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Application of time-lapse ERT imaging to watershed characterization

Carlyle R. Miller1, Partha S. Routh2, Troy R. Brosten3, and James P. McNamara3

ABSTRACT

Time-lapse electrical resistivity tomography �ERT� has many

practical applications to the study of subsurface properties and

processes. When inverting time-lapse ERT data, it is useful to

proceed beyond straightforward inversion of data differences

and take advantage of the time-lapse nature of the data. We assess

various approaches for inverting and interpreting time-lapse

ERT data and determine that two approaches work well. The first

approach is model subtraction after separate inversion of the data

from two time periods, and the second approach is to use the in-

verted model from a base data set as the reference model or prior

information for subsequent time periods. We prefer this second

approach. Data inversion methodology should be considered

when designing data acquisition; i.e., to utilize the second ap-

proach, it is important to collect one or more data sets for which

the bulk of the subsurface is in a background or relatively unper-

turbed state. A third and commonly used approach to time-lapse

inversion, inverting the difference between two data sets, localiz-

es the regions of the model in which change has occurred; how-

ever, varying noise levels between the two data sets can be prob-

lematic. To further assess the various time-lapse inversion ap-

proaches, we acquired field data from a catchment within the Dry

Creek Experimental Watershed near Boise, Idaho, U.S.A. We

combined the complimentary information from individual static

ERT inversions, time-lapse ERT images, and available hydrolog-

ic data in a robust interpretation scheme to aid in quantifying sea-

sonal variations in subsurface moisture content.

INTRODUCTION

Advances in geophysical instrumentation in the past decade have

made it possible to efficiently acquire large data sets in a fraction of

the time compared to collecting the same set of measurements using

older equipment. Modernized instrumentation also means that, in

many cases, repeatability of measurements has improved, making

time-lapse geophysical surveys much more practical by improving

the signal-to-noise ratio.

The advantage of time-lapse measurements versus a single, static

survey is that they provide a means of imaging not only subsurface

properties, but also dynamic changes in these properties, which can

in turn provide insight into ongoing subsurface processes. Time-

lapse geophysical measurements have been shown to be successful

in monitoring and understanding physical processes in the subsur-

face, e.g. �Ramirez et al., 1993, 1995; Lumley, 2001; Tsourlos et al.,

2003; Singha and Gorelick, 2005; Lane et al., 2006; MacBeth et al.,

2006; Anno and Routh, 2007�.

In a general sense, time-lapse methodologies can be utilized to de-

termine the rate at which a process is occurring, define the volume of

subsurface region affected by a particular process, and understand

the complex interactions between various subsurface processes.

Time-lapse is especially important for near-surface studies since the

medium is much more dynamic due to the proximity of the air-earth

interface. This is evidenced by increase in time-lapse applications

for near-surface geophysical problems �Day-Lewis et al., 2002,

2003; Singha and Gorelick, 2005�.

Time-lapse geophysical measurements can help to enhance our

understanding of a particular site but can also make designing our

temporal and spatial sampling schemes more challenging. Ultimate-

ly, the rate at which a process of interest is occurring determines how

closely spaced our data collection must occur temporally. Day-
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Lewis et al. �2002, 2003� demonstrate the importance of accounting

for the finite time required for data collection �the data may be

changing faster than we are able to complete a subset of measure-

ments� when inverting time-lapse crosswell radar data from a tracer

test.

On the other end of the temporal spectrum are long-term studies

where the properties of interest vary over diurnal, seasonal, or even

longer time scales. In this type of investigation, there is adequate

time to collect the data with little concern as to short-timescale varia-

tions in the subsurface. The methodologies and data examples pre-

sented herein focus on studies pertaining to the latter types of pro-

cesses.

Electrical resistance tomography �ERT� data are useful in imag-

ing properties and processes associated with groundwater and unsat-

urated zone systems �Slater et al., 1997; Zhou et al., 2001; Binley et

al., 2002; Müller et al., 2003; Mohnke et al., 2006; Oldenborger et

al., 2007a, b; Descloitres et al., 2007�. The ERT data are sensitive to

the subsurface geoelectrical structure, which is in turn sensitive to

subsurface variations in water saturation and pore water salinity �Ar-

chie, 1942; Mualem and Friedman, 1991; Henry, 1997; Ewing and

Hunt, 2006�. This makes ERT particularly useful for characterizing

infiltration into bedrock where conventional methods of soil mois-

ture accounting fail.

Geophysical methods have been widely used in groundwater in-

vestigations �Fitterman and Stewart, 1986; McNeill, 1990; Hubbard

et al., 2001� and can provide information over large areas at a rela-

tively inexpensive cost compared to other methods �e.g. borehole

drilling and trenching�. Surface ERT is minimally invasive and thus

does not disturb ongoing hydrological processes at the site. Previous

studies have successfully used electromagnetic and electrical meth-

ods within aquifer regions composed of fractured media to provide

valuable information for hydrogeological and environmental studies

�Lane et al., 1995; Hautot et al., 2002; Sharma and Baranwal, 2005;

Boadu et al., 2005; Porsani et al., 2005; Hubbard and Rubin, 2006�.

Bedrock infiltration is a key component of the water balance of

mountain watersheds. However, it is a challenging process to mea-

sure at watershed scales and is typically calculated as a water bal-

ance residual. The primary difficulty arises from the non-Darcian

flow in fractures masked by a soil mantle. Time-lapse ERT can be

used to characterize the bedrock fracture networks by monitoring the

changes in water saturation.

In the field data example presented in this paper, the fieldwork was

timed such that we were able to collect a base data set prior to onset

of winter rain and snowfall. For these background data, we assume

that the in situ water saturation was at or near its annual low value.

We then collected two data sets during the wet winter/spring time pe-

riod to capture the changes in the electrical structure induced by the

increase in water saturation. The final data set was collected late in

the summer when the hydrologic system had returned to a dry state.

When collecting time-lapse geophysical data, it is important to

have knowledge of the current state of the study site so that proper in-

terpretation of the results is possible. When possible, data collection

should be timed to capture at least one entire cycle of the hydrologi-

cal process of interest. Data acquired over two or more entire cycles

may prove useful in assessing longer-term stability of the hydrologi-

cal process. With this view we acquired another survey in September

2007 to validate the hydrologic cycle stability. In addition to the ERT

data collected specifically for this study, we also present soil mois-

ture content data collected concurrently for other studies that proved

useful when interpreting the results.

We present three approaches for inverting time-lapse geophysical

data:

1� Model subtraction after separate inversion of the data from two

time periods

2� Use of an inverted model from a base data set as the reference

model for subsequent time periods

3� Inversion of the differences between two data sets

Using a combination of synthetic and field ERT data, we demon-

strate that the first two approaches work well in most instances. The

second approach is shown to be the preferred method. The third ap-

proach localizes the regions of the model in which change has oc-

curred but varying noise levels between the two data sets can be

problematic because of repeatability issues.

The field data example comes from a small, semiarid catchment in

the Dry Creek Experimental Watershed �DCEW� near Boise, Idaho

U.S.A. This study area presented an opportunity to compare and in-

terpret geophysical results in conjunction with long-term hydrologi-

cal and geological data collected at the site. We focus primarily on

soil moisture content data from the site; but local precipitation, hy-

drogeochemical, hydraulic, and soil composition estimates also aid-

ed in the ERT data interpretations. Combining the information from

these previous/ongoing studies with the individual ERT inversions

and the time-lapse images, we were able to determine possible frac-

ture locations and identify pathways of bedrock infiltration at the

study site.

METHODS

Electrical resistivity tomography: Acquisition
and processing

ERT measurements are highly sensitive to saturated pore spaces.

With the exception of conductive rocks such as ore bodies, most rock

types in the near surface under dry conditions are typically resistive,

therefore propagation of electrical current in the shallow subsurface

is primarily achieved via movement of ions within pore water. As-

suming that the pore water preferentially flows through the bedrock

fracture networks, electrical potentials will be sensitive to and help

locate fracture zones within the bedrock.

The instrument used for ERT data acquisition was the IRIS Syscal

Pro Switch 72. This instrument has been designed for high produc-

tivity resistivity and IP measurements with a precision of 0.2% and

threshold voltage of 1 �V. The system features an internal switch-

ing board for 72 electrodes and an internal 250 W power source. The

system is designed to make resistivity measurements at selected in-

jection electrodes and potential measuring electrodes predefined by

the user. Input specifications include electrode array type, combina-

tions of electrode spacing, injection current strength, and the number

of measurements to be stacked.

When data acquisition begins, the instrument checks the elec-

trodes for contact and then takes measurements according to the user

input acquisition sequence. For example, in a dipole-dipole survey

such as was employed in this paper, the sequence might specify the

first two electrodes as the first current injection pair. Voltages are

then recorded for the remaining electrode pairs for a number of pre-

defined combinations. Because the instrument has 10 recording

channels, it is efficient to collect 10 potential measurements for each

G8 Miller et al.



current injection pair. The next two electrodes inline then become

the current injection pair and the process is repeated until the injec-

tion pair reaches the far end of the survey line.

Typically, ERT data quality is improved by stacking several mea-

surements for each quadripole �transmitter-receiver pair�. A data re-

peatability threshold �e.g., 3%–5% standard deviation� can then be

used to remove noisy measurements from the data.Alternatively, the

noisier data may be retained and assigned higher standard deviations

prior to inversion. If reciprocal measurements are collected, these

can also be used to eliminate noisy data or for error assignment. The

electrical potentials, input current, and electrode geometry are then

used to compute apparent resistivities for input to an inversion algo-

rithm.

Inversion of ERT data

Construction of subsurface images from ERT data is a nonlinear

inverse problem with the goal of recovering the model �electrical

conductivities� that reproduces the observed data �electrical poten-

tials�. The observed data are assumed to be contaminated with noise;

therefore an exact fit of the model to the data would result in extrane-

ous structure. Typically, some level of noise is assumed for each da-

tum, and then a model objective function that penalizes the small-

ness and flatness of the model is minimized to reproduce data only to

within an amount that is justified by the amount of noise in the data.

The amount of structure in the final model is determined by how well

the observed data are reproduced �Oldenburg and Li, 1994�.

An important consideration of any geophysical imaging applica-

tion is to determine which features within the model are required to

fit the data �Miller and Routh, 2007�. To determine this, and subse-

quently the depth of investigation, one can invert the same data set

using two different reference �background� models. The model re-

gions that are not constrained by the data will revert back to the refer-

ence model �Oldenburg and Li, 1999�.

For all of the examples in this paper, inverse modeling was carried

out using DCIP2D software �developed by the University of British

Columbia�, which uses a 2D finite volume method to model the DC

potentials. The inversion recovers ln�� �, allowing for a large range

of conductivities as well as imposing positivity. The inverse problem

can be stated as

minimize � m � �s�Ws�m � m0��2
� �x�Wx�m � m0��2

� �z�Wz�m � m0��2, �1�

subject to � d � �Wd�dpred
� dobs��2

� �
d
*. �2�

This inverse problem is solved by minimizing,

� �m,m0� � � �Wm�m � m0��2
� �Wd�dpred

� dobs��2.

�3�

In the preceding equations, m is the model sought, m0 is the refer-

ence model, dobs is the observed data, dpred is the predicted data, and

�
d
* is the tolerance for the data misfit, chosen, e.g., based on a � 2 mis-

fit criterion. The three terms in the model objective function �� m,

equation 1� allow us to apply smallness and smoothness constraints

to the solution, while the data objective function �� d, equation 2� en-

sures that we honor the data observations while accounting for noise

in the data, and � �from equation 3� is the regularization parameter

that defines the trade-off between fitting the data and honoring the a

priori constraints.

The data weighting matrix Wd is diagonal and we chose to use the

reciprocals of the data standard deviations as the weights. Ws is diag-

onal, and Wx and Wz are finite-difference operators. The � parame-

ters are used to control the relative contribution of smallest and flat-

test model constraints. Note that � �Wm�m � m0��2 in equation 3 is a

shorthand notation for the right-hand side of equation 1. For addi-

tional details regarding the inversion, see Oldenburg and Li �1994�.

Noise considerations

Some of the major sources of noise in a DC resistivity experiment

are high contact resistance, measurement errors, and background/

cultural noise �Slater et al., 2000�. These noise sources can never be

eliminated entirely but there are useful techniques available for min-

imizing and/or quantifying the data noise. Stacking repeated mea-

surements is useful for minimizing random errors. Reciprocal mea-

surements �swapping the source and receiver electrode pair� can pro-

vide a measure of data precision �LaBrecque et al., 1996�.

Stacking and reciprocal measurements are both useful in estimat-

ing standard deviations and/or culling outliers from the data. Under-

standing the noise in the data observations is crucial for data inver-

sion, and ultimately determines how well we can resolve the subsur-

face structure. If noise estimates are too low, artifacts are introduced

into the inverted images, while conversely, if noise estimates are too

high, image resolution is degraded �LaBrecque et al., 1996�.

A crucial aspect of any time-lapse problem is the ability to image

the changes when repeatability of the data between surveys is in

question. LaBrecque et al. �1996� observed that permanently in-

stalled electrodes are more electrically noisy when first installed, but

improve over time. The higher noise levels in the initial data sets ver-

sus later data sets leads to differences in image resolution from one

survey to the next. Much effort goes into making the base and subse-

quent data sets compatible so that data can be subtracted or normal-

ized, however in practice this is often difficult to achieve. Olden-

borger et al. �2005� showed how positioning errors in the electrodes

can manifest artifacts in the inverted images.

Thus, similar to the problems with permanent electrode installa-

tion, mispositioning of electrodes can cause difficulties when work-

ing with data differences explicitly. Daily and Owen �1991� suggest

inverting a normalized data set given by the following equation

dn �
dt

d0

dh, �4�

where dn is the normalized data, d0 is the base data, dt is the time-

lapse data, and dh is the data that would be observed if the subsurface

were a homogeneous half space.

This normalization provides a unique way to view the data chang-

es, however, it involves a nonlinear transformation of the data and

consequently, the data noise needs to be estimated due to this trans-

formation. Instead, we advocate more straightforward linear data

operations. In the next section, we discuss several ways to invert for

time-lapse changes. We show that compatibility of the data sets,

while desirable, is not always necessary to image the time-lapse

changes.
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SYNTHETIC DATA EXAMPLE

Using a synthetic example, we now examine how one can formu-

late the time-lapse inversion problem to image changes in subsur-

face properties. The synthetic example was constructed as follows:

• We began with field data and inverted for a model, using the in-

version procedure described in the next section. This model �Fig-

ure 1a� is considered the base model for the synthetic examples.

The base model produced in this manner provides a realistic syn-

thetic that is closer to the real data example than choosing an arbi-

trary synthetic model which is a common practice in geophysical

data inversion.

• We projected this model onto a finer mesh to forward model the

data. In the example presented in this paper the cell size for the

forward mesh is half of the inversion mesh.

• Using this base model, we generated synthetic data and then add-

ed random noise to the data. These data are considered the base

data �Figure 2a�.

• Next we increased the electrical conductivity by a factor of two in

a localized region of the base model where changes are expected

to occur to generate a time-lapse model. The regions where elec-

trical conductivity was increased are shown in Figure 3a.

• We generated synthetic data on the finer forward mesh with the

time-lapse model and then added random noise to obtain the

time-lapse data �Figure 2b�.

a)

b)

c)

Figure 1. Synthetic example for the time-lapse inversion of resistivi-
ty data. �a� Base electrical resistivity model obtained from inversion.
�b� Inverted resistivity model from time-lapse data with best fit half-
space as reference model. �c� Inverted resistivity time-lapse model
with the base model in �a� as reference model.

Figure 2. The base and time-lapse synthetic apparent-resistivity data
contaminated with Gaussian noise with standard deviation of 5%
plus a base-level error of 1 mV.

a)

b)

c)

d)

e)

f)

g)

h)

i)

Figure 3. Synthetic example showing the region in which time-lapse
change has occurred using various approaches to time-lapse inver-
sion. �a� True model showing the changes. Left column, �b-e� base
and monitor data contaminated with 5% noise. Right column, �f-i�
base data has 15% noise, and monitor data has 5% noise. �b and f�
Time-lapse change using model subtraction. �c and g� Time-lapse
change when the base model is used as the reference model for inver-
sion of the time-lapse data. �d and h� Percent time-lapse change from
direct inversion of the data differences �equation 6�, with appropri-
ate noise assumptions. �e and i� Percent time-lapse change from di-
rect inversion of the data differences with lower noise assumptions
so that the amplitude recovery can be enhanced.
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This approach of generating a synthetic example allows us to in-

corporate realistic features into the true model and yet provides us

with the flexibility to examine various features of time-lapse inver-

sion with known model changes. To investigate the different time-

lapse inversion approaches we consider two synthetic examples. In

the first example, the base data has the same level of noise compared

to the monitor data. We contaminate the base and the monitor data

with Gaussian noise with a standard deviation of 5% plus a constant

error floor of 1 mV.

It is possible that equipment used to acquire data between two sur-

veys are from different vintages. For example, newer equipment typ-

ically has better signal-to-noise ratio compared to older equipment.

We consider such a scenario in constructing the second synthetic ex-

ample. In the second example, we contaminate the base data with

Gaussian noise with standard deviation of 15% and the monitor data

with 5%. The base level error of 1 mV is same for both data sets.

Base model

In the base inversion, we advocate using a simple half-space con-

ductivity model, e.g. the best-fit half-space model, as the reference

model, although this is not a strict requirement. If detailed subsur-

face information is available, incorporating this information into the

reference model may speed convergence and improve the final im-

ages. Minimizing the objective function in equation 3 provides us

with the base model denoted by mbase shown in Figure 1a. As noted

earlier, the time-lapse model is generated by increasing the conduc-

tivity by a factor of two in localized region. This is a conservative

perturbation given that the conductivity of granite ranges from 1.3

�106 �m when dry to 4.5�103 �m when wet and this range of

variability is observed in a variety of earth materials �Telford et al.,

1990�.

To track the changes to the base model we plot the quantity given

by

C � �mbase
� � m

mbase � � 1, �5�

shown in Figure 3a. The percent change in the model is essentially C,

which can be either positive or negative. Depending on the strength

of the expected time-lapse change, C can be bounded. When there is

no time-lapse change, C � 0. For the synthetic example presented

in this paper, C is bounded between 0�C�100.

Model subtraction after separate inversion

First we consider the example with the same level of noise be-

tween the base and the monitor data. The results are shown in the left

panel in Figure 3. The two separate inversions were carried out on an

identical finite difference mesh. The best-fit half-space conductivity

model from the base inversion was utilized as the reference model in

both inversions. Choosing the same reference model for both of the

inversions provides a clear indication of the region where the time-

lapse change has occurred �see the model difference plotted in Fig-

ure 3b�.

The results from the second example �higher noise level in the

base data� are shown in the right panel in Figure 3. For the second ex-

ample, we inverted the base and monitor data with the same refer-

ence model as in the first example. The resulting time-lapse change

is shown in Figure 3f. Comparing Figure 3b and f, we note the recov-

ered time-lapse changes are very similar, however the model in Fig-

ure 3f has more negative anomalies compared to Figure 3b. This is a

consequence of increased noise level in the base data in the second

example. As long as the noise assumptions are chosen appropriately

for the respective data sets, model differencing should provide stable

results.

We note that in practical time-lapse problems the changes we

track are small enough that the resolution of the two data sets is near-

ly identical from a model resolution point of view. However, if two

surveys have different resolution, then artifacts may result by taking

the model differences after inversion �not shown�. In the examples

presented here, the base and the monitor data are inverted with the

same mesh. If the parameterization of the base and monitor data are

different, then model subtraction can degrade time-lapse response

due to effects of regularization in the recovered models.

Base model as the reference model

As an alternative to using the same half-space reference model for

each inversion, we elected to invert the base data using the best-fit

half-space as the reference model, then invert the time-lapse data us-

ing the base model as the reference model �Anno and Routh, 2007;

Oldenborger et al., 2007a�. We refer to this method as a cascaded

time-lapse inversion approach. This should effectively localize the

model differences within the region that is supported by the data be-

cause all other regions will revert to the base model.

Employing this technique, we see that the regions where time-

lapse changes have occurred are clearly illuminated. Figure 1c

shows a much closer correspondence to Figure 1a than does Figure

1b. We note that in both the approaches; i.e. model subtraction after

separate inversions and inverting the time-lapse data with the base

model as the reference; data repeatability is not a strict requirement.

It should be stated here, however, that differences in noise levels

between data sets could result in different regularization of the two

inversions thus one result may be much smoother than the other. In

this case, the best approach would be to use the less noisy data set as

the base data set, and then use approximate noise assumptions in the

inversion of the time-lapse data set, although we emphasize that both

inversions should converge to the same rms misfit. The cascaded ap-

proach also provides the ability to build an updated model that has

the background information from the less noisy data and builds the

changes on top of it. Thus the final model preserves the features ob-

tained with the less noisy data.

Figure 3c and g shows the time-lapse change obtained using the

cascaded method for the first and the second example respectively.

We clearly see the time-lapse change in Figure 3c and g agree well

with the true anomaly in Figure 3a. However, Figure 3g has more

negative anomaly artifacts due to the increased level of noise in the

base data. Except very minor differences, the time-lapse results from

the cascaded approach are very similar to the model subtraction ap-

proach in Figure 3b and f.

It is important to note that the cascaded approach is more practical

compared to the model subtraction approach. We expect the conver-

gence to be faster for large 3D problems starting with the base model

as reference to invert the monitor data. In the model subtraction ap-

proach, starting with a homogeneous reference model such as the

best-fit half-space can be computationally intensive for large 3D

problems.
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Inversion of data differences

A commonly used method in time-lapse inversion is a data differ-

ence inversion approach expressed either explicitly in terms of data

differences or as a ratio �Slater et al., 2000; LaBrecque and Yang,

2001; Johnson et al., 2005, 2007�. Here we difference the base data

and the time-lapse data and directly invert for changes in the model.

Representing the nonlinear mapping between the data and the model

by d � F�m� and assuming small changes in the model, a linear ap-

proximation can be used to represent the mapping between the mod-

el changes and the data changes.

We can write mathematically

� d �
�F�mbase

� � m� � F�mbase��

F�mbase�
� �

j�1

M

Jij� m j

where, Jij �
1

F�mbase�i

�Fi�m
base�

�m j
base . �6�

Equation 6 is a linearized equation, similar to the linearized IP for-

ward model in Oldenburg and Li �1994�. This implies that one can

use a linearized IP inversion code to invert difference data in a time-

lapse experiment to obtain conductivity changes. Since the data

changes are typically small we multiply the difference data from

equation 6 by 100 and write it as percent time-lapse change.

We generate the data difference for the two synthetic examples

and invert the difference data using an IP inversion code. With differ-

ence data it is not straightforward to determine what standard devia-

tion to assign as the noise estimate. In the first example, the base and

monitor data have a noise level of 5%, therefore we choose the stan-

dard deviation for the difference data as 5% of the difference data

magnitude plus a base level error of 1 mV. With this noise assign-

ment, the recovered time-lapse response from difference data is

shown in Figure 3d. The inverted response is represented in terms of

percent time-lapse change.

The results clearly indicate that the recovered time-lapse anoma-

lies are lower in amplitude compared to previous approaches in Fig-

ure 3b and c. Since the anomalies from difference inversion are low-

er in magnitude, we reinvert the difference data using a lower noise

assumption with the hope of improving the time-lapse model. The

recovered time-lapse anomalies in Figure 3e show that there is an in-

crease in amplitude of the time-lapse anomalies but it also enhances

the artifacts. This is a consequence of the nature of the difference

data.As a general observation, this procedure is prone to data repeat-

ability issues because the two data are subtracted explicitly in equa-

tion 6 before inverting. Moreover, subtracting two data sets with dif-

ferent levels of noise can accentuate the noise for the difference data.

In the second example, the noise assignment for the difference

data is somewhat questionable because the base data has more noise

compared to the monitor data. As a general observation we will ex-

pect the difference data of the two data sets, i.e., base and the monitor

to have noise characteristics that are higher. Based on this we choose

15% of the difference data magnitude plus a base level error of 1 mV

as the standard deviation of the data errors. The time-lapse model

from the difference inversion in Figure 3h clearly indicates the effect

of the increased level of noise.

Comparing Figure 3h with 3g shows the time-lapse anomalies are

reduced and the artifacts are enhanced in the difference inversion.

Reinverting the same difference data with lower noise assumption

produces more artifacts, shown in Figure 3i. Both synthetic exam-

ples show that the difference data inversion produces reduced anom-

alies and more artifacts. Thus our preferred method of time-lapse in-

version is either model subtraction or inverting the time-lapse data

by including the base model as the reference model during inversion.

FIELD DATA EXAMPLE

Long-term hydrological studies are being performed in a small

catchment, the Treeline Site �McNamara et al., 2005�, within the

larger Dry Creek Experimental Watershed near Boise, Idaho, USA

�Figure 4�. Despite the large quantity and variety of hydrological

data collected at this site, there is still only a general understanding

of the groundwater flow regime within the catchment. Because of

the high cost associated with installing monitoring wells and the fact

that shallow bedrock prohibits piezometer installation beyond ap-

proximately one-meter depth, surface ERT is an attractive alterna-

tive method for understanding the subsurface site hydrogeology.

An ongoing question has focused on quantifying the infiltration

rate of groundwater recharge, as a source and/or sink, through frac-

ture systems within the Idaho Batholith. The goal of this study is to

delineate fracture zones within the bedrock to aid in estimating infil-

tration rates through the fractures and, ultimately, resolve the un-

known source found by hydrological models. Four ERT surveys

were collected at the same location during the months of October

and December 2005,April 2006, and September 2007, with the hope

of imaging variations in pore water saturation within the fractures

throughout the fall to summer time periods thus refining hydrologic

models of the catchment.

The repeatability of the data acquired during two dry conditions

�October 2005 and September 2007� and two wet conditions �De-

cember 2005 and April 2006� provide for an investigation of the
Figure 4. Location of hydrological instruments and ERT line �modi-
fied from McNamara et al., 2005�.
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time-lapse change of the electrical conductivity and its relation to

hydrologic conditions. However, we note that the repeatability of the

data sets acquired during wet conditions is better than those acquired

during dry conditions and this is likely due to higher contact resis-

tance during the dry season.

Site description

The Treeline Site encompasses 0.02 km2 and is located at a mean

elevation of 1620 m within the Dry Creek Experimental Watershed

�Figure 4�. Total relief of the site is 70 meters. The Treeline Site

trends northwest to southeast, and encompasses land surface slopes

of 20°–40° over mostly concave and convex angles. This paper is

primarily a fractured rock study, but most of the hard data that are

available for the site come from a thin soil layer covering the majori-

ty of the site. Soils are derived from weathering of the Idaho

Batholith �a biotite granodiorite intrusion� and are classified as

sandy loam �Yenko, 2003� with depth ranges between 0.25 m and

1.2 m with an average depth of 0.45 m. Soils are shallowest and

coarsest at ridge locations along the north and northeast boundaries.

Soil depth is greatest along lower slopes adjacent to the stream

channel in the center of the catchment. Texture analysis �hydrometer

method� of the A, B, and C horizons of a 70-cm deep soil pit located

midslope on a north facing aspect exhibited minimal variation in

sand �74%–80%�, silt �15%–17%�, and clay �7%–9%� �McNamara

et al., 2005�. The primary vegetation includes sagebrush, forbs,

grasses, and scattered trees with live canopy cover ranging from

9%–11% during fall and winter months and 35%–45% in spring and

summer seasons �Williams, 2005�.

Precipitation �annual average of 57 cm� falls mostly during the

cold season, with approximately half the annual precipitation falling

as snow. Rain-on-snow events are common during the late fall and

early spring seasons. During typical years, persistent snow pack re-

mains from mid-December through March with winter air tempera-

tures ranging between �10°C and �5°C. Summer months are hot

and dry �air temperature ranges 20°C–28°C� with infrequent thun-

derstorms.

The site drains by an ephemeral stream. Stream flow typically be-

gins in early fall with the onset of rain, but remains low or episodic

with snow pack development. Late fall and early winter rain on snow

events and/or complete melt on southerly aspects generate small hy-

drograph peaks. Snow pack on the north-facing slope is usually

maintained from the onset of snowfall. The annual hydrograph peak

usually occurs in March orApril depending on the duration of snow-

melt �Williams, 2005�. Nearby wells �within the DCEW� have been

drilled to depths exceeding 100 m before reaching an adequately

producing groundwater aquifer. Thus we do not expect to image the

water table in this near-surface study.

ERT data acquisition

The ERT data were acquired using the IRIS system described pre-

viously in the Methods section. Each of the four data collection days

consisted of laying out the electrical survey line along the same pro-

file location running perpendicular to the stream axis �Figure 4�. The

total spread length is 144 m with the instrument located at the center

of the spread. Spread length on each side of the instrument is 72 m

with electrode spacing of 2 m for a total of 36 takeouts.

We acquired 645 quadripole measurements along the profile, us-

ing a dipole-dipole configuration with 2-m a-spacing and

N-spacings from 1 to 10 to take advantage of the 10-channel capabil-

ity of the instrument.Aminimum of four and a maximum of 16 mea-

surements were stacked for each quadripole with a goal of 3% or

lower standard deviation for the repeated measurements. We trans-

mitted a square wave with a period of 500 ms and requested a poten-

tial voltage of 800 mV on the measurement channel nearest the

transmitting dipole. Data acquisition took approximately

10 minutes once the equipment was in place and the necessary pa-

rameters were input into the instrument.

Local elevation measurements were recorded at each slope break

along the survey line to determine topographical variation along the

survey line. Within rugged terrain, the currents injected into the

ground tend to disperse beneath topographic highs and converge

within topographic lows. The equipotential lines are distorted by the

topography and produce false anomalies �Telford et al., 1990�.

By measuring the topography, we were able to account for it in the

modeling and inversion, thus eliminating spurious structure in the

models.

Figure 5 shows the ERT data from four different months. The re-

peatability of data during the wet season is better than during the dry

season, but visual inspection shows that the repeatability is good in

both dry and wet seasons given all the practical issues of data acqui-

sition. Due to lower conductivities during the dry periods, some of

the observed data points from October and September contained

high errors �outliers� and were subsequently removed in order to

minimize voltage error.

Of the 645 data values collected for each profile, 570 and 594 data

values were inverted for the October and September profiles, respec-

tively. We opted to remove the outliers from the data set because we

are using the L2 norm as the data misfit criteria in equation 2 �alter-

natively, we could have assigned higher standard deviations to the

outliers�. All of the data values collected in December and April ex-

hibited good data repeatability �	6% standard deviation� because

of wetter, more conductive subsurface conditions.

One difficulty that we faced in this time-lapse study was that we

were unable to leave the electrodes in place for the duration of the ex-

Figure 5. Apparent-resistivity data along the four ERT profiles. Note
the repeatability between all four surveys, especially between the
two profiles acquired in wetter conditions �December 2005 and
April 2006� and the two profiles acquired in drier conditions �Octo-
ber 2005 and September 2007�.
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periment. This resulted in slightly different electrode locations for

each of the surveys. These location errors are assumed to be minor in

comparison with the large differences in conductivity between the

dry season and the wet season. Even if the electrode locations were

permanent, the contact resistances would vary because of dramati-

cally changing near-surface moisture conditions. This practical is-

sue reinforces our preferred method to invert the time-lapse data,

which is to use the inverted model from a base data set as the refer-

ence model for subsequent time periods.

Time-lapse inversion of the Dry Creek data

The ERT profiles were first inverted individually. Noise assump-

tions for the inversion were 5% of the observed data amplitudes plus

a base level of 0.01 mV. Inversion was carried out as described in the

methods section. Individual inversion of each data set is shown in

Figure 6.

Each of the individually inverted models indicate one of three dis-

tinct conductive anomalies. The two smaller anomalies are located

beneath the south and north ridgelines �centered at 23 m and 132 m,

respectively� and the larger, more prominent anomaly is located near

the bottom of the north facing slope �centered at 65 m; Figure 6�.

The inverted models show obvious similarities and differences be-

tween the dry and wet season. Profiles collected under dry condi-

tions illustrate more distinct conductive and resistive regions,

whereas the wet periods display a smoother gradient between the

conductive and resistive regions �Figure 6�. Persistence of the con-

ductive anomalies in all four seasonal profiles implies that these rep-

resent actual subsurface structure rather than random artifacts.

INTERPRETATION OF FIELD DATA RESULTS

The volumetric moisture content is a measure of the relative

amount of water in a volume of soil so that its maximum potential

value is the porosity of the soil. Volumetric moisture content was

measured hourly using a Campbell Scientific CR10X data logger

and CS615 soil moisture sensors at depths of 5, 15, 30, 45, 60, 65,

and 100 cm. The CS615 sensors were calibrated in situ with colo-

cated time-domain reflectometry wave guides �Chandler et al.,

2004�.

The soil is very dry during the summer months when the moisture

content remains relatively stable near 0.07. The 22 October 2005

survey occurred near the end of this stable dry period, prior to the on-

set of fall rains. Through the winter months the moisture content os-

cillates around 0.2. The 22 December 2005 and 14 April 2006 sur-

veys occurred at the beginning and end of this period, after which the

moisture content drops towards its summer low �Figure 7�. Based on

approximately two years of soil moisture data for the site, the Octo-

ber 2005, December 2005, and April 2006 surveys were representa-

tive samples of a prolonged dry period, a rapid wetting period, and a

prolonged wet period respectively.

The persistent conductive regions within the inverted models are

likely due to pore fluids in fracture zones. These anomalies are more

localized in the profiles collected during dry conditions compared to

the profiles gathered during water-saturated conditions. The in-

creased conductivities within the October and September profiles

could indicate presence of clays. The conductive anomalies in De-

cember andApril are attributed to increased water input into the geo-

hydrological system through precipitation that percolates through

the soil column and into the fracture zones.Apersistently conductive

fracture zone on the south-facing slope may represent a key pathway

of bedrock infiltration.

A fracture trace analysis of the Idaho Batholith conducted by

Gates �1994� found three major fracture sets striking N20°E,

N20°W, and N70°W. A more recent fracture analysis concluded a

mean strike direction of joints at N15°W �Hoffman et al., 2005�. The

N20°E fracture set strikes along a similar direction to the transverse

profile while the N20°W and N15°W fracture sets are nearly per-

pendicular to the profile line. The large anomaly centered at 65 m

�Figure 6� extends approximately 20 m laterally and may be repre-

sentative of two intersecting fracture sets �N20°E and N20°W�. The

remaining anomalies may be the result of intersecting fracture joints

with strike between N15°W to N20°W. This interpretation is in gen-

eral agreement with what is known about the fracture system in the

area �Gates, 1994; Hoffman et al., 2005�.

Figure 6. Inverted resisitivity models. Cool colors indicate conduc-
tive regions and warm colors indicate resistive regions. Depth of in-
vestigation for these models was determined using the DOI ap-
proach of Oldenburg and Li �1999�.

Figure 7. Volumetric soil moisture data from the study site. Data col-
lection dates are indicated on the plot. This plot shows the average
soil moisture in the approximately one-meter-thick soil column �soil
moisture sensors at 5, 15, 30, 45, 60, 65, and 100 cm depth�.
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Relating the conductivity increase to an increase in
water saturation

Using a petrophysical transformation, we can relate the electrical

conductivity to water saturation �see Appendix A for additional de-

tails�. Because the data were collected throughout the year, this al-

lows us to quantify the seasonal variability in water saturation at the

site. Using a form of Archie’s law �Archie, 1942�, we rearrange the

equation to solve for the water saturation 
 ,


 � � � t

a� w�m�
1

n
, �7�

where � t is the modeled conductivity; � w is the fluid conductivity

�we use 0.014 S/m based on nearby well measurements�; � is the

porosity; and a, m, and n are fitting parameters. We used values

from Carmichael �1989� for igneous rock with 4% porosity for these

fitting parameters �a � 1.4, m � 1.58, and n � 2�.

The water saturations computed for each time period are shown in

Figure 8. For the dry months, the saturation is very low except in a

few compact regions. A possible explanation for these apparently

highly saturated regions is that Archie’s law does not work well in

the presence of clays. There may be significant clay alteration of the

bedrock in these areas; or alternatively, these may represent electri-

cally conductive mineralized fracture zones. In the wet periods, the

profiles appear to have a higher saturation throughout.

To better visualize the changing saturation, it is useful to look at

where and how the conductivity is changing throughout the year.

Figure 9 shows the percent change in conductivity from October to

December, and from October to April. In some localized regions the

conductivity decreases but globally there is an overall increase in

conductivity going from the dry period in October to the wetter peri-

ods in December andApril. This could be explained by transitioning

from conduction paths dominated by clay content to conduction

paths dominated by pore fluid saturation.

The conductivity changes of Figure 9 were used along with Equa-

tion 7 to compute the saturation increase in the model �Figure 10�

from the dry season into the wet season. Note that in this case, the

petrophysical relation is more meaningful because the model chang-

es are not affected by the presence of clays. In December �Figure 10�,

the saturation increase is limited to a few distinct regions of the mod-

el. These regions are most likely the well-connected fracture zones,

and thus quickly become more saturated when there is an increase in

soil moisture. Later in the wet season, the regions of increased satu-

ration are more pervasive through the model �Figure 10�, likely due

to groundwater infiltration into smaller fracture networks through-

out the subsurface.

Figure 8. Water saturation in percent, calculated for each of the four
conductivity models usingArchie’s law �equation 7�. Cool colors in-
dicate higher saturation and warm colors indicate lower saturation.

Figure 9. Percent change in conductivity from the dry season to the
wet season computed using equation 5. Cool colors indicate an in-
crease in conductivity and warm colors indicate a decrease in con-
ductivity.

Figure 10. Percent increase in water saturation going from the dry
season to the wet season. Cool colors indicate large increases in satu-
ration and warm colors indicate small increases in saturation. Note
that the largest increases in saturation are confined to the near-sur-
face soil layer and four distinct zones within the bedrock. These four
zones likely are related to fracture zones within the bedrock.
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CONCLUSIONS

Time-lapse ERT can be a very effective tool for monitoring

changes in subsurface properties in an effort to understand and quan-

tify subsurface processes. We investigate three different approaches

to inverting time-lapse ERT data. As expected, the choice of the

method depends strongly upon the noise levels of the base and the

monitor data, i.e., the data repeatability. In the context of a small-

scale watershed study, we used synthetic and field data examples to

investigate the three different time-lapse ERT inversion strategies:

�a� model subtraction after inverting the base and monitor data sepa-

rately, �b� inverting the base data to first obtain a base model and then

using it as prior information to invert the monitor data and �c� invert-

ing data differences to recover the time-lapse anomalies.

The examples demonstrate that, of the three approaches, the data

differencing approach is most sensitive to noise in the data. If data

noise is well quantified and understood, and repeatability of data is

good, the data differencing approach can be applied with confidence.

Otherwise, the preferred approaches are model differencing or using

the base model as the reference model to invert monitor data sets.

These approaches, especially the latter, demonstrate a lower sensi-

tivity to variability in data noise and thus are less susceptible to pro-

ducing noise-related time-lapse artifacts.

In the field data example presented in this paper, we used static in-

version of individual data sets to identify the conductive anomalies,

and used the base model as the reference model to ascertain regions

of increased conductivity. The regions with conductivity increase

are attributed to an increase in subsurface moisture content. This

time-lapse inversion methodology enabled us to identify a bedrock

infiltration pathway which had previously been inferred from hydro-

logical studies, but was not well understood. The repeatability of the

data over the multiyear study and the persistent features in the invert-

ed models provided confidence in our interpretation of this water

pathway.
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APPENDIX A

RELATION BETWEEN WATER SATURATION

AND ELECTRICAL CONDUCTIVITY

In this section we derive a relation between the change in soil

moisture content and the change in electrical conducivity. The petro-

physical relation between moisture and conductivity used in this

work is given byArchie’s law


 � � � t

a� w�m�
1

n
. �A-1�

Consider that the soil moisture changes by an amount � 
 that re-

sults in the change in electrical conductivity by � � t, given by


 � � 
 � �� t � � � t

a� w�m �
1

n
. �A-2�

Taking the logarithm on both sides of equation A-2 and expanding

we obtain

log�
�1 �
� 




�� �

1

n
log�� � t

a� w�m��1 �
� � t

� t

�� ,

�A-3�

log 
 � log�1 �
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n
log� � t

a� w�m�
�

1

n
log�1 �

� � t

� t

� . �A-4�

The first term on the left-hand side of equation A-4 cancels the

first term on the right-hand side. Note that for x�1, log�1 � x�	x,

so that for small perturbations in saturation and electrical conductiv-

ity, i.e., � 
 /
 �1 and � � t/� t �1, equation A-4 reduces to

� 




�

1

n

� � t

� t

. �A-5�

Therefore, � � t/� t will directly indicate changes in relative satu-

ration and much of the complication of the petrophysical model is

simplified. Equation A-5 indicates that � 
 /
 is a scaled version of

� � t/� t.

For a general nonlinear petrophysical relation between saturation

and electrical conductivity we consider


 � f�� t,� w,�,m,a,n� , �A-6�

and the change in saturation due to perturbation of conductivity is

given by


 � � 
 � f�� t � � � t,� w,�,m,a,n� . �A-7�

Using Taylor’s series expansion and by neglecting the higher or-

der terms, we obtain


 � � 
 � f�� t� �
� f

�� t

� � t. �A-8�

This provides a mapping between the relative change in saturation

and relative change in conductivity scaled by the sensitivity of the

petrophysical relation with respect to the measured changes in con-

ductivity. This is given by

� 




� � � log f

� log � t

�� � t

� t

. �A-9�

If we useArchie’s law, then the sensitivity is given by the scale factor

1/n.

� �log f�

� �log � t�
�

1

n
. �A-10�
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