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Efficient routines for multidimensional numerical integration are pro-
vided by quasi-Monte Carlo methods. These methods are based on 
evaluating the integrand at a set of representative points of the in­
tegration area. A set may be called representative if it shows a low 
discrepancy. However, in dimensions higher than two and for a large 
number of points the evaluation of discrepancy becomes infeasible. 
The use of the efficient multiple purpose heuristic Threshold Accept­
ing offers a possibility to obtain at least good approximations to the 
discrepancy of a given set of points. This paper presents an imple-
mentation of Threshold Accepting, an assessment of its Performance 
for some small examples and results for larger sets of points with 
unknown discrepancy. 
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1 Introduction 

The efficient evaluation of multidimensional integrals by numerical methods is re-
quired in various fields, such as in statistics, physics, economics and economet-
rics. Several numerical methods in economics and econometrics require efficient 
routines for multidimensional numerical integration. A straightforward generaliza-
tion of classical integration rules for the one dimensional case, such as the trapezoidal 
or Simpson's rule, leads to error bounds of the order 0(n 2y^), where d denotes the 
dimensionality. Consequently, in order to guarantee a fixed level of accuracy the 
number of interpolation points would have to grow exponentially in d, the "curse of 
dimensionality". 

Monte Carlo and quasi-Monte Carlo methods yield powerful tools to overcome 
these difficulties in multidimensional integration as well as in other domains such as 
optimization, experimental design, geometric probability and Statistical inference.2 

In applying the Standard Monte Carlo method (MCM), a set of "pseudo" random 
numbers has to be generated. It is known that the (probabilistic) convergence 
rate of MCM is 0(n~lf2).3 More precisely, Iet F(x) be the distribution function 
of the uniform distribution, U(Cd), on a unit cube Cd and Ui, u2,.. ., un be an 
independent sample from U(Cd), i.e. ui,u2,...,un are random numbers. Let Fn(x) 
be the empirical distribution function of Uj, u2,..., un, i.e. 

Fn(x) = ^]£/(Ui < x), (1) 

where /(.) is the indicator function. The discrepancy of Un = {ui,u2,. . ., un} is 
defined by4 

D(Un) = sup |.Fn(x) - F(x)|. (2) 
xecd 

If / has bounded Variation V(f) on Cd in the sense of Hardy and Krause,5 then 
the following inequality holds for the approximation of a multidimensional integral 
by MCM (Koksma-Hlawka inequality; cf. Niederreiter (1992b), p. 16 equation (2)): 

I IS V(f)D(Un) (3) 

It is well known by the central limit theorem that D(Un) = 0(n~1/2) in probability. 
This convergence rate is still slow and the use of random numbers often leads to 
unacceptably large errors. 

2Cf. Fang and Wang (1993). 
3Cf. Niederreiter (1992a), p. 3ff. 
4This corresponds to the discrepancy at the origin D* in Faure (1982) or star discrepancy in Weyl 
(1916) or Niederreiter (1992a). 

5Cf. Hua and Wang (1981). 
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Quasi-Monte Carlo or number theoretical methods (NTM) overcomethe problem 
of generating independent real random numbers6 and lead to deterministic error 
bounds as a fixed set of points is used for the approximation of the multidimensional 
integral. Even more than that, for a good choice of nodes NTM give better error 
bounds than MCM. 

NTM are a class of techniques by which representative points Xi,... ,xn of the 
uniform distribution on the unit cube Cd = [0, l[rf can be generated deterministically.7 

As in the Standard Monte Carlo method the multidimensional integral of a function 
/ on Cd is approximated by 

jcd /(x)<*x « ^ • (4) 

However, xa,... ,xn are deterministic points. The aim of NTM is to generate sets of 
points with a lower order of magnitude of their discrepancy than that of equally sized 
sets of random numbers. Let Vn = {xi,x2,... , xn} be a set of points on Cd and 
Gn(x) be its empirical distribution function. Then, the (deterministic) convergence 
rate for the discrepancy of Vn can reach 

D(Pn) = sup |G„(x) - F(x)| = O((log(n))7r«), (5) 
xecd 

which is better than the rate 0(n-1/2) obtained by the use of MCM (cf. Niederreiter 
(1988) and Niederreiter (1992b), p. 19). 

However, the convergence rate gives us just a general idea about the asymptotic 
Performance of the procedures, but it is not enough to judge the quality of the 
procedures for a given problem. For practical applications we have to know the 
value of the discrepancy of a given set of points. For example, we have to calculate 
the discrepancy for choosing the uniform design (cf. Fang and Wang (1993), Chapter 
5), for giving an upper error bound for numerical integration, and for comparing the 
discrepancy of two sets with the same number of points generated by MCM and 
NTM separately. 

For d — 1 Niederreiter (1973) gave a convenient formula for calculating the 
discrepancy while Clerk (1986) proposed a method for the exact calculation of the 
star-discrepancy for d = 2. When d > 2 the calculation of the discrepancy is a really 
difficult task. Unfortunately, there was no publication approaching this problem 
until Bundschuh and Zhu (1993) gave an algorithm for the low-dimensional case.8 

When n and d are large, their algorithm - which essentially is an enumeration 
algorithm - uses a tremendous amount of Computing time growing at the order 

6In practice, all applications of MCM use pseudo random number generators. 
7Recently, NTM have been extended to generate representative points for many useful multi-
variate distributions and have been systematically applied in statistics (cf. Fang and Wang 
(1993)). 

8Dieter (1992), p. 4, states that "No methods are known for calculating the discrepancy in di-
mension greater than two". 
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0(nd). The results presented in section 4 might give an Impression of the order of 
magnitude one has to expect. 

2 Calculation of Discrepancy and 

Generation of Good Lattice Point Sets 

In order to obtain the high convergence rate of equation (5) the empirical distribution 
of the chosen points has to be close to the uniform distribution on the unit cube. To 
put it differently, they have to be scattered "evenly" or "regularly" on Cd. Referring 
to inequality (3) the discrepancy of a set of points seems to be a useful concept to 
measure the irregularity of the distribution of its elements on the unit cube. 

Consider a set V = {xi,...,xn} of points in the unit cube Cd. Let xjt = 
(xk\,' • • , Xkd) be the coordinates of the fc-th element of V and denote by Xj = 
{1, Xkj | k = 1,..., n}, j = 1,.. ., d the set of i-th coordinates of the elements of 
V. Furthermore, denote by X* = {(^i, - - • , Xd) \ xj 6 Xj, j = 1,..., d} the set of all 
elements of Cd composed by the coordinates of the elements of V. The number of 
points in X* is at most (n + l)d. For each x = (xi,.. . ,Xd) € X* let M(x) be the 
number of points in V satisfying x^ < x and let Mi(x) be the number of points in 
V satisfying Xjt < x. Then the definition of the discrepancy (2) is equivalent to 

D(V) = sup - f (x)|, (6) 
X£Cd n 

where -F(x) = Xi • x 2 • • -x ^ is the distribution function of U(Cd). It is easy to see 
that 

= SSS8 - F(x>'- ^ -F(x)l} ' (7) 

We can take any kinds of sets of points generated by NTM, such as mentioned 
in Chapter 3 of Niederreiter (1992a) or generated by MC to test our algorithm. The 
examples we use in this paper for the demonstration of the algorithm fall under the 
heading of good lattice point sets (GLP), which are particularly suited for periodic 
integrands. Let ,hd) be a vector with integral components satisfying 0 < 
h{ < n,hi ^ hj (i ^ j), and d < n. Let 

f 2khi — 11 . . 
Xki = I 2n f > 1 = !»• • • > " = 1> • • • > n' (8) 

where {x} stands for the fractional part of x. Then the set {x^ = (^M, •' •, ̂ fcd), k = 
1, • - • , n} is called the good lattice point set of the generating vector (n; h\,..., hd). 
It can be shown that for any d > 2 and n > 2 there exists a GLP-set with n points 
in Cd with discrepancy 0((\og(n))d/n).9 

9Cf. Niederreiter (1992a), p. 115. 
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As pointed out above there exists no efficient algorithm for calculating the dis­
crepancy of a given set of points for d 2. Hence, we want to apply a heuristic 
optimization algorithm for evaluating the discrepancy D(P). The integer optimiza-
tion problem becornes as follows: 

max/(x), (9) 

where the domain X* has at most (n -f l)d points, and the objective function on X* 
is given by 

/(x) = max||^-F(x)|,|^^-f(x)|| . (10) 

If the algorithm solves (9) to global optimality we obtain the exact value of the 
discrepancy of V. Otherwise, the result of the algorithm will be a lower bound to 
the discrepancy. 

3 Threshold Accepting Algorithm 

for Approximation of Discrepancy 

The problem of evaluation of the discrepancy of a given set of points as exposed at the 
end of the previous section falls under the heading of large scale integer programming 
Problems. As the set of possible solutions X* is finite a simple enumeration algorithm 
would give the exact result. However, as the cardinality of X* is approximately 
(n+l)d this algorithm is infeasible for high dimensional problems with many points. 
The same holds true for the somewhat refined enumeration algorithm proposed by 
Bundschuh and Zhu (1993). In the next section we will give some results and 
timings for this algorithm. As we do not know about any other exact algorithm 
requiring only a reasonable amount of Computing resources for large d and n, the 
use of optimization heuristics seems appropriate. However, further research might 
give new insights as to the real computational complexity of the problem. 

As integer optimization heuristic we use the Threshold Accepting algorithm (TA) 
introduced by Dueck and Scheuer (1990) which was successfully implemented for 
various problems including the NP-hard travelling salesman problem (Dueck and 
Scheuer (1990), Winker (1994b)), the NP-complete problem of optimal aggregation 
(Chipman and Winker (1992, 1994)), portfolio optimization (Dueck and Winker 
(1992)) and the identification of multivariate lag structures (Winker (1994a)). The 
TA algorithm may be described as a refined local search algorithm. Sometimes it is 
also referred to as an evolutionary algorithm. 

The basic idea of the TA algorithm is quite simple and similar to the one used 
for the Simulated Annealing (SA) algorithm (Kirkpatrick et al. (1983)). TA starts 
with an element x0 £ X* which might be randomly chosen. Then, a (high) number 
of iterations is performed. In each iteration step the algorithm tries to replace its 
current Solution xc with a new one. The new candidate xn is chosen (randomly) as 
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a small perturbation of the current Solution, or — speaking in mathematical terms 
-— in a given neighbourhood of the current Solution xc. The value of the objective 
function is calculated for the new candidate (in general, this might be done by 
updating the value for xc) and the results are compared: A/ = /(xn) — / (xc). 

The decision rule in a Standard or trivial local search algorithm is to accept xn as 
the new current Solution if and only if A/ > 0. If the number of iterations is large 
enough this algorithm will end up in a local maximum with certainty. However, 
in general the quality of the local maximum will be low, i.e. the difference to the 
global maximum will be large. Applications of the trivial local search algorithm 
to travelling salesman problems show differences in the order of magnitude of 10 
percent. A further increase of the number of iterations will not improve the quality 
of the results. In contrast, both the SA and the TA algorithm do converge to the 
global optimum with the number of iterations tending to infinity (cf. Aarts and 
Korst (1989) and Althöf er and Koschnick (1991), respectively). 

The refined local search algorithms overcome the problem of getting stuck in a 
bad local maximum by admitting a temporary worsening of the objective function 
during the iteration process. In the case of TA the new element xn is accepted as 
the current Solution if and only if A/ > T for a given threshold value T. As this 
threshold value is non-zero, i.e. negative during most of the iteration steps, bad 
local maxima which might have been reached can be left again. The thresholds are 
changed during the running of the algorithm in order to end up at zero at the very 
end. Thus, the TA algorithm will also end up in a local maximum though of higher 
quality with good chances of being the global maximum at least for small problem 
sizes. 

Before turning to a discussion of the choice of local structure by imposing a set 
of neighbourhoods on X* and the choice of the threshold values, figure 1 presents a 
flow chart of the TA implementation for maximizing the given objective function /, 
i.e. for approximating the discrepancy for a given set of points. 

In analogy to Simulated Annealing the sequence of threshold values T might be 
interpreted as a cooling schedule. Consequently, for a given value of T a number of 
J iterations has to be performed in order to bring the system in a stable state with 
regard to this threshold parameter. Afterwards, the threshold value is increased 
(decreased in absolute terms) until it reaches zero after I steps of the outer loop. 

Although the structure of the algorithm is quite simple its implementation to 
the approximation of the discrepancy for a given set of points has to take into 
consideration several aspects. We will concentrate on two central aspects, namely 
the definition of local neighbourhoods and the generation of a threshold sequence, 
and sketch two associated coding methods used to reduce the time and memory 
requirements of our implementation. 

Let us start with the introduction of some local structure on the domain X*. As 
X* is a (finite) subset of the d- dimensional unit cube Cd the use of the projections 
of some £-spheres with regard to the Euclidian metric in R,d seems to be natural. 
However, this choice would generate two problems. Firstly, the cardinalities of 
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Figure 1: Threshold Accepting Algorithm for Approximating Discrepancy 

the neighbourhoods can be very different. In particular, for large d and n < oo 
one would have to choose large e (> 0.5) to make sure that each neighbourhood 
contains at least two elements. Otherwise, the algorithm would risk getting stuck 
in the random start vector Xo- The second problem arises only for large d and n 
and is connected to calculating and storing the resulting neighbourhoods. Either 
this has to be done once and for all points in X* resulting in tremendous memory 
requirements, or the neighbourhood has to be calculated in each iteration step for 
the current Solution xc generating a very high time consumption. 

Due to these limitations of projected e—spheres we use a different concept cor-
responding to a maximum order norm. In order to define the neighbourhoods we 
have to introduce some notations. For 1 < j < d Xj is the set of j—th coordinates 
of X*}° Let rrij := #Xj be the cardinality of Xj and 

Pj : > X , (11) 

10Cf. page 2. 
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an ordering of Xj, i.e. 
PJ{H)> Pjih) <==> (12) 

Now, for x = (fj,... ,£j,... ,£d) £ X* and k = 21 + 1, / G IN we can define the set 
of k next neighbours for the j-th coordinate by 

(®) := (x € x* I P j1^) e ~ /},min{m^pj1^) + /}]} , (13) 

and finally 

Uk(x) := fl W/(ä) (14) 
3=1 

is the set of all elements of X* with all coordinates being one of the k next neighbours 
to the corresponding coordinate of x with regard to the orderings p. 

The following figure 2 might illustrate the concept for d = 2. Except for points 
near to the borders of the unit cube all neighbourhoods have the same number of 
elements for a given k though they differ distinctly with regard to the also plotted 
smallest projected e-spheres of the Euclidian metric including the complete neigh-
bourhood. Of course, this effect becomes even more marked for larger dimensions. 
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A second advantage of using this definition of local structure is related to the 
coding of the algorithm. In order to choose a new element in the neighbourhood of 
the current Solution xn £ Uk(xc) we only need the orderings p\,... ,pd which can be 
stored using memory growing only at rate n • d in the dimensions of the problem. 
Finally, the right hand side plots in figure 3 indicate that the objective function / 
has a reasonable local behavior with regard to this neighbourhood definition, i.e. a 
strong concentration of only small deviations within a neighbourhood. 

The plots in figures 3 and 4 have been obtained by Simulation. The simulations 
were performed for the glp-set GLPG,2129 (cf. table 3 in section 4 for the generating 
vector). We randomly chose 5.000 points Xo £ X* and for each Xo a neighbour Xi £ 
Uk(xo)- Afterwards, for each pair (x0,xi) the objective function / was evaluated 
at xo and Xj. The left hand side plots in figure 3 show histograms of the resulting 
relative deviations (/(xj) —/(x0))/ max{/(xo), /(xi)}, whereas the right hand side 
plots in figure 3 and all the plots in figure 4 show histograms of the deviations 
/(x 1) - /(x0). 

The plots in figure 3 were obtained for k = 101. The uppermost histograms 
correspond exactly to the previously given neighbourhood definition. For the lower 
plots a further restriction was made by allowing only 4 or 2 of the coordinates to 
change to one of the k next neighbours. This reduction of the neighbourhood seems 
to introduce also some local structure for the relative deviations. However, due to 
the fact that the objective function / is restricted to take values only in the interval 
[0,1] the choice of relative deviations seems inappropriate in this context. Moreover, 
the distributions of deviations appear to be Symmetrie with rather flat tails, i.e. most 
of the deviations between two elements of a neighbourhood are small. About the 
same shape of the distribution can be found for other integer optimization problems 
with unlimited objective funetions using relative deviations. For these applications 
the threshold parameter T is chosen as a mark up factor on the current Solution. 
However, for approximating the discrepancy of a set of points the choice of an 
additive threshold parameter is superior. 

Of course, the choice of local neighbourhoods Uk still leaves some degrees of 
freedom for the generation of xn in a neighbourhood of xc. Firstly, k can be varied. 
Figure 4 shows the influence of changes in k, It plots the distribution of deviations 
for k — 11,101,1001. The influence of k on the distribution is not very pronounced. 
Naturally the distribution becomes flatter for larger k going from top to bottom in 
the plots in figure 4. However, the distribution shape teils only part of the story. 
Small values for k mean small cardinality of the neighbourhoods. Consequently, the 
risk of getting stuck in a local maximum is larger, whereas the number of iterations 
needed to achieve a stable state is smaller. We find a trade—off of small neighbour­
hoods with low computational bürden and larger neighbourhoods with higher result 
quality. However, this relation is not monotonic over the whole ränge of possible k 
values. We might come back to this point in the next section. 

Secondly, the neighbourhoods might be restricted to changes in only a few coor­
dinates as demonstrated in figure 3. Finally, the drawing of x71 out of a given neigh-
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Figure 3: Histograms of Local Deviations*) 
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bourhood is subject to some weighting. All the simulations presented in figures 3 
and 4 were performed using uniform weights. Using a curtailed normal distribution 
leads to quite similar results. 

The exercise of simulating the distribution of local deviations contributes not 
only some insights to the local structure of the discrete optimization problem under 
study, but enables us to generate a threshold sequence endogenously. Instead of 
fixing the threshold sequence exogenously as done in Dueck and Scheuer (1990) 
or choosing a geometric sequence as in Nissen and Paul (1994) we generate our 
threshold sequences from an empirical distribution. As for the simulations presented 
above a (large) number I of pairs (x0,Xi) is randomly generated and the negative 
absolute deviations — | /(xo) —/(xi) | are calculated and sorted in increasing order. 
The Performance of the algorithm can be improved using only a fraction a of this 
sequence, i.e. I := al and we use the values closest to zero. As the steps between two 
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Figure 4: Histograms of Deviationsa) 
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consecutive thresholds T in this sequence become smaller as the sequence approaches 
zero, we can use a fixed number of iterations J for each step. Nevertheless, the total 
number of iterations for a given interval of thresholds will increase due to the shape 
of the distribution of deviations. 

4 Some Results 

In order to assess the Performance of Our TA implementation for approximating the 
discrepancy of a given set of points we used randomly generated small GLP-sets. 
For each d £ {4, 5, 6} ten GLP-sets with minimal 50 (25 for d = 6) and maximal 
500 (250 for d = 5, 100 for d = 6) points were produced along the following lines. 
Using the uniform random number generator of GAUSS 3.2 n was chosen in the 
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deviations (-100) 
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admissible ränge. Then, d different elements h\,..., hj, of {1,..., n — 1} were drawn 
and the GLP—set generated as described in equation (8). 

For each of the 30 generated GLP-sets the exact value of the discrepancy was 
calculated using a C-implementation of the algorithm by Bundschuh and Zhu (1993) 
(we are indebted to Mr. Vincent Chin and Mr. J.X. Pan for leaving as the C-code 
for our calculations). Table 1 presents the GLP-sets by the number of elements 
n and the generating elements h\, ... ,hd together with the calculated discrepancy 
and the time consumption of the algorithm on an IBM RS6000/3AT Workstation 
(SPECfp: 187.2). 

To each GLP-set the TA implementation introduced in the previous section 
was applied. We used 5 ad hoc chosen different parameter constellations (/ = 
viterationsT.O and a — 0.9 ... 1.0). For each constellation 20 trials were performed.11 

For each parameter constellation the program was run with the total number of it­
erations varying from only 10.000 up to 100.000. Each trial with 10.000 iterations 
took about 0.39 seconds of CPU-time and each trial with 100.000 iterations 3.84 
seconds. Hence, the time consumptions of our TA implementation is some orders 
of magnitude smaller than for the (deterministic) algorithm of Bundschuh and Zhu 
(1993). As the number of iterations was chosen independent of the problem size this 
effect becomes more marked for larger instances. 

Table 2 shows only the results for the runs with 10.000 and 100.000 iterations. 
As could be expected the quality of the results will increase for a larger number 
of iterations. It should be noted that we did not intensively tune the algorithm so 
far neither with regard to the parameters I and a nor with regard to the choice of 
neighbourhoods. Table 2 presents the ad hoc choice of neighbourhood parameters 
(maximum number of coordinates to be changed in one step mc and number of next 
neighbours to be considered k) together with Performance results. 

The results show that the TA implementation gives a reasonable mean approx-
imation to the (exact) discrepancy of a given set of points. Without formal tuning 
at least one out of 100 trials gave the global Optimum with only 10.000 iterations 
in about a quarter second with the only exception being the instance 4.451. The 
percentage of correct results reaches 100 per cent for some instances as the number 
of iterations goes to 100.000. However, there are some instances for which the mean 
Performance and the percentage of correct results is not yet satisfying. Some more 
tuning of the optimization parameters probably could increase the quality of the 
results for these instances. 

Of course, we cannot expect this good Performance to hold for larger instances. 
Nevertheless, increasing the number of iterations we can hope to achieve good ap-
proximations to the discrepancy for large instances when an exact calculation using 
the C-code of the algorithm of Bundschuh and Zhu (1993) becomes completely in-
feasible. We will discuss the "fine tuning" of our TA implementation for a GLP-set 

nThe results in Nissen and Paul (1994) indicate that a number of 5 to 10 trials might be enough 
to obtain a good estimator of the mean Performance. However, eis w e are interested not only in 
the mean Performance we chose to perform a larger number of trials. 
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Table 1: Discrepancy for randomly generated GLP-sets 

name d n h\,.. • > Discrepancy time 
4.145 4 145 38 74 80 143 0.073097 107,59s 
4.255 4 255 5 70 110 131 0.109302 1.534,67s 
4.312 4 255 138 143 274 285 0.061847 4.010,91s 
4.376 4 376 91 218 279 300 0.075314 9.934,17s 
4.388 4 388 13 321 362 367 0.129728 11.514,78s 
4.442 4 442 64 368 370 431 0.061960 21.606,05s 
4.448 4 448 206 264 279 433 0.054795 23.079,21s 
4.451 4 451 225 233 343 348 0.027050 23.794,33s 
4.471 4 471 1 82 113 401 0.028638 29.380,69s 

4.487a) 4 487 95 248 251 273 0.041270 34.758,52s 
5.102 5 102 13 32 45 54 81 0.121584 422,14s 
5.122 5 122 16 35 51 75 95 0.086018 1.226,64s 
5.147 5 147 22 69 83 89 120 0.145597 3.130,62s 
5.153 5 153 4 52 65 72 99 0.107473 3.876,93s 
5.169 5 169 9 82 84 106 157 0.075502 6.824,10s 
5.170 5 170 31 49 128 132 154 0.086021 7.050,87s 
5.195 5 195 58 155 159 168 177 0.157370 15.281,83s 
5.203 5 203 69 86 91 104 174 0.167494 18.939,71s 
5.235 5 235 79 111 133 169 224 0.078614 43.869,17s 
5.236 5 236 33 61 65 176 189 0.058171 44.947,22s 
6.28 6 28 1 4 6 14 15 21 0.536033 3,31s 

6.29a) 6 29 1 8 12 14 19 22 0.253197 4,20s 
6.35 6 35 7 12 17 23 28 30 0.343061 11,63s 
6.50 6 50 10 13 18 30 35 41 0.314829 91,24s 

6.61a) 6 61 15 20 50 51 54 56 0.193738 301,82s 

6.73a) 6 73 40 49 51 54 56 63 0.148542 899,98s 
6.81 6 81 2 11 38 60 70 79 0.250000 1.687,32s 
6.88 6 88 6 10 25 27 40 82 0.265817 2.819,58s 
6.90 6 90 15 28 33 52 68 74 0.199153 3.267,27s 
6.92 6 92 2 8 18 60 65 89 0.163515 3.738,54s 

a) Prime number of elements. 
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Table 2: Performance of TA for Discrepancy Evaluation 

name neighbourhood mean best percentage best 

of set mc k (10.000 it.) value 10.000 it. 100.000 it. 

4.145 2 41 0.07151 0.07310 33.0 79.0 

4.255 2 41 0.10426 0.10930 47.0 89.0 

4.312 2 41 0.06162 0.06168 97.0 100.0 
4.376 2 41 0.07418 0.07531 44.0 90.0 
4.388 2 41 0.12939 0.12973 15.0 86.0 
4.442 2 41 0.05602 0.06196 39.0 87.0 

4.448 2 41 0.05469 0.05480 60.0 96.0 
4.451 2 41 0.02462 0.02705 0.0 2.0 
4.471 2 41 0.02323 0.02864 14.0 52.0 
4.487 2 41 0.03893 0.04127 7.0 30.0 
5.102 3 41 0.11528 0.12158 8.0 16.0 
5.122 3 41 0.08394 0.08602 6.0 56.0 
5.147 3 41 0.14168 0.14560 23.0 80.0 
5.153 3 41 0.10493 0.10747 16.0 26.0 
5.169 3 41 0.07038 0.07550 1.0 11.0 
5.170 3 41 0.08235 0.08602 31.0 92.0 
5.195 3 41 0.15495 0.15737 18.0 82.0 
5.203 3 41 0.16747 0.16749 99.0 100.0 
5.235 3 41 0.07444 0.07861 15.0 69.0 
5.236 3 41 0.05504 0.05817 3.0 13.0 
6.28 3 11 0.53603 0.53603 100.0 100.0 
6.29 3 11 0.24930 0.25320 16.0 42.0 
6.35 3 11 0.30663 0.34306 34.0 92.0 
6.50 3 11 0.31472 0.31483 99.0 100.0 
6.61 3 21 0.18862 0.19374 42.0 88.0 
6.73 3 21 0.14567 0.14854 14.0 81.0 
6.81 3 21 0.24999 0.25000 96.0 100.0 
6.88 3 21 0.26582 0.26582 100.0 100.0 
6.90 3 21 0.19915 0.19915 100.0 100.0 
6.92 3 21 0.16248 0.16452 70.0 94.0 
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Table 3: Generating Vectors for "large" GLP-Sets 

name n h\ h-2. 
6.2129 2129 1 41 279 578 793 1681 
7.3997 3997 1 375 1417 2311 3034 3564 3888 
8.3997 3997 1 375 1417 2311 3034 3211 3564 3888 
9.3997 3997 1 375 1417 1962 2311 3034 3211 3564 3888 

10.4661 4661 1 715 1702 2570 3122 3304 3889 4289 4315 4574 
11.4661 4661 1 715 1702 1879 2570 3122 3304 3889 4289 4315 4574 

with 2129 points and also present results for the other "large" GLP-sets given by 
the generating vectors in table 3. 

In a first tuning step we analyzed the effect of varying I and a on the mean 
outcome of 20 optimization runs with 10.000 iterations each. Figure 5 shows the 
resulting surface plot with 100 times the mean approximation of the discrepancy out 
of the 20 runs. The numbers on the x-axes show multiples 7 of viterations used to 
determine 7, whereas the y—axes represents fractions a of the empricial distribution 
used for the threshold sequence. Values of a. greater than 1 stand for using the 
complete empirical jump distribution as threshold sequence muptliplying each value 
by a. 

Figure 5: Mean Discrepancy for Different Parameter Choices 

15 



As can be seen, the best mean results were achieved choosing a close to one. 
Furthermore, the quality of the results seems to be quite independent of the choice 
of I as long as it is choosen large enough. The fact that a has to be choosen close to 
one instead of the 0.1 to 0.4 optimal for other applications might be attributed to the 
fact that in this application we use an additive threshold instead of a multiplicative 
one. However, we again find the feature that a too large choice of a is less harmful 
than a too small one. 

Consequently, for the next tuning step we fixed I to be equal to Vrterations and 
had a closer look at the effect of the number of iterations performed. Again, for each 
value of a ranging from 0.05 to 1.95 and each number of iterations ranging from 
20.000 to 200.000 twenty replications were performed. Figure 6 plots the resulting 
surfaces for the mean of these replications on the left side and for the maximum on 
the right. Given a value of a in the ränge found optimal by the previous Simulation 
experiment, i.e. between 0.9 and 1.0, the mean quality of the results increases with 
the total number of iterations though at a diminishing rate. 

Figure 6: Mean and Maximum Discrepancy for Different Parameter Choices 

Looking at the right hand side of the plot, the marked points represent paramter 
constellations for which at least once the overall maximal discrepancy was achieved. 
As can be seen, this global Optimum is reached already for quite small number 
of iterations, but the probability to reach the global optimum increases with the 
number of iterations leading to the improved mean Performance represented by the 
left hand side part of the figure. 

Using the parameters in the ränge found optimal by the simulations presented 

16 



Table 4: Approximation of Discrepancy for "large" GLP-Sets 

name 
neighb.hood discrepancy 

std. deviation CPU-time name mc k a maximal mean std. deviation CPU-time 
6.2129 3 301 0.90 0.025423 0.024821 0.000445 3.287,20s 
7.3997 3 301 1.05 0.025382 0.022764 0.001645 3.145,20s 
8.3997 3 301 0.95 0.025382 0.021807 0.002131 3.248,51s 
9.3997 3 301 0.80 0.038732 0.025850 0.007729 2.627.50s 

10.4661 3 301 1.15 0.027182 0.020067 0.004459 3.475.11s 
11.4661 4 501 1.15 0.027238 0.021467 0.004625 2.873.80s 

for our GLP-set with 2129 points12we approximated the discrepancy for the other 
large GLP-sets given in table 3. The results are presented in the following table 4. 
The CPU-time in this table gives the total time used on our RS 6000/360 Work­
station, which is slower than the 3AT by a factor of about 2.6, for 20 replications 
with 200.000 iterations each for the optimal parameter constellation leading to the 
maximal discrepancy presented in the fifth column. Hence, a time of about 3.200 
seconds would correspond to only 20 minutes on a RS 6000/3AT Workstation. 

We have no possibility to check whether these results represent already the global 
optimum, i.e. the actual discrepancy for the given set of points, as the algorithm 
of Bundschuh and Zhu (1993) would require about 1027 years of CPU-time on our 
fastest Workstation for the smallest instance 6.2129. Nevertheless, the comparison 
for the smaller instances certified the high quality of the approximation by the 
TA algorithm. Thus, we might as least assume that the given values are good 
lower bounds. Furthermore, all attempts to increase the obtained lower bounds by 
changing the paramter constellation or increasing the total number of iterations up 
to 1.000.000 only yielded a minor improvement for the largest instance 11.4661 to 
0.02830. 

5 Conclusion and Outlook 

A central goal of our further research will be to extend the TA implementation to 
allow for searching "good" point sets, i.e. not only approximating the discrepancy 
for a given set of points, but for given n and d finding n points, Xi*,..., xn*, in Cd 

such that 
D(x i*,...,xn*)= min Z?(xa,... ,xn). (15) 

x1,...,x„ec,d 

Of course, this will introduce a further degree of complexity to the problem. Never­
theless, we are optimistic that TA allows this kind of double—loop optimization. 

127 was always set equal to viterations and a was allowed to vary in the ränge of 0.8 to 1.2. 
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