) for sensor pair number 2 for the profile taken at 
1757 LST (Fr = 1.4//h and Re = E/24.5vN2

). The symbols have the 
following meaning: 0: data from 0.0 to 0.6 m depth (zone A); !J.: 
data from 0.6 to I.I m depth (zone B); !J.: data from I.I to I. 7 m 
depth (zone C); and<>: data from 1.7 to 3.2 m depth (zone D). The 
dissipation used here was computed from the instantaneous frequency. 
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length of0.06 m and a Wedderburn number W= g'h2
/ 

~L = 0.66 for a fetch length of approximately 1000 
m. Velocity measurements with drogues indicated a 
general mixed-layer velocity u in the vicinity of 0.02 
m s- 1

, in good agreement with that computed from a 
simple momentum balance: 

(72) 

The billow height to be expected at the base of the 
mixed layer (Spigel et al., 1986) is O(u2/g') = 0.4 m 
with a final equilibrium shear zone of about 0.12 m. 

The above parameter values therefore allow the data 
to be put into context as described in Imberger (1985). 
In the top 0.06 m or so, the immediate surface pro­
duction of TKE predominates. Below this, a region of 
free convection should be discernible to a depth of ap­
proximately 0.75 m (one half of the mixed-layer depth). 
From 0.75 to 1.2 m we should find a region energized 
from above by penetrative convection and from below 
by production at the base of the mixed layer. However, 
there is little production itself in this part of the mixed 
layer. Below this depth and above the base, the tur­
bulence should be strongly influenced by shear pro­
duction with sporadic billowing periodically covering 
this region of the water column. Below the base of the 
mixed layer, the structure should be essentially stable 
with only internal waves present due to energy leakage 
through the base. 

Inspection of Figs. 4a and 4b essentially confirms 
these gross predictions. In the profile taken at 1748 
LST, an overturn event at the base had introduced an 
almost linear variation in the density between 0.7 and 
1.3 m. Visual inspection of this profile shows fewer 
high frequency fluctuations, even though the mixing 
itself was still quite incomplete; there remained a large 
number of discrete, partially mixed fluid parcels in this 
profile, similar to that found in the laboratory by Koop 
and Browand ( 1979). By contrast, the profile shown in 
Fig. 4d may be compared to the overturn profiles doc­
umented in Imberger (1985). Such comparison leads 
to the conclusion that the overturn event between 1.2 
and 1.63 m was at the early active stages of develop­
ment. The profile is unstable and the signal is rich in 
high wavenumber fluctuations in addition to numerous 
well-defined large-scale features. In the region between 
0.6 and 1.10 m the profile shows some overturning 
events originating, most likely, from natural convection 
penetrating down from the surface. However, the signal 
once again appeared to contain fewer high-frequency 
fluctuations in the whole region; the larger unstable 
parcels were apparently readjusting their vertical po­
sitions with minimal mixing under the influence of 
gravity in a region with only a weak mean vertical den­
sity gradient. 

In each case, at the upper boundary of these regions 
a small, but well-defined wisp or billow signature (Im­
berger, 1985) is observed; they are at 0.7 min Fig. 4b 

and at 0.45 m in Fig. 4d. The presence of these over­
turning features means that weak interfaces formed by 
the overturning processes had been sharpened by the 
surface processes, and this had given birth to new local 
shear instabilities. Above these two corresponding sig­
natures, the water column was active, containing in­
creasingly fewer large-scale features as the surface was 
approached. 

These general features were used to divide the profiles 
into zones, as illustrated in Fig. 4. The data confirm 
that a surface layer, typical of a stratified shear flow, 
possesses large-scale features responsible for overturn­
ing events. However, these events are intermittent and 
contain regions of incomplete mixing. Large-scale fea­
tures persist within overturning events during their 
whole life, but small-scale fluctuations appear to die 
out rapidly, leaving unstable, unmixed fluid parcels in 
the water column. 

The above was implied by our knowledge of the 
mixed-layer dynamics (Imberger, 1985) and of the 
forcing conditions, such as the value of the Wedderburn 
number and the ratio of the Monin-Obukhov length 
to the depth of the mixed layer. However, it remains 
to be shown that the temperature gradient microstruc­
ture is, in general, consistent with the above interpre­
tation. 

Consider first the profile taken at 1748 LST (Fig. 4a 
and 4b ). In zone A the surface wind stirring and pen­
etrative convection predominated, leading to a high, 
but gradually decreasing with depth, value of the dis­
sipation of turbulent kinetic energy. Data from this 
zone is located in the upper right-hand corner in Figs. 
8a and 8b, indicating that the turbulence near the sur­
face was essentially unaffected by buoyancy. The con­
sistently high dissipation values near the surface agree 
with the general picture of a surface source of turbulent 
kinetic energy and a downward flux of energy. 

In zone B (Figs. 4a and 4b) the dissipation was con­
siderably smaller (by nearly a factor of 102

), reflecting 
a lack of high wavenumber fluctuations. On the other 
hand, profile data clearly shows a number of large­
scale density inversions. Consequently, the data from 
this region scatters around the origin (±0.5) in the 
Froude-Reynolds number diagram. This lends support 
to the idea that the motion was driven by natural con­
vection. 

Beneath these surface zones, the profile in Fig. 7b 
indicates a marked increase in the background density 
gradient, but there is still evidence of considerable 
overturning motions. The dissipation levels · were 
somewhat higher, but patchy, in zone C (Fig. Sa), once 
again confirming the initial diagnosis that this was a 
region of shear production. The strong variability in 
this region is reflected in Figs. 8a and 8b, where it is 
seen that the Froude number ranged from 10-1 to 10 
within the zone, which had a vertical extent of only 
0.3 m. Thus, it may be concluded (see also Imberger, 
1985) that whenever shear production predominates 
over turbulent diffusion, the dissipation will be ex-
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tremely patchy, ranging from regions with no mixing 
to regions where mixing is active. 

The data below zone C was characterized by small 
values of both the Froude and Reynolds numbers, and 
at about 1.3 m from the surface the signal fell below 
what was considered the noise threshold. 

A similar pattern emerges from analysis of the data 
from the profile taken at 17S7 LST. The surface layer, 
designated by zone A, showed both high and low wave­
number activity. Further, as is seen from Fig. 4d, there 
was a slight decrease in the temperature as the surface 
was approached, indicating convective cooling. The 
dissipation (Fig. Sb) was high, although marked by 
some distinct low-value spikes located at the smooth 
steplike changes in the temperature profile. 

Zone B was characterized by large events (Fig. 7 c ), 
but by a low overall dissipation (Fig. Sb). As expected, 
most of the data from this region scattered around the 
origin in Fig. 9a and 9b. By contrast, zone C was an 
active region with a very large dissipation (Fig. Sb), a 
small N, a relatively large displacement scale, and a 
wide range on the Froude-Reynolds number plot. Be­
low this, in zone D, most of the data was below the 
noise threshold. 

7. Conclusion 

The Wigner-Ville distribution was introduced and 
some of the more important properties of the distri­
bution were described. Examples were given to illus­

trate the time and frequency resolution of the tech­
nique. FuJ1her, it was shown that the Wigner-Ville 
distribution is a representation of the instantaneous 
power spectral density and thus gives valuable infor­
mation of the bandwidth of nonstationary signals. 

Application to two very different temperature gra­
dient signals, collected in the same water body, dem­
onstrated the usefulness of the Wigner-Ville distribu­
tion as a high-resolution method for estimating the local 
dissipation of turbulent kinetic energy. 

Using this technique it was shown that the frequency 
bandwidth of a temperature gradient signal may vary 

considerably over only small vertical distances, leading 
to a nonstationary signal. The mixing from large-scale, 
shear-driven events was found to be patchy with regions 
of active and weak mixing separated only by centi­
meters. The decay of turbulence from the high wave­
number end of the spectrum was also illustrated; the 
cutoff wavenumber was sometimes very low in the 
presence of discrete unstable patches. It was found that 
the Froude-Reynolds number diagram served a useful 
purpose in the analysis of turbulent signatures, and the 
results generally agreed with interpretations derived 
from a knowledge of surface fluxes. 

In summary, the instantaneous and maXimum fre­
quencies as derived from the Wigner-Ville distribution 
appear to be excellent objective indicators of the wave­
number content of the signal at a specific time (point 
in space) and so offer a direct measure of the wavelength 

of the smaller scales present. For events with high 
wavenumbers, these frequencies yield a local. measure 
of the dissipation. Use of the Wigner-Ville distribution 
thus circumvents the difficulties associated with other 
methods as there is no requirement, a priori, that the 
turbulent signatures be stationary. 
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APPENDIX 

Properties of the Wigner-Ville Distribution 

The following properties of W z(t, /) are useful and 
have been proven in Bouachache (1978b; 1982), Claa­
sen and Mecklenbrauker ( 1980) and Boashash and Es­
cudie (198S). Care must be taken, however, to interpret 
the results as generalized function sense whenever the 
original functions are not zero at infinity (Jones, 1966; 
Schwartz, 1966). 

Property I 

The Wigner-Ville distribution can be expressed 
symmetrically as follows: 

Wz(f,t)= 1+
00

00 

z(r+ ;)z•(r-;)e;
2

,.m
1
dm, (Al) 

where Z(f) represents the Fourier transform of z(t) 
and Z*(f) is its complex conjugate. 

Property 2 

W z(t,f) is real for all values oft and/. 

Property 3 

Integration of the Wigner-Ville distribution over all 
frequencies yields the instantaneous power of the signal 

at time t: 

J
+oo 

_

00 

Wz(t,f)df = iz(t)i2. (A2) 

Property 4 

Integration of the Wigner-Ville distribution over all 
time yields the spectral density of the signal at fre­

quency/: 

J
+oo 

-oo Wz(t,f)dt = IZ(f)l
2

• (A3) 
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Property 5 

Integration of the Wigner-Ville distribution over all 
time and all frequencies yields the energy of the signal 

r+co r+co rco 
J_

00 

J_
00 

Wz(t,f)dtdf = J_
00 

lz(t}i2dt = Ez. (A4) 

Property 6 

The time-frequency domain of W(t, f) is given by 
the frequency extent and duration of the signal. 

• If z(t) = 0 fort< T 1 and t> T2 , then Wz(t,f) = 0 

fort< T1 and t> T2 • 

(A5a) 

• If Z(f) = 0 for f <Ji and/> fi, then W z(t,f) = 0 

forf<f; and/> fi. 
(A5b) 

Property 7 

The Wigner-Ville distribution is time and frequency 
invariant, which means that shifts in time or frequency 
of the signal correspond to similar shifts on the Wigner­
Ville distribution. 

• Ify(t)=z(t-t0 ), then Wy(t,f)= Wz(t-t0 ,f). 

(A6a) 

• If y(t) == z(t)e12.-fot, then W y(t,f) = Wz(t,f-fo). 

(A6b) 

Property 8 

then 

L:fW/(t, f)df 

f;(t) = rco ' 
J_

00 

Wzh(t, f)df 

(AlO) 

which equals the instantaneous frequency f;(t) of the 
signal z(t), independent of the window h(T) (Boashash 
et al., 1986). This property is important because it 
shows that the windowing procedure does not influence 
the estimate of the instantaneous frequency. 

Property 9 

Linear filtering of the signal z(t) directly reflects itself 
in a linear filtering on the Wigner-Ville distribution of 
the signal. If z(t) is the input signal to a system with 
an impulse response h(t) such that 

(Ai 1) 

then 

where (;) denotes the convolution integral in the time 

domain. 

Property JO 

Similar relationships exist for modulation. If m(t) is 
a modulation function such that 

(i) The first-order moment of the Wigner-Ville dis­
tribution yields f;(t), the instantaneous frequency of then 
the signal, and T g(f ), the time delay: 

y(t) = m(t)z(t), 

Y(f) =M(f)•Z(f), 

(Al3) 

(Al4) 

(Al5) 1:00 

fW z(t,f)df 

f;(t) = J+co ' 
Wz(t,f)df 

-co 

(A7) 

r+co 
J_

00 

tWz(t,f)dt 

Tg(f} = rco · 
J_

00 

Wz(t,f)dt 

(AS) 

If the signal is analytic, then Claasen and Mecklen­
brauker (1980) have shown thatf;(t);;:. 0. Other mo­
ments may be defined and the reader is referred to the 
article by Claasen and Mecklenbrauker ( 1980). 

(ii) If h(t) is a continuous window of finite duration 
such that h(O) = dh/dtlr=o = 0 and if Wzh(t, f) represents 
the windowed Wigner-Ville distribution 

Property 11 

Given the Wigner-Ville distribution Wz(t,f), we can 
show that (Claasen and Mecklenbrauker, 1980) 

1: wz(~·~e; 2 .-fidf= z(t)Z*(O). (Al6) 

This shows that the Wigner-Ville distribution conveys 
and recovers all of the information contained in the 
.signal. 
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