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T. Tanaka et a!.: Database Evaluation of Surface Tensions of Molten Alloys, Salt and Oxide Mixtures 

Toshihiro Tanaka, Klaus Hack*, Takamichi !ida and Shigeta Hara 
(Department of Materials Science and Processing, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 

Osaka 565, Japan; *GTT Technologies, Kaiserstrasse 100, 52134 Herzogenrath, Germany) 

Application of Thermodynamic Databases to 
the Evaluation of Surface Tensions of Molten 
Alloys, Salt Mixtures and Oxide Mixtures 

The authors discuss the application of thermodynamic solu­

tion databases, which have been constructed so far to cal­

culate thermodynamic properties and phase diagrams, to the 

evaluation of surface tensions of molten alloys, salt mix­

tures and oxide mixtures. In particular, the relationship be­

tween the excess Gibbs energy in the bulk phase and that in 

the "surface phase" which are used in Butler's equation for 

surface tension was derived for molten ionic solutions as 

well as molten allbys. In this work, the surface tensions 

of some liquid binary alloys, various molten salt mix­

tures, which mainly consist of alkali cations and halide an­

ions, and some molten oxide mixtures, in particular binary 

silicate systems, were calculated and compared with experi­

mental values. 

1 Introduction 

During the last three decades, various thermodynamic da­

tabases have been compiled to be mainly applied to the cal­

culation of phase diagrams of alloys, salts and oxides 

[90Bal]. T)1e accumulation and assessment of thermody­

namic data and phase equilibrium information to establish 

those databases is sometimes called CALPHAD (Computer 

Calculation of Phase Diagrams) approach [92Nis]. The 

CALPHAD approach has been recognized to be useful in 

various aspects of materials science and engineering 

[90Bal, 92Nis]. If it would be possible to use the thermo­

dynamic databases to evaluate physical properties of liquid 

solutions as well as phase equilibria, we could not only 

widen the applicability of those thermodynamic databases 

but also further the understanding of the physical properties 

of molten alloys, salt mixtures and oxide mixtures. In a pre­

vious work [94Tan], the authors discussed the application of 

the thermodynamic solution databases, which have been 

generated by Kaufman et a!. [77Kau] for the calculation 

of phase diagrams of iron base alloys, to the evaluation 

of the surface tension of liquid iron alloys. In the calcula­

tion of the surface tension of those liquid alloys, we applied 

a procedure presented by Speiser et a!. [87Spe, 89Yeu] 

which is based on Butler's equation [32But] with a model 

for activity coefficients in a hypothetical "surface phase". In 

order to extend the above procedure to the calculation of the 

surface tension of molten salts and oxide mixtures, we need 

information on the excess Gibbs energy in the surface phase 
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of those ionic melts. In the present work, we derive some 

relationships between the excess Gibbs energy in the bulk 

phase and that in the surface phase for molten ionic mixtures 

as well as molten alloys. Then, we discuss the application of 

some thermodynamic solution databases to calculate the 

surface tension of some molten alloys and ionic mixtures. 

2 Butler's Equation for the Surface Tension of A-B 
Binary Liquid Solutions 

Several authors have proposed calculations of the surface 

tension of liquid solutions by employing thermodynamic 

data; for example 1) Hoar and Melford: [57Hoa]; 2) Mon­

ma and Sudo: [61Mon1, 61Mon2]; 3) Kasama: [78Kas]; 4) 

Speiser et a!.: [87Spe, 89Yeu]. 

All of the above authors carried out the calculations for 

only liquid binary alloys, although their principles are based 

on Butler's equation [32But], which is expressed for the 

surface tension a of any A-B binary liquid solution as fol­

lows: 

RT ( 1 - N~) 1 - E,S s 
a= a A+ -ln B) + -GA (T,N8)-

AA 1- NB AA 

- _1 GE,B(T NB) 
AA A ) B 

RT N~ 1 -E,S s) 
= aB + AB ln NE + AB GB (T, NB -

_ _!_GE,B(T NB) (1) 
AB B ) B 

where R is the gas constant, T: temperature, ax: surface 

tension of pure liquid X, Ax: surface area in a monolayer 

of pure liquid X (X= A or B). Ax can be obtained from 

the following equation: 

Ax = LN6 13 V~/3 (2) 

where N0 : Avogadro number, Vx: molar volume of pure 

liquid X. L in Eq. (2) is usually set to be 1.091 for liquid 

metals assuming closed packed structures. N~ and N~ in 

Eq. (1) are mole fractions of a component X in a surface 

phase and a bulk phase, respectively; G~'
8 

(T, N~): partial 

excess Gibbs energy of X in the surface phase as a function 

of Tand N~; G~'
8 

(T, NE): partial excess Gibbs energy of X 

in the bulk phase as a function of T and NE (X= A or B). 
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Table I. List of liquid solutions for which surface tensions have been calculated so far from Eqs. (I) to (3) with the value of fJ. 

fJ liquid solutions 

Hoar and Melford 1/2 to 3/4 Sn-Pb and Pb-In 

[57Hoa] 

Monma and Sudo 0.80 to 0.84 Cu-Ni and Ni-Mo 

[61Monl, 61Mon2] for alloys 

0.90 to 0.94 Cu-CuzO, Cu-Cu2S 
for ionic solutions 

Kasama l Ag-Au, Fe-Mn, Sn-Pb, Ag-Pb, Cu-Pb, Cu-Sn and Fe-Si 

[78Kas] 

Speiser et al. 3/4 Fe-Cu, Cu-Pb, Sn-Pb, Ag-Pb, Pb-In, Bi-Ag, Cu-Al, 

[87Spe, 89Yeu] Fe-Si and Ni-Si 

Tanaka and Iida 2/3, 3/4 Ag-Pb, Sn-Pb, Cu-Pb, Cu-Fe, Cu-Al, Ni-Si, a series of 

[94Tan] 

3 Relationship between Partial Excess Gibbs Energy in 

Bulk Phase and that in Surface Phase 

Butler derived Eq. (1) assuming an equilibrium between a 

bulk phase and a surface phase, which is regarded as a hy-

pothetical independent phase. Since G~'
8 

(T, N~) can be 

obtained directly from thermodynamic databases, we 

only need the additional information on G~,s (T, N~) in 

the surface phase. Speiser et al. [87Spe, 89Yeu], Hoar 

and Melford [57Hoa], Monma and Sudo [61Monl, 

61Mon2] and Kasama [78Kas] proposed their own models 

for G~,s (T, N~), which can be summarized as follows 

[94Tan]: 

(3) 

where fJ is a parameter corresponding to the ratio of the 

coordination number Z in the surface phase to that in the 

bulk phases, zsJzB. 
Equation (3) means that G~,s (T, N~), which has the same 

formula as G~'
8 

(T, N~ ), is obtained by replacing N~ by N~ 
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Fig. I. Correlation of surface tension ux with 6fHm · (LN,~ 13 v~ 13 )- 1 

for various liquid metals (L = 1.091 ). 
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iron base binary alloys and Fe-Cr-Ni ternary alloy 

in G~'
8
(T,N~) (X=A or B) and then multiplying fJ to 

-EB s 
Gx' (T,N8 ). The above four groups have reported calcula-

tions of surface tension of the liquid binary alloys shown in 

Table I. Using the respective value for fJ also shown in Ta­

ble 1, the results agreed well with the measured values, 

though Hoar and Melford [57Hoa], and Monma and 

Sudo [61Monl, 61Mon2] applied only a regular solution 

model for the excess Gibbs energy in Eq. (3). For exam­

ple, Speiser et al. [87Spe, 89 Yeu] proposed Eq. (3) with 

fJ = zs/z8 on the basis of the assumption that the excess 

Gibbs energy is proportional to the coordination number, 

and that the coordination number in the surface phase is 

reduced by the ratio zslz8 compared with that in the 

bulk phase because atoms in the surface lose some of their 

bonds with their nearest-neighbor atoms. The value of fJ, 
however, might be affected by other factors except zs/z8

, 

for example, a change in binding energy in the surface 

phase, rearrangement of atom configurations and so on. 

Furthermore, when applying Eqs. (1) and (3) to ionic mix­

tures, no information on zs/z8 has been available. We, 

therefore, have determined fJ as follows: 
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z 
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Fig. 2. Correlation of surface tension ux with 6fHm · (LN6 13 v~ 13 )- 1 

for various ionic melts (L = I). 
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Table 2. Data for the determination of fJ for liquid metals. 

X ~fHm,X Tm 
[kJ · mol- 1] [K] 

Li 157 452 
Na 107 371 
Mg 133 923 
AI 306 933 
Si 392 1687 
K 88 337 
Ca 158 1124 
Ti 438 1998 
v 485 1973 
Cr 351 2178 
Mn 246 1517 

Fe 357 1808 

Co 396 1765 

Ni 400 1728 
Cu 318 1356 
Zn 119 693 
Ga 280 303 
Ge 340 1232 
Rb 85 312 
Sr 160 1070 
Zr 581 2130 
Mo 600 2895 
Pd 351 1828 
Ag 266 1234 
Cd 104 594 
In 

\ 
239 430 

Sn 294 505 
Sb 195 904 
Cs 77 302 
Ba 178 1263 
La 409 1193 
Hf 571 2480 
Ta 761 3123 
w 823 3655 
Re 711 3440 
Ir 628 2727 
Pt 504 2047 
Au 358 1336 
Hg 61 234 
Tl 173 576 
Pb 189 601 
Bi 194 544 
Th 544 2088 

~fHm, Tm, Vx, ax: [88Iid] 

1) We assume that the surface tension ax of pure liquid 

metals and pure ionic melts at their melting points is deter­
mined by the following relation: 

Ax ·ax = LN~ 13 v~ 13 
·ax 

( -U~)- ( -U~) 

= (-U~)- /]* · (-U~) 

= .i!fHm,X- /]* · .i!fHm,X = (1 - /]*) · .ilfHm,X (4) 

where U~ and U~ are· binding energies in the bulk phase and 

the surface phase, respectively, and/]*= VVV~. In the 
above equation, surface entropy tenris are neglected, and 

( -U~) is assumed to be approximately equal to evapora­
tion energy at melting points, .ilfHm,x, which is obtained 

from the relation [88Iid]: .ilfHm,X = .il~Hm,X- .il~Hm,X 
where .il~Hm,x and .il~Hm,x are sublimation energy and 
enthalpy of fusion of substance X at its melting point. 
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Vx ~fHm,x/(LN<tv~ 13 ) ax 
[10-6m3 mol- 1] [J . m--] [N · m- 1] 

13.4 3.02 0.398 

24.8 1.37 0.191 

15.3 2.35 0.559 
11.3 6.60 0.914 
II. I 8.56 0.865 
47.1 0.73 0.115 
29.5 1.80 0.361 

11.6 9.29 1.650 
9.5 11.75 1.950 

8.27 9.33 1.700 
9.54 5.94 1.090 
7.94. 9.75 1.872 

7.60 11.13 1.873 

7.43 11.42 1.778 

7.94 8.68 1.303 

9.94 2.80 0.782 

11.4 6.01 0.718 

13.2 6.62 0.621 

57.7 0.62 0.085 

37.0 1.57 0.303 

15.4 10.20 1.480 

10.3 13.77 2.250 

10.1 8.14 1.500 

11.6 5.64 0.966 

14.0 1.95 0.570 

16.3 4.04 0.556 

17.0 4.83 0.560 

18.8 3.00 0.367 

72.2 0.48 0.070 

41.4 1.62 0.277 

23.3 5.45 0.720 

14.9 10.25 1.630 

12.1 15.69 2.150 

10.5 18.65 2.500 

9.96 16.69 2.700 

9.61 15.10 2.250 

10.3 11.56 1.800 

11.3 7.73 1.169 

14.7 1.11 0.498 

18.0 2.74 0.464 

19.4 2.84 0.458 

20.8 2.79 0.378 

22.1 7.51 0.978 

2) The relations between ax and L!fHm/(LN~ 13 v'Jj3) for 
pure liquid metals and fused salts are shown in Figs. 1 
and 2. The data [780gi, 79Kub, 86Gok, 87NIS, 88Iid] nec­

essary to obtain these relations are listed in Tables 2 and 3. 

We applied L = 1.091 in Eq. (4) for liquid metals. Since 
there has not been any exact information on the value of 

Lin Eqs. (2) and (4) for ionic melts, we used approximately 

L= 1 for the fused salts. From the linear relations between 

ax and .ilfHm/(LN~1 3 v~ 3 ) in Figs. 1 and 2, the following 

values for /]* were obtained: 

/]* = 0.83 for liquid metals 

/]* = 0.94 for ionic melts 

(5) 

(6) 

The linear relation between ax and .ilfHm/(LN6 13 v~ 3 ) in 
Fig. 1 has been determined to correspond to a similar rela­

tion between ax and .ilfHm/V~ 3 
for liquid metals in 

"Fig. 5.13" on page 132 in [88Iid]. On the other hand, 

Z. Metallkd. 87 ( 1996) 5 
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Table 3. Data for the determination of fJ for ionic melts. 

X I'!~Hm,X I'!~Hm,X dx Mx Tm !'!(Hm,x Tm ax 
[kJ · mol- 1

] [kJ · mol- 1
] [g · cm-3] [g · mol- 1

] [K] LNI/3y2/3 LNI/3y2/3 
0 X 0 X [Nm- 1] [Jm-2] [103 Km-2] 

LiF 265.7 26.8 1.809 25.9 1121 4.80 22.5 0.236 
LiCl 196.6 19.9 1.502 42.4 883 2.26 11.3 0.128 
LiBr 190.8 17.7 2.529 86.8 823 1.94 9.2 0.110 
Lil 210.5 14.6 3.109 133.8 742 1.89 7.2 0.094 

NaF 264.8 33.5 1.950 42.0 1265 3.54 19.4 0.186 
NaCl 219.7 28.0 1.556 58.4 1074 2.03 11.4 0.114 
NaBr 205.9 26.2 2.339 102.9 1023 1.71 9.7 0.101 
Nai 203.3 23.6 2.742 149.9 933 1.48 7.7 0.086 
KF 227.6 28.2 1.910 58.1 1130 2.43 13.7 0.144 
KCI 207.9 26.6 1.527 74.6 1045 1.61 9.3 0.099 
KBr 203.8 25.5 2.122 119.0 1013 1.44 8.2 0.090 
KI 194.6 24.1 2.444 166.0 958 1.21 6.8 0.079 

RbF 218.0 23.0 2.925 104.5 1048 2.13 11.5 0.127 
RbCI 203.3 18.4 2.248 120.9 988 1.54 8.2 0.095 
RbBr 187.0 15.5 2.718 165.4 953 1.32 7.3 0.087 
Rbl 179.9 12.6 2.906 212.4 913 1.14 6.2 0.077 
CsF 192.0 21.8 3.649 151.9 976 1.68 9.6 0.106 
CsCl 203.3 15.9 2.792 168.4 918 1.45 7.1 0.092 
CsBr 193.3 23.6 3.134 212.8 908 1.21 6.5 0.083 
Csl 192.5 23.8 3.197 259.8 894 1.07 5.6 0.072 

AgCI 214.2 13.0 4.872 143.3 728 2.50 9.1 0.179 

MgCh 209.2 43.1 1.682 95.2 987 1.34 7.9 0.062 

CaF2 383.3 29.7 2.518 78.1 1691 4.25 20.3 0.387 

CaCI2 292.9 28.5 2.085 111.0 1045 2.22 8.8 0.148 

SrF2 361.9 29.7 3.470 125.6 1750 3.60 19.0 0.282* 

BaF2 334.7 28.5 4.214 175.3 1563 3.02 15.4 0.253* 
ZnC12 155.2 10.3 2.525 136.3 591 1.20 4.9 0.054 

ZnBr2 124.7 15.6 3.466 225.2 675 0.80 5.0 0.051 
CdCI2 162.8 30.1 3.388 183.3 841 1.10 7.0 0.085 
CdBr2 140.2 33.5 4.076 272.2 840 0.77 6.1 0.067 

HgBr2 82.8 18.0 5.119 360.3 511 0.45 3.6 0.065 
PbC12 175.7 23.0 4.954 278.1 772 1.24 6.2 0.138 
LaC13 298.3 54.4 3.213 245.3 1128 1.61 7.4 0.123 
PrCl3 291.8 50.6 3.227 247.3 1059 1.59 7.0 0.107 
ZrCl4 103.3 37.7 1.643 233.0 710 0.29 3.1 0.007 

!'!~Hm,x, !'!~Hm,Xg' Tm: ~9~ub] dx (d~nsity), ax: [87NIS] *ax: 780gi] Mx (= Mcation +Manion) (molecular weight}: [88Iid, 86Gok] Vx = 
Mxldx, L - 1 1'11 Hm,X - 1'15Hm,X - 1'15Hm,x 

the value {J* = 0.94 for ionic melts has been determined by 
a least-square regression method for the linear relation in 

Fig. 2. 

3) We assume the following relation; 

fJ = {J* ( = VV U~) : for pure liquid metals or ionic melts 

= c;·s(T,ND/G;'
8
(T,N~): for solutions (7) 

4) Figure 3 shows the relationship between ax and 

T 111 j(LN~1
3 v~1 3 ) for pure molten oxides as wei! as the ionic 

melts shown in Fig. 2. The values [93Ike] of ax, Tm and Vx 
for pure molten oxides are listed in Table 4. Although the 

information on Llf H111 for molten oxides is not available, 
!J.f H111 can be associated to T111 as pointed out in [88Iid] 

for liquid metals. Consequently, Fig. 3 shows that molten 
oxides belong to the same category as the above ionic 

melts. Thus, from the above assumption 3), we have deter­

mined fJ in Eq. (3) as follows: 

fJ = 0.83 for liquid alloys (8) 

fJ = 0.94 for molten ionic mixtures including oxide 

mixtures (9) 
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Table 4. Data for the calculation of the relation between ux and Tm/(LN~ 13 v~ 13 ) for molten oxides. 

X Tm Vx Tm ux 

[K] [cm3 mol- 1] LN'f3v2/3 
0 X 

[Nm- 1] 

LizO 2000 

BeO 2843 

B203 723 

Na20 1193 

MgO 3073 

Al203 2320 

SiOz 1993 

PzOs 836 

K20 980 
CaO 2860 

TiOz 2143 

Tiz03 2090 

V20s 943 

MnO 2058 

FeO 1641 

CoO 2078 

Ge02 1389 

Nb20s 1773 

Mo03 1068 

BaO 2196 

La203 2573 

Sm203 2593 

Ta20s 2150 

wo3 1743 

PbO 834 

Bi203 1098 

Tm, Vx, ux: [93Ike] L = 1 

Monma and Sudo [60Mon, 61Mon1] have already carried 

out treatments similar to points 1) to 3), given above and 

they obtained /)-values of 0.80 to 0.84 for liquid metals 

and 0.90 to 0.94 for ionic melts. They applied Eqs. (1) to 

(3) to some liquid alloys [61Mon2], of which the excess 

Gibbs energies were expressed by a regular solution 

modeL Skapski [48Ska] and Oriani [500ri] also investi­

gated the above treatments 1) and 2) for pure liquid metals. 

4 Procedure of Calculation of Surface Tensions of 

Liquid Solutions 

The surface tension CJ of liquid solutions can be calculated 

as follows: 

1) Setting temperature T and composition N~ of a solution. 

2) Inserting the values for surface tension CJx and molar 

volume Vx of pure liquid substances at the above tempera­

ture in Eqs. (1) and (2). 

19.9 
10.5 
45.8 
33.5 
22.9 
33.3 
28.2 
63.8 
52.0 
21.1 
21.9 
36.8 
78.4 
16.0 
15.6 
14.5 
30.9 
62.2 
44.3 
34.2 
50.1 
51.3 
67.5 
44.2 
27.6 
58.2 

[103 Km-2] 

32.3 0.420 

70.3 0..415 

6.7 0.080 

13.6 0.308 

45.2 0.660 

26.6 0.606 

25.5 0 .. 307 

6.2 0.060 

8.3 0.156 

44.4 0.670 

32.5 0.380 

22.4 0.584 

6.1 0.080 

38.4 0.630 

31.2 0.545 

41.4 0.550 

16.7 0.250 

13.4 0.279 

10.1 0.070 

24.7 0.520 

22.5 0.560 

22.3 0.815. 

15.4 0.280 

16.5 0.100 

10.8 0.153 

8.7 0.213 

3) Determining excess Gibbs energies in the bulk phase at 

the above temperature and composition, and substituting 

them in Eq. (1). 

4) Then, one pair between the two equations on the right­

hand side of Eq. (1) becomes the equation with unknown 

N~. This equation is solved for N~, and the value of N~ 

is substituted again into, e.g., the first equation of the 

right-hand side of Eq. (1) to calculate the surface tension 

CJ of the liquid solution on the left-hand side of Eq. (1). 

It should be emphasized here, that the solution for N~ 

can be carried out in two ways: (1) mathematically explicit 

or (2) applying a numerical method. A mathematically ex­

plicit method has been used in the following applications 

whenever explicit polynomial expressions were available 

for the (partial) excess Gibbs energies, i.e. for liquid metals 

and salts. A numerical procedure was used for the case of 

the Gaye model which provides implicitly results for the 

(partial) Gibbs energies, i.e. for liquid oxides. 

Table 5. Data for the calculation of surface tensions of liquid Cu-Pb and Fe-Si alloys. 

Elements Surface Tension of pure substance Molar Volume of pure substance [88Iid] 

ux [mNm- 1
] Vx = Vm,x{l + IXx • (T- Tm,x)}[l0-6m3 · mol-

1
] 

Vm,x [10-6 m3· mol- 1
] ax [10-4 K- 1] Tm,x [K] 

Cu 1301* (1373 K) 7.94 1.0 1356 

Pb 380* (1373 K) 19.42 1.24 601 

Fe 1729* (1823 K) 7.94 1.3 1808 

Si 759* (1823 K) 11.1 1.4 1687 

* The values of u at pure compositions reported in literature, which are quoted to be compared with the calculated results for u, have been 

selected as ux. 
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Excess Gibbs Energy 

Liquid Cu-Pb Alloys: [86Hay] 

GE,B (T, Npb) = (1 - Npb) Npb {Ao- BoT+ (AI - B1T) (1 - 2 Npb) + (Az- BzT) (1 - 2 Npb? + (A3- B3T) (1 - 2 Npbn 

Ai: Ao = 27190.2, A1 = 2229.2, Az = -7029.2, A3 = -7397.6 

Bi: Bo = 4.21329, B1 = 0.53584, Bz = -6.48832, B3 = -5.07992 

Liquid Fe-Si Alloys: [91Lac] 

GE,B (T, NsD = (1 - Nsi) Nsi {Lo + L1 (1 - 2 Nsi) + Lz (1 - 2 Nsi)2 + L3 (1 - 2 Nsi)3
} 

L0 = - 164434.6 + 41.9773 T 

L1 = -21.523 T 

Lz = - 18821.542 + 22.07 T 
L3 = 9695.8 

5 Application of Thermodynamic Databases to the 
Evaluation of Surface Tension of Liquid Alloys 

In the previous work [94Tan], we investigated the depend­

ence of surface tension of liquid alloys upon the value of fJ 
in Eq. (3). In the present work, we recalculated the surface 

tension ofliquid Cu-Pb and Fe-Si alloys with L= 1.091 in 

Eq. (2) and with various values for fJ shown in Table 1 and 

Eq. (8). The data of ax, Vx and GE(T,N~) are given in 
Table 5. Thermodynamic data for Cu-Pb alloys were 

taken from the assessment by Hayes et al. [86Hay] and 

for Fe-Si alloys from Lacaze and Sundman [91Lac]. 

These data are part of the SGTE (Scientific Group Thermo­
data Europe) database [87 Ans]. Partial excess Gibbs ener­

gies G !'8 
( T, N~) and c:·B ( T, N~) of components A and B 

are obtained from the following relations; 

cE,B(T NB) = cE(T NB)- NB acE(T,N~) (10) 
A ' B ' B B (JNB 

B 

cE,B(T NB) = cE(T NB) + (1- Ns) acE(T,N~) (11) 
B ' B ' B B (JNB 

B 

As can be seen in Figs. 4 and 5, the calculated results for the 
surface tension in the two alloys are in good agreement with 

the experimental values [59Met, 73Jou, 64Dzh, 74Kaw, 

z 
E 

Cu 

Liquid Cu-Pb alloy : 1373K 

Calc. (3 

--: 1,0.83,3/4,2/3,1/2 

0,0: Expe. 

0.2 0.4 0.6 0.8 Pb 

Mole fraction of Pb, N Pb B 

Fig. 4. Comparison of calculated results for the surface tension of 
liquid Cu-Pb alloys with literature values, o: Metzger [59Met], 
o: Joud et a!. [73Jou]. 
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71She] using fJ = 0.83 in Eq. (8). The curves in small 
squares in the above figures show the relation between 

N~ and N~ of the solute element B in the above alloys. 

6 Application of Thermodynamic Databases to the 

Evaluation of Surface Tensions of Molten Salt 

Mixtures 

Pelton et al. [83Pel, 88Pel] have assessed a thermodynamic 

database which permits calculation of thermodynamic prop­

erties and phase diagrams of salt mixtures according to the 
CALPHAD approach. In the present section, we discuss the 

application of this database to the evalu.ation of the surface 

tension of molten salt mixtures. Common ion systems con­

sidering the following ions have been treated: 

Cations: Li+,Na+,K+,Rb+,cs+; 

Anions : p-, Cl-, Br-, N03 

Surface tension data of pure component salts, ax in Eq. (1), 

were taken from the NIST database [87NIS]. We obtained 

Vx in Eq.(2) from the selected density px of pure ionic melt 

in the NIST database [87NIS] and the molar weight Mx of 

the cations and anions as follows; 

V 
_ Mcation +Manion 

x-
Px 

"' Liquid Fe-Si alloy : 1823K 
qs_;-...... .. 
9~·,......, ''\ ap0 =1729mN .m·l 

'7 1600 ', ~';i:' \ a si=759mN . m·l 

E. "-•• ~-t,.~ '\, , , O.O,t>.: Expe. 

z " d-\\ 
E ·,".~-~\., "l[ZJ_.· 
b ·. ~\\ t) •• 

c \ ~ ~ .·· 

-~ 1200 ·"-~ "'Vi .· ... 

~ "\ ~) . . . . . ,8 =0.83 

13 Calc. ,8 ', -~~ 0 N .Bulk 1 

] ==:~Jl ···· ... ,8t>. Slj 
(/) ---: 2/3 ~ 

---·-: 112 o gt,.-o-0 
-------: Ideal 

Fe 0.2 0.4 0.6 0.8 Si 

Mole fraction of Si, NsiB 

(12) 

Fig. 5. Comparison of calculated results for surface tension of liquid 
Fe-Si alloys with literature values, o: Dzhemilev et a!. [64Dzh], o: 
Kawai eta!. [74Kaw], L>: Shergin et al. [71She]. 
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Table 6. Values of surface tension and molar volume of pure molten salts and excess Gibbs energy GE.B (T, N~, Ng) of molten salt mixtures 

in bulk phase. cE,B(T,Ng) in Eqs. (10) and (11) can be obtained from cE,B(T,N~,Ng) with N~ = 1 Ng. 

Molten salt Temp. Surface tension of Density of pure GE,B (T, N~, Ng) 

mixtures [K] pure molten salts molten salts of molten salt mixtures 

llx [mN · m- 1
] px [10-3 kg · m-3] in bulk phase [J · mol- 1

] 

NaCl-LiCl 1073 NaCl: 118.5 1.56 NNaCINUCI (- 4686) 

LiCl: 121.4 1.42 

NaCl-KCl 1073 NaCl: 114.0 1.56 NNaCINKCI (- 2050 - 272 NNaCI) 

KCl: 96.3 1.51 

LiCl-KCl 1073 LiCl: 114.5 1.42 NuCINKCI {(- 17570 + 7.627 T) 

KCl: 97.0 1.51 + (- 377 - 4.958 T) NuCI) 

NaCl-RbCl 1073 NaCl: 117.9 1.56 NNaCNRbCI { (- 3222 + 5.922 T) 

RbCl: 90.1 2.17 + (- 335 - 5.245 T) NNacd 

NaCl-CsCl 1073 NaCl: 117.9 1.56 NNaciNCsCI {(-4310 + 5.764 T) 

CsCl: 79.8 2.63 + (418 5.901 T) NNaCI} 

LiF-KF 1073 LiF: 256.5 1.83 NuFNKF { (- 1925 I + 4.521 T) 

KF: 147.1 1.95 + (-1205- 3.146 T) NKF + 4732 (NKF)2
) 

LiF-NaF 1200 LiF: 227.9 1.77 NuFNNaF { (- 7565 + 1.607 T) 

NaF: 191.2 1.99 + (368 + 1.124 T) NNaF) 

KF-NaF 1073 KF: 149.0 1.95 NKrNNaF (- 335 + 2.541 T) 

NaF: 201.6 2.07 

NaBr-KBr 1073 NaBr: 100.2 2.30 NNaBrNKBr (- 2134 - 25 1 NNaBr) 

KBr: 87.1 2.07 

RbBr-KBr 1073 RbBr: 80.4 2.59 0 

KBr: 87.1 2.07 

CsBr-KBr 1073 CsBr: 72.7 2.93 NcssrNKBr (377) 

KBr: 87.1 2.07 

NaBr-CsBr 1073 NaBr: 100.2 2.30 NNaBrNcsBr (- 4728 - 209 NNaBr) 

CsBr: 72.7 2.93 

LiNOrKN03 623 LiN03: 110.6 1.73 NuNo,NKNO, { (-7360 - 5.334[) 

KN03: 111.4 1.86 -2301NuNo, + 1937(NuNo,) } 

NaN03-KN03 623 NaN03: 116.6 1.87 NNaNo,NKN03 ( -1640 

KN03: 111.3 1.86 - 280NNaN03 ) 

LiCl-LiF 1073 LiCl: 128 1.42 Nue~Nur (- 1000) 

LiF: 244.4 1.83 

KCl-KF 1173 KC!: 92 1.45 · NKciNKF{3066 - 10621 NKr 

KF: 117 1.88 + 9125 (NKF)2
) 

NaC!-NaF 1273 NaC!: 109 1.45 NNaCINNaF (1416 + 1283 NNaF) 

NaF: 185.2 1.95 

Atomic weights: Element/Mx [!0-3 • kg · mol- 1
]: Li/6.94, Na/22.99, K/39.09, Rb/85.47, Cs/132.91, F/18.998, Cl/35.453, Br/79.904, 

N/14.0067, 0/15.999 

llx, px: [87NIS], GE,B(T,N~,Ng): [83Pel, 88Pel] 

Excess Gibbs energies in the bulk phase of the common ion 

systems are listed with the values of O"x, px and (Mcation + 
Manion) in Table 6. Figure 6 shows the calculated results for 

the surface tension 17 of a few molten salt mixtures which 

have large negative excess Gibbs energies, using fJ = 0.94, 

0.83 and 3/4 with L = 1. The hatched zones in Fig. 6 show 

the uncertainties of the reported values [87NIS] for the sur­

face tension of molten salt mixtures. The uncertainties have 

been determined from the scatter of the reported values of 

O"x for pure substances in the NIST database [87NIS]. As 

shown in this figure, the values 3/4 and 0.83 for fJ, which 

are adequate for liquid alloys, are unsuitable for the calcu­

lation of the surface tension of some molten salt mixtures. 

Figure 7 shows the comparison of the calculated results for 

the surface tension 17 of various molten salt mixtures with 

the values stored in the NIST database[87NIS]. It has been 

reported that the composition dependence of the surface 

386 

tension of some molten salt mixtures shows large down­

ward curvatures from the linearity [80Goo]. As shown in 

Fig. 7, some mixtures, for which calculated results have 

deviations from the literature values, show such composi­

tion dependences. It is, therefore, necessary to accumulate 

further information on the surface structures of molten salt 

mixtures in order to derive the excess Gibbs energy in the 

surface phase, which gives us more precise composition 

dependence of the surface tension of those mixtures. 

7 Application of Thermodynamic Databases to the 

Evaluation of the Surface Tension of Molten Oxide 

Mixtures 

We have applied the procedures described in the preceding 

sections to the evaluation of surface tensions of molten 

oxide mixtures. Equations (1), (2) and (3) have been 
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0 0.5 
Mole fraction 

1.0 

Fig. 6. Calculated results for surface tensions of some molten salt mix­
. tures with various values of fJ, o, D., o: [87NIS]. 

used with the conditions L = 1 and fJ = 0.94. Here, we have 
used the cell model developed by Gaye and Welfringer 
[84Gay] to obtain partial excess Gibbs energies of the 
components. Since in the cell model the Gibbs energy is 
not given in the form of a polynomial formula, one has 
to calculate numerically the partial excess Gibbs energies 
as well as the surface tension of molten oxide mixtures 
as follows: 

1) At a given temperature and composition, the surface ten­
sions ux and molar volumes Vx of the components are de­
termined. In addition, the partial Gibbs energies of the com­
ponents are calculated numerically in the cell model for a 
given N~ in the bulk phase. 

2) Then, changing the value of N~ in the surface phase by 

a numerical procedure, G~,s (T, N~) and G~,s (T, N~) are 

calculated using the cell model and applying Eq. (3). 

Finding G~'s(T,N~) and a:·s(T,N~) to satisfy Eq. (1) 

for a certain N~, the values of N~, G~'s(T,N~) and 

a;'s(T,N~) are substituted again into Eq. (1) to determine 

u of the molten oxide mixture. 

In this work, we have calculated the surface tension of 
molten Ca0-Si02 (1873 K) and MnO-SiOz (1843 K) bi­
nary mixtures. The values of surface tension, molar volume 
of pure substances and energy parameters Wij and Eij in the 
cell model are shown in Table 7 [56Bon, 84Gay, 87Mil, 
87NIS, 88Har, 93Ike]. Since the values for ux of pure 
liquid CaO and MnO have not been obtained experimen­
tally, we determined O'cao and O'MnO in Table 7 considering 
estimated values reported by Boni and Darge [56Bon], Mills 
and Keene [87Mil], Hara et al. [88Har] and Ikemiya et al. 
[93Ike]. Figures 8 and 9 show the comparison of the calcu­
lated results for the surface tension of the above molten 
oxide mixtures with the experimental value ranges, which 
were determined from the reported values [ 5 I Kin, 67Muk, 
690no, 71Sha, 74Gun, 81Muk]. In those figures, the dotted 
curves indicate those calculations, for which concentrations 
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of the components in the surface phase exceed the compo­
sition range of the liquid phase, as shown in Table 8, for 
which the parameters of the cell model have been as­
sessed. As can be seen in these figures, the composition 
dependence of the calculated values agree with the experi­
mental results. However, when calculating the surface 
tension of molten oxide mixtures, one has to consider the 
following issues which result from the high melt.ing points 
of pure oxides: 

1) The provision of reliable information on the surface 
tension of pure molten oxides below their melting points. 

2) The limitation of the composition range in the liquid in 
which the thermodynamic data and functions can be 
applied. 

8 Concluding Remarks 

In this paper, some relationships between the excess Gibbs 
energy in the bulk phase and that in the surface phase of 
molten alloys and ionic mixtures have been discussed . 
Furthermore, surface tensions of molten alloys, salt mix­
tures and oxide mixtures have been calculated using the 
thermodynamic properties of these phases. The thermody-
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Fig. 7. Comparison of calculated results for surface tensions of 
various molten salt mixtures with the literature values [87NIS]. Cal­
culated results: -; literature values: o, 111, A.. 
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Fig. 8. (left) Comparison of calculated 
results for surface tension of molten 
CaO-Si02 mixtures with the experi­
mental results [51 Kin, 690no, 71 Sha, 
74Gun, 81Muk]. 

Fig. 9. (right) Comparison of calcu­
lated results for surface tension of 
molten MnO-SiOo mixtures with the 
experimental results [51Kin, 67Muk]. 

Table 7. Values for the calculation of surface tensions of molten oxide mixtures. 

X Molar Volume [m3 • mol- 1] [87Mil] 

CaO 20.7. 11 + 0.01. w-2
. (T- 1773)}. w-6 

MnO 15.6 . 1 1 + o.o 1 . w-2 
. (T - 1773) l . w-6 

Si02 27.516 · { 1 + O.Ql · w-2 
. (T 1773) l . w-6 

X a,: Surface Tension [mNm- 1
] 

Literature values Present work 

CaO 670 (1823 K) [88Har], 586 (1773 K) [56Bon], 625 (1773 K) [87Mil] 630 (1873 K) 

MnO 630 (m.p.) [93Ike], 641 (1773 K) [56Bon], 645 (1773 K) [87Mil] 630 (1843 K) 

SiOz 243.2 + 0.031 · T [87NIS] 243.2 + 0.031 · T 

Energy parameters used in the cell model [84Gay] 

system 

Si02-Ca0 

Si02-Mn0 

Wu = (Wu), + (Wuh · Ni 

Eu = (Eu)I + (Euh · Ni 

i 

Si 

Si 

cation 

j 

Ca 

Mn 

Cells Formation: Cells Interaction: 

Wulcal Eu/cal 

(w;j)I (w;j)2 (Eu), (Eu)2 

- 12500 0 -4500 7500 

- 4500 0 -1000 5200 

Table 8. Calculated results for surface tensions of molten oxide mixtures and concentration of Si02 in surface phase. 

CaO-Si02 at 1873 K 

N~iO, 0.35 0.40 0.45 0.50 0.51 0.55 

a/mNm- 1 545 521 493 461 446 388 

N~iOz 0.365 0.446 0.540 0.693 0.976** 0.994** 

MnO-Si02 at 1843 K 

N~iO, 0.30 0.35 0.40 0.43 0.44 0.45 

a/mNm- 1 505 485 461 444 423 407 

N~i0 2 0.362 0.426 0.518 0.622 0.984** 0.988** 

The composition with ** is beyond the range where the thermodynamic data and functions are defined in the bulk phase. 
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namic data have been taken from several databa~es contain­
ing data that have been assessed according to the CAL­
PHAD approach. The application of the present method 
to a wider range of systems and fine tuning of the general 
model parameter j3 as well as the general critical compila­
tion of such properties as ax and Vx of the pure substances 
will enable us to develop a multi-functional thermodynamic 
databank system. This will be of wide applicability in the 
evaluation of physico-chemical properties of alloys and 
other solution-phase-forming systems in conjunction with 
the simultaneous calculation of the phase equilibria in 
such systems. 

Literature 

32But. 

48Ska. 

500ri. 

51 Kin. 

56Bon. 

57Hoa. 

Butle1; J. A. V.: Proc. Roy. Soc. A 135 (1932) 348-375. 
Skapski, A. S.: J. Chern. Phys. 16 (1948) 389. 

Oriani, R. A.: J. Chern. Phys. 18 (1950) 575-578. 
King, T. B.: J. Soc. Glass. Techno!. 35 (1951) 241-259. 
Bani, R, E.; Derge, G.: J. Metals 8 (1956) 53-59. 
Hom; T. P.; Me/ford, D. A.: Trans. Faraday Soc. 53 (1957) 

315-326. 
59Met. Metzge1; G.: Z. Phys. Chern. 211 (1959) 1-25. 
60Mon. Monma, K.; Sudo, H.: J. Jpn. Inst. Metals 24 (1960) 117-

121. 
61Monl. Monma, K.; Sudo, H.: J. Jpn. Inst. Metals 25 (1961) 65-68. 
61Mon2. Monma, K.; Sudo, H.: J. Jpn. Inst. Metals 25 (1961) 143-

147. 

64Dzh. Dzhemilev, N. K.; Popel, S. 1.; Tsarevskii, B. V.: Fiz. Metal!. i 
Metalloved. 18 (1964) No. I, 83. 

67Muk. Mukai, K.; Sakao, H.; Sana, K.: J. Jpn. Inst. Metals 31 (1967) 
928-933. 

690no. Ono, K.; Gunji, K.; Araki, T.: J. Jpn. Inst. Metals 33 (1969) 
299-304. 

71She. Shergin, L. M.; Popel, S. 1.; Tsarevskii, B. V.: in: V. N. Ere­
menko (ed.), Fiz. khim. poverkl. yavlenii rasp., Kiev, Nauko­
va Dumka (1971) 161. 

71Sha. Sharma, S. K.; Philbrook, W 0.: Proc. ICSTIS, Suppl. Trans. 
ISIJ 11 (1971) 569. 

73Jou. loud, J. C.; Eustathopoulos, N.; Bricard, A.; Desre, P.: J. 
Chim. Phys. 70 (1973) 1290-1294. 

74Gun. Gunji, K.; Dan, T.: Trans. ISIJ 14 (1974) 162-169. 
74Kaw. Kawai, Y.; Mori, K.; Kishimoto, M.; 1shikura, K.; Shimada, 

T.: Tetsu-to-Hagane 60 (1974) 29-37. 

Z. Metallkd. 87 (1996) 5 

77Kau. Kaufman, L. eta/.: CALPHAD 1 (1977) 7; 2 (1978) 55. 
78Kas. Kasama, A.: Dr. Eng. Thesis, Osaka University (1978) 113-

142. 

780gi. 

79Kub. 

80Goo. 

Ogino, K.; Hara, S.: Tetsu-to-Hagane 64 (1978) 523-532. 
Kubaschewski, 0.; Alcock, C. B.: Metallurgical Thermo­
chemistry, 5th ed., Pergamon Press, Oxford ( 1979) 326-377. 
Goodisman, 1.: J. Colloid and Interface Sci. 73 (1980) 115-

123. 
81Muk. Mukai, K.; Ishikawa, T.: J. Jpn. Inst. Metals 45 (1981) 147-

154. 

83Pel. 

84Gay. 

86Gok. 

86Hay. 

87Ans. 

87Mil. 

87NIS. 

87Spe. 

88Har. 

88Iid. 

88Pel. 

89Yeu. 

90Bal. 

91Lac. 

92Nis. 

93Ike. 

94Tan. 

Cook, L. P.; McMurdie, H. F. (eds.): Phase Diagrams for 
Ceramists, Vol. VII, The Amer. Ceram. Soc., Westerville 
(1983). 

Gaye, H.; We/fringe!; 1.: Proc. 2nd Int. Symp. Metal!. Slags & 
Fluxes (1984) 357-375 

Gokcen, N. A.: Statistical Thermodynamics of Alloys, Ple­
num Press, New York (1986) 288. 

Hayes, F. H.; Lukas, H. L.; Effenberg, G.; Petzow, G.: Z. 
Metallkd. 77 (1986) 749-754. 

Ansara, 1.; Sundman, B.: in: P. S. Glaeser (ed.), Computer 
Handling and Dissemination of Data, Elsevier Sci. Pub!., 
(1987) 154-158. 

Mills, K. C.; Keene, B. 1.: Intern. Mater. Rev. 32 (1987) 106, 

107. 

NIST Molten Salt Database, National Institute of Standards 
and Technology ( 1987). 

Speiser, R.; Poirie1; D. R.; Yeum, K.: Scripta Metal!. 21 

(1987) 687-692. 

Hara, S.; Ogino, K.: J. Jpn. Inst. Metals 52 (1988) 1098-
1102. 

!ida, T.; Guthrie, R. I. L.: The Physical Properties of Liquid 
Metals, Clarendon Press, Oxford (1988) 8, 11, 71, 132, 134. 
Pelton, A. D.: CALPHAD 12 (1988) 127-142. 
Yeum, K. S.; Speise1; R.; Poirier, D. R.: Metal!. Trans. B 20B 

(1989) 693-703. 

Bale, C. W; Eriksson, G.: Canad. Metall. Quar. 29 (1990) 
105-132. 

Lacaze, J.; Sundman, B.: Metal!. Trans. A 22A (1991) 2211-
2223. 

Nishizawa, T.: Mat. Trans. JIM. 33 (1992) 713-722. 
Ikemiya, N.; Umemoto, J.; Hara, S.; Ogino, K.: Iron Steel 
Inst. Jpn. Intern. 33 (1993) 156-165. 

Tanaka, T.; !ida, T.: Steel Research 65 (1994) 21 -28. 

(Received October 23, 1995) 

389 


