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Value-Driven Design provides a framework to enhance the systems engineering processes 

for the design of large systems. By employing economics in decision making, Value-Driven 

Design enables rational decision making in terms of the optimum business and technical 

solution at every level of engineering design. This paper explains the application of Value-

Driven Design to the aero-engine system through two case studies, which were conducted 

through workshops under the Rolls-Royce plc Advanced Cost Modeling Methodologies 

project. The Surplus Value Theory was utilized to provide a metric that can trade-off 

component designs with changes in continuous and discrete design variables. Illustrative 

results are presented to demonstrate how the methodology and modeling approach can be 

used to evaluate designs and select the value-enhancing solution. 

I. Introduction 

esign of aerospace systems is inherently complex, particularly with the emergent environmental and 
economical concerns. By 2020, the Advisory Council for Aeronautics Research in Europe (ACARE) [1] sets 

out targets to the aerospace industry to reduce Nitrogen Oxides by 80%, Carbon Dioxide emissions by 50%, reduce 
current average perceived noise levels by half, increase safety by 5-fold and improve cost effectiveness significantly. 
These targets impose great pressures on the entire aerospace industry, from manufacturers and supply chains to the 
aircraft operators. Not only does the aerospace industry aim to develop products and services to meet these targets, 
but they also have to remain competitive. That is, committing to producing products which meet or exceed the 
demands of the customers over their competitors.  
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Figure 1: Limitation of requirement specification 

 Bringing „value‟ to the customers is an important aspect of engineering design. Decisions made during design 
should always add value to the solution space; however it is a great challenge to effectively understand, the impact 
of changing design variables at the micro-level on the overall system „value.‟ This is also supported by Browning [2] 
who presents the idea that process improvement in product development cannot just focus on waste, time or cost 
reduction but the purpose should be to maximize the product value. 

A. The Problem 

 
Design teams would like to deliver the best possible design, but is this possible when projects have no formal 

way to talk about what “best” means? To reduce this conundrum to even simpler terms, if an engineer enters a 
review with two alternative designs; can reviewers say which is better? Can they identify the better design in a way 
that is objective, repeatable, and transparent? 

Perhaps one design meets requirements, (component target) and one does not, in which case the former is clearly 
better. But is it? To illustrate the point, consider two designs for a fan stator vane. Design A will weigh 3kg for a 
vane set and has a projected life of 20,000 hours. Design B will weigh 1kg with a life of 19,990 hours, and in every 
other way is identical to A. The life requirement is 20,000 hours and the weight requirement is less than 3 kg. Is 
Design A, which meets requirements, (or component target) clearly better than Design B (Figure 1)? 

If the case were not so simple, for example if the two components in combination (in one design option) were, 
worse in weight but better in life; how can one establish whether the option is an improvement or a detriment? In 
general, there is currently no way to talk about better or worse with respect to an ad hoc aggregate of components. 
Sometimes there are systems engineering trade factors to point the way, but a trade factor between weight and life 
would be unusual. Besides, from where do trade factors come? 

What is required is a process or rule for comparing designs to highlight which is better. For a successful engine 
or aircraft, then the rule should trace back through a chain of reasoning that begins with how the system design 
impacts product profitability. For example, the Bombardier CSeries CS300 (an all-new airplane) could potentially 
generate greater profits (Figure 2) due to its lower fuel burn compared to the current Airbus A319 or re-engined 
A319 [3]. This presents choices to airlines as to whether to continue operating current technology or invest in new 
technology. A broad view of what makes an aircraft and engine profitable should address all the significant ways in 
which attributes of the product impact customers and influence their purchase decisions.  
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In summary, there is a need for better guidance for design choices, a guidance that translates the desires of 

customers and business developers into terms that are immediately meaningful to design engineers. The guidance 
should be consistent among aircraft conceptual designers, engine preliminary designers, or any engineer making 
decisions throughout the supply chain. 

Before, it was mentioned that the method should be objective, repeatable, and transparent. To expand on these 
criteria:  

 Objective means that decisions should not be opinionated. Instead, every design decision should be based 
entirely on facts, test results, and analyses.  

 Repeatable means that, given the same facts, test results, and analyses, the same decision will always 
result, even if the decision is made by a different designer or a different design team.  

 Transparent means that the design process should easily yield the reasons for the decision. That is, the 
process should not be a black box into which data is entered, and then a result is generated. Instead, a 
clear understandable method is required where the engineer and everyone else can observe and critique 
the process. 

 
The process that addresses these problems and meets these criteria is Value-Driven Design (VDD) [4]. Thus, the 

overall aim of this research initiative is to improve the understanding of VDD by developing and demonstrating 
relevant case studies and associated value models. This work was conducted through workshops and working with 
experts within the field of VDD.  

This paper discusses the concept of VDD and explains the modeling approach taken to incorporate aero-engine 
component design into the air transportation system models. Finally, illustrative results are shown to demonstrate 
how VDD could be used for design decision making. 

II. What is Value-Driven Design? 

A. Value-Driven Design Defined 

A profitable engine program depends on customer demand, translated into price and market share. Demand, 
price, and cost are economic concepts, and the discipline of economics can integrate all these factors into a 
meaningful and useful whole. 

The notion of choosing one design alternative over another, and using this as a step in searching for the best 
design, is central to the discipline of optimization (Figure 3). Optimization provides a great deal of relevant theory, 
whether a computerized search tool is used to do the searching, or an engineering team manually looks for the best 
design. For example, the rule for determining whether an alternative design is better is called an objective function 
in optimization theory. In systems engineering, objective functions can be flowed down to sub-systems and 
components in order to maintain balances in the system. 

 
 

Figure 2: Comparing profits between Bombardier CSeries with 

re-engined Airbus A319 (adapted from [3]) 
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 Thus, VDD combines three disciplines (economics, optimization, and systems engineering) and can be defined 
as: “an improvement to the systems engineering process that employs economics to enable optimization thinking at 

every level of engineering design”. 
It is especially applicable to the development of large systems and provides a designer with a numerical measure 

of „design goodness‟ that can be used for optimization purposes. Figure 4 shows how this improvement can be 
implemented in an optimization process through the development of suitable models. Here it is illustrated that 
product value (profitability) can be used as an overall system design objective function. If each component is 
optimized to maximize this value, then the overall system will be optimized too. This will ensure that by designing 
the “best” components, one will be realizing the “best” system. 

 

 
Figure 4: The VDD process (a global optimization of product profitability) 

 
 

Figure 3: Design cycle for optimization (adapted from [4]) 
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B. The History of Value-Driven Design 

VDD began with a lecture by Herbert Simon in 1968 [5]. Simon was a polymath, nominally a psychologist, who 
won the Turing Medal for pioneering work in artificial intelligence, but also won the Nobel Prize in economics. 
Simon claimed that the essential problem of engineering design existed at the boundary between the internal 
structure of a product designed by engineers and the external aspect of the product, which is how it is seen by users 
and which determines how it relates to its environment. VDD elucidates the boundary between internal and external 
in a way that is true to Simon‟s vision. Simon also thought deeply about the hierarchical organization of complex 
engineered systems like aircraft and engines, and how optimization could be achieved within a hierarchy. 

Simon and his predecessors in decision theory understood that values or preferences are critical to rational 
choice, but it was Ralph Keeney who developed the idea that values could be formally expressed in a model [6]. 
However, Keeney treated the structure of values as unknowable, and constructed his models as multiple linear 
regressions to subjective preferences of stakeholders. This would be like developing an aircraft performance model 
purely by regression to aircraft test data, with no notion of flight dynamics or aerodynamics. Such a model requires a 
great deal of data to yield any precision, and extrapolation becomes an unwise exercise in naked hope. 

In this context, it is fair to note that Thomas Saaty developed the idea that values have a hierarchical structure 
[7], but his analytical hierarchy process is designed only to make choices between pre-established alternatives, and 
in spite of later adaptations, cannot produce a consistent, logical value model or objective function. 

VDD adds the idea that value models have an internal structure of microeconomic logic, in the same way that 
aircraft engine performance models use thermodynamics and aerodynamics to form their internal equations. Because 
of this internal structure, VDD value models only require one to two dozen parameters to be fitted to external data, 
and limited extrapolations can be made with confidence. 

VDD has also formalized the solution to distributed optimal design, although this solution is fairly obvious once 
the design problem is viewed as formulating consistent objective functions for each component. 

In 2005, the American Institute of Aeronautics and Astronautics formed the Value-Driven Design Program 
Committee to advance the development and application of VDD concepts and methods. In 2008, the US DARPA 
(Defence Advanced Research Projects Agency) F6 military satellite program mandated the use of Value-Centric 
Design (a version of VDD developed by Joseph Saleh at the Georgia Institute of Technology) and system value 
models by four satellite manufacturers in designing new satellite architecture [8]. There is currently continuing 
research under the DARPA System F6 Program. 

C. Value-Driven Design Research Initiatives 

VDD is the subject of interest within industry and academia. A number of recent, current and imminent 
programs that incorporate VDD themes are shown in Table 1. 

 

Program VDD Element 
Key Industry 

Partners 
Period 

FLAVIIR (Flapless Air Vehicle Integration 
Research) 

The development of an operations simulation 
of a fleet of Unmanned Air Vehicles (UAV) 
to evaluate technology options  

BAE Systems 2005-2010 

VDD (Value-Driven Design) Workshops 
Development of example gas turbine based 
VDD examples and framework 

Rolls-Royce 2009-2010 

CRESCENDO (Collaborative and Robust 
Engineering using Simulation Capability 
Enabling Next Design Optimization) 

Use of VDD to demonstrate design decisions 
associated with more electric technologies 
and “bleedless” engines. 

Airbus,  
Rolls-Royce, 
EADS, Volvo 

2008-2011 

SILOET (Strategic Investment in Low-
carbon Engine Technology) 

Development of sophisticated LCC and unit 
cost tools consistent with a VDD vision 

Rolls-Royce, 
BAE Systems, 
GKN 

2009-2012 

SAMULET (Strategic Affordable 
Manufacturing in the UK with Leading  
Environmental Technology) 

Development of detailed component and 
material supply chain optimization 

Rolls-Royce 2010-2012 

 

Table 1: Research initiatives with VDD themes 
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D. How Value-Driven Design Works 

Value Driven Design requires the development of a System Value Model, in the case study this will be a 
commercial aircraft. The model links an economic model of the operation of an aircraft fleet with the aircraft 
product model, linked in turn to the engine and other component models (Figure 4).  

The Systems Value Model is an economics-based long term profitability model, for instance an aircraft fleet in 
operation. It includes conventional measures of profitability together with societal impact in the form of noise and 
emissions taxes. The revenue that an aircraft can earn depends on the airline operations. Thus, the aircraft product 
model provides the extensive attributes (these are properties which impact the properties of the system [9]) needed 
for the Systems Value Model to run – for example aircraft payload, fuel burn, weight, reliability, engine number, 
development cost, unit cost, maintenance cost etc. Many of the aircraft product model attributes are dependent on 
each other and link the terms with which engineers are familiar to those of economics. The engine product model 
provides the engine attributes needed by the aircraft product model. Figure 5 shows a schematic diagram of the 
interconnection between the models. 

The development of the composition function is not a straight forward process and needs an understanding of the 
relationships between the aircraft operator, airframer, engine and component. To enable this activity, a generalized 
methodology was developed. Castagne et al. [10] also implemented a VDD methodology for the optimization of an 
aircraft fuselage panel, which showed panel geometries when optimized for different objective functions. In this 
paper, a larger study is developed to encompass the aero-engine system and engine component design, with a focus 
on the methodology. 

 

III. Value-Driven Design Modeling Approach 

VDD process steps 1 to 8 were devised to support model development, to communicate its understanding and to 
enable VDD to be demonstrated on a simplified test case pilot study. The modeling approach followed the steps 
illustrated in Figure 6: 

Component Attributes

Composition Function

(Combined Aircraft Operator, 

Airframe and Engine Models)

Value Model

System Value 
(Aircraft Surplus Value)

Product (Aircraft) 
Extensive Attributes

 
 

Figure 5: Schematic of value model structure 
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The pilot case study was initially based on a starting point of a 110-190 passenger aircraft with V2500-like 
engines operating in a route structure similar to Alaska Airlines‟ 737NGs. Open data sources were used and 
consisted of a combination of the experiences of the authors and published sources such as the Bureau of 
Transportations Statistics [11], the Airline Data Project conducted by the Massachusetts Institute of Technology 
(MIT) [12] and Jane‟s All the World‟s Aircraft [13]. Where data was not available, estimates were used in order to 
continue with demonstrating the approach. 

The first task was to qualitatively identify the key stakeholders of the system; those that impact the profitability – 
for example airline directors, leasing company, aircraft and engine manufacturers, airport operators etc. This starts 
the process of establishing whose value is being maximized and how to incorporate them in the models. For 
instance, Steps 3 and 4 consider the stakeholders to help determine attributes.  

The following subsections provide further detail of the process steps in Figure 6. 

A. The System Value Model 
For a commercial aircraft engine design, the value model is a model of the airliner in service. The value model is 

concerned with how the airliner creates profit for its owner from the overall revenue, which is translated into 
purchase price, and feeds into the program cash-flow stream of the manufacturer. The amount of competition will 
determine how the profit is split, but the bigger the pie, the bigger the pieces. Because the value model only 
concerns the way the user (airline) employs the product (aircraft), the model should contain no internal details of the 
aircraft design. That is, an economist should be able to build the entire value model without knowing anything about 
how the aircraft or the jet engine works. 

The two most important parts of a value model are representations of: 
1. How the customer makes revenue from the product, and  
2. How the product causes the customer to incur costs.  

 
The value model must also translate customer profit into product price and balance product price with 

manufacturing cost in a discounted cash-flow analysis, an exercise that has much in common with developing a 
business plan for a new product. 

 
 

Figure 6: Generalized VDD modeling process steps 
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The aviation industry structure is complex, with competing airlines, competing aircraft manufacturers, and 
competing engine manufacturers. In this case study, the Surplus Value imagines a much simpler structure, in which 
one firm includes the airline, the manufacturer of aircraft for the airline, and the manufacturer of engines for the 
aircraft. Surplus Value Theory [14] shows that the best engine design for this simple firm is the same as the best 
engine design for the actual engine manufacturer in the actual complex industry. However the profit model for the 
simple company (ticket revenues minus aircraft operating cost minus equipment manufacturing cost) is much 
simpler and does not require competitive analyses. In the study‟s value model, which is based on the Surplus Value 
Theory, the calculated profit is the combined profit of the airline, aircraft manufacturer, and engine manufacturer 
(Figure 7). While this is only a surrogate for what is actually intended to maximize (engine manufacturer profit), it is 
equivalent for making design choices.  

The Surplus Value Theory provides a simplified equation that is a subset of Net Present Value (NPV) [14], based 
on several assumptions. NPV is used by economists to describe profit as it varies over a number of years for a 
program life and is a basis for businesses‟ investment decisions. Equation (1) gives the Surplus Value calculation for 
the commercial aviation industry case study: 
 

p

c

SurplusValue Disc x Marketsize x

Disc x Utilization x

Revenue per flight Cost per flight Delay and cancellation costs Externalities tax per flight

Manufacturingcosts

Developmentcosts

 (1) 

 
Where: 
 

 Discp and Discc are multipliers on a single year‟s revenue and costs based on the discount rate and program 
life for the producers/manufacturers and customer (operator) respectively. 

 Market size is the number of aircraft. 

 Utilization (Flights per year) defined by aircraft operations. 

 Revenue per flight generated from passengers and cargo. 

 Cost per flight reflects operating costs. 

 Externalities tax per flight encourages representation of societal good (noise and emission tax). 

 Delay and cancellation costs include a probability of delay/cancellation and an associated cost. 

 Manufacturing costs for airframe and engine. 

 Development costs for airframe and engine. 
 

 
 

Figure 7: Revenue and profit for simplified aircraft system 
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In accordance with the Surplus Value Theory, the model optimizes the combined profit of the engine 
manufacturer, the airframer that incorporates the engine, and the airline that employs the aircraft. The theory shows 
that optimizing the combined profit (or optimizing the profit of an imaginary corporation that performs all three 
roles) will yield the same engine design as maximizing the profit of the engine manufacturer, which is the ultimate 
goal. The combined Surplus Value is simpler to compute because it is not affected by the actions of competing 
engine manufacturers and competing airframers.  

B. The Product and Component Attributes 

Steps 3 and 4 begin by determining the inputs or more generally the connections to the value model (the 
engineering attributes of the product) such as the aircraft attributes that affect the revenue, the operating and 
manufacturing costs. For a commercial airline, typical attributes are payload, range, fuel burn, maintenance cost, and 
manufacturing cost. It is important that these inputs are expressed in terms that are meaningful to design engineers. 

As an exercise to aid in ensuring that all attributes that have a direct impact on the revenue and profit are 
considered, it is pertinent to consider the stakeholders in the airline business. Some may have very little impact on 
profit. For example, the top of climb thrust can be an aircraft attribute because it is important to the flight crew. If 
the flight crew influences the choice of aircraft and therefore affects the aircraft value via demand then this is indeed 
an important attribute to include. Of course, when stakeholders are considered the competition aspect should be 
included. Competitive uncertainties can be incorporated into a model using Game Theory, which Briceno [15] 
investigated to assist the selection process of engine architectures. However, for the simplicity of demonstrating the 
VDD approach, this paper does not consider competition.  

Similarly, the attributes for the components should be formally determined in order to ensure that none are 
missed. These are the engineering attributes of the components that have a quantifiable effect on the formerly 
determined product attributes and, therefore, product overall value. An example of the stakeholders, aircraft and 
engine attributes, determined using simplified Quality Function Deployment (QFD) matrices, are illustrated in 
Figure 8. The QFD matrix acted as a checklist to support model development. 

 

Figure 8: Identifying attributes and their links 
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1. The Product and Component Models 

For steps 5-7, by determining where the quantifiable links lie (Figure 9), it is then possible to begin populating 
the combined model (composition function) with equations calculating aircraft attributes from given inputs. These 
equations are based on experience and information from open sources. The models were constructed using a 
hierarchical modeling tool known as Vanguard Studio, which has also been used to model Surplus Value. Vanguard 
Studio is a visual planning and analysis tool that is now being used for unit cost modeling for Rolls-Royce. VDD 
does not require any specific toolset, however it is important to create a model that is easily edited and displayed; 
and can be linked to more complex component and cost models. Discussions on the models are given in the case 
studies in section IV. 

C. Design Objective Functions 
The next step is to derive local objective functions for each component from the system value model (Surplus 

Value). For a commercial airliner, the engine is one of the most important components. The key to deriving the 
engine objective function is to note that the system attributes that go into the system value model are functions of 
component attributes. For instance, the aircraft weight is the sum of the weights of all the components, and the 
aircraft range is a performance function of various component attributes including engine weight and specific fuel 
consumption. Therefore, sensitivity analysis can be used to determine how much system value (the value model 
output) changes for a small change in each attribute of the engine For example, in the illustrative figure (Figure 10), 
for each unit increase in component weight, the system value will decrease by $130. These changes form partial 
derivatives of system value versus each engine attribute. The engine objective function is the sum of all the engine 
attributes times their corresponding partial derivatives. 

 
 

Figure 9: Composition function - links between aircraft and engine attributes 
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Figure 10 is an example of how a component objective function can be displayed to a component design team. 
The first column captures the current values (supplied by the designers) of the attributes that characterize the success 
of the component design. The objective function is the inner product of the vectors in the first two columns. That is, 
it is a linear function in which each coefficient in the second column is multiplied by the attribute in the first 
column, then all the products (shown in the rightmost column) are summed. The sum is $43,668, and this is the 
output of the objective function. It would be possible, with a composition function, to compare the objective 
function gradient for the weight to each component such that it is clear where investment would have the greatest 
effect on overall value. This approach would also avoid investing in a reduction of attributes with very small 
gradients. 

Deriving the objective function comes down to quantifying the gradient using a sensitivity analysis on the 
attribute of interest. Each number in the gradient is the partial derivative of system value versus the component 
attribute for the row. Thus, the Design Value at the bottom of the table increases $ for $ with system value, which is 
expressed in this example as unit profit. This illustrates how a sensitivity analysis might be performed in order to 
give greater understanding to the engineers of the impact of a small change in one attribute. 

 

In a similar way, an objective function for design of the high pressure turbine can be derived from the objective 
function for the engine, and an objective function for a turbine blade can be derived from the objective function for 
the turbine. Like requirements flow-down, the VDD process is completely scalable. 

For example, say that the aircraft has n attributes, x1 … xn. Let π represent the Surplus Value of the aircraft. Then 
the aircraft objective function is: 

 1 2, ,aircraft nf x x x  (2) 

 
Let the attributes of the engine be y1 … ym. Assume there are constructed functions that determine the x‟s from 

the y‟s. Then the objective function for the engine is: 
 

 
1 1

m n
i

e j

j i i j

x
v y

x y
 (3) 

 
Similarly, if the attributes of the turbine are z1 … zp, the objective function for the turbine is Eq. 4 with all 

derivatives taken at the point of the preliminary design. And so on. The coefficients of the objective functions are 
the numbers shown in the gradient column in Figure 10. 

 

 
1 1

p m
je

t k

k j j k

yv
v z

y z
 (4) 

 

Status Gradient Value

Efficiency 90% 150,000 135,000

Weight 700 -130 -91,000

Reliability 1500 2 3,450

Maintainability 7.8 -340 -2,652

Maintenance Cost 500 -1 -250

Support Equipment 12 -15 -180

Manufacturing Cost 700 -1 -700

Design Value $ 43,668

x

 
 

Figure 10: Effect of component attribute on system value (Adapted from [3]) 

The overall objective is to maximize the system value. 
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The obvious use for a component objective function, or in particular an engine objective function, is to insert it 
into iSight or a similar tool and perform design optimization. However, it can also be used for systems engineering 
trade studies – the attributes for each trade option are defined, and the one with the higher objective function value is 
preferred (plug the attributes for each option into a table like the one in Figure 10 and see which option yield the 
higher Design Value). The objective function can also be used for technology evaluation – the values of the engine 
with and without the technology are compared, and the difference is the value of the technology [16].  Response 
surface analysis can be performed by using the objective function to evaluate a parametric set of engine designs. A 
key benefit in all these applications is that the number produced by the objective function corresponds directly to 
program profitability. Therefore, studies executed for engineering design are also meaningful to business developers 
and senior executives. 

VDD opens the way to a much more effective method for managing risk during product development programs 
[17]. When designs can be monetized, and technologies can be monetized, the technical risk of employing a new 
technology or attempting a novel design can be treated as a financial risk, and all the tools and strategies developed 
by sophisticated corporations for managing financial risk are available for managing technical risk. Design programs 
can advance from simple rules for eliminating or mitigating risk to more profitable decision processes that see the 
opportunity in new designs and manage the opportunity with appropriate conservatism. 

In the end, though, the most important use for VDD is to help design engineers find the best designs, so that their 
collective effort produces the best engine and ultimately the best aircraft for the airline and airframer. 

 

IV. Aero-Engine Subsystem Studies 

Following the details of the approach, the case studies demonstrate how to integrate aero-engine subsystem (the 
components) level design into a VDD process. For each system level (SL) interface in Figure 11, the attributes 
determined provide the quantifiable links. In one direction, attributes are determined by sequentially working down 
each level from the system value (Surplus Value). In a complex system there can be many subn-systems, where n is 
the number of levels. After the attributes of the last SL have been determined, attribute models are then built and 
integrated to the adjacent levels relevant attribute model. Finally, the Surplus Value can then be calculated.  

The studies illustrate the use of VDD for trade studies and technology evaluation by incorporating two exemplar 
engine component models enabling: 

 
1. An investigation into the effect of engine cycle, in this case the turbine entry temperature (TET), due to 

material selection upon overall value, and 
2. A comparison study between a composite and a conventional titanium alloy fan blade. 

 
In order to study the effects of changing design parameters or to make a comparative study between two design 

options, models must be created for the components that produce performance attribute values, operations and 
emissions data, maintenance data, and costs. The results shown in this paper are currently at the preliminary stage 
and are used for illustrative purposes to show how VDD can be used for decision making. 
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A.  Aircraft Attribute Models 

For SL1 and SL2, the development of a revenue estimation capability requires both an understanding of the 
airline operating environment and the capability of the airframe-engine combination. From the airline‟s perspective 
this environment includes the airlines network, their competitors, and the innate demand from the consumer. For the 
case studies a simplified network is modeled, and competitive effects are assumed to be static, where the airline‟s or 
its competitors‟ actions will not have an effect on the default yield or underlying demand for travel. This means that 
the snapshot of the industry is essentially frozen. Therefore, yield becomes a function of aircraft cruise Mach 
number, cruise altitude and stage length. Other attributes include: 

 

 Payload – to determine the amount of payload that can be carried over a given stage length it is necessary 
to determine both the maximum allowable takeoff weight, based upon airport, aircraft, and engine 
properties, and the payload range curve for that takeoff weight. 

 Cruise fuel burn – this is a function of mission range. 

 Revenue – this is a function of passenger, cargo, demand and route. 

 Operating costs – the cost of the operating and aircraft in service is determined by two primary 
components, the operating costs that are directly related to the aircraft and the externalities taxes 
associated with the negative effects of operating the aircraft on surrounding communities. 

 
Modeling the aircraft operations and the dependencies on the performance of the aircraft generates a complex 

model. The inputs to these models are determined from the engine attributes (SL3) and subsequently the engine 
component attributes (SL4). Therefore, the two case studies presented in this paper develop the models required for 
SL3 and SL4. 

 
 
 
 

 
 

Figure 11: Aircraft System Hierarchy 
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B. Case Study 1: Continuous Design Variable – Turbine Entry Temperature 

1. Introduction 

The ability of gas turbines to operate at higher temperatures is critical to improving their performance. This has 
driven gas turbine manufacturers to continually pursue higher Turbine Entry Temperatures (TET). Figure 12 shows 
how TET in Roll-Royce engines has risen over a 60 year period [18]. TET impacts a variety of engine attributes 
which include thermal efficiency, overall pressure ratio, cooling requirement, engine deterioration and engine core 
weight. This presents a challenge in assessing which TET value would generate an optimum engine design. A higher 
TET would be able to improve thermal efficiency; however this would also result in the acceleration of engine 
deterioration. To address this, improved cooling designs and better materials could be used, but this could come at 
the expense of higher development and material costs, and increased engine weight. This scenario provides a useful 
setting to demonstrate how VDD can provide a singular value to rank designs when faced with various competing 
factors. 

For this case study, the main objective will be to analyze how improvements to TET affect Surplus Value. This 
TET change will be assumed to be motivated by the availability of improved materials. To keep the scope of the 
study manageable, only the effects of the change to the High Pressure Turbine (HPT) stages will be modeled. 

 
A number of key engine attributes were identified to have connections with the turbine blade component 

attributes. These were: 
 

1. Engine weight 
2. Maintenance cost 
3. Manufacturing cost 
4. Nitrogen oxide (NOx) and carbon dioxide (CO2) emissions 
5. Specific fuel consumption (SFC) 
6. Turbine entry temperature 

 
2. Model Architecture 

Figure 13 shows an IDEF0 (Integration Definition for Function Modeling 0) diagram constructed for this case 
study. As the IDEF0 diagram class is generally used to show data flow, system control, and functional flow, it is 
able to illustrate the various processes and data flows required to relate TET to the engine attributes of interest. An 
integrated model was constructed according to the IDEF0 model using a commercial software integration package, 
iSight-FD. Software integration packages provide the capability to link analysis models and define the analysis 
sequence and process.  

 
 

Figure 12: Turbine entry temperature for Rolls-Royce engines since 1940 
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Figure 13: IDEF0 diagram for TET study 
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The following describes the connections of the engine attributes with the component attributes and how they 
were modeled: 

 
1. Engine Weight: The TET of an engine design directly influences the size of the engine core; and by 

extension engine weight. The ENGGEN program was used to predict how engine weight would change 
with TET. ENGGEN is a stand-alone version of the Flight Optimization System (FLOPS) [19] engine 
cycle analysis module developed by NASA. FLOPS is a multidisciplinary system of computer programs 
for conceptual and preliminary design and evaluation of advanced aircraft concepts. It consists of nine 
primary modules: weights, aerodynamics, engine cycle analysis, propulsion data scaling and 
interpolation, mission performance, takeoff and landing, noise footprint, cost analysis, and program 
control. 

2. Maintenance Cost: In general, total maintenance cost is the aggregation of cost elements such as repairs, 
component replacement, tooling, inventory and labor. It is a function of engine reliability and the selected 
maintenance strategy. The cost of maintenance is typically non-linear and accumulates at different rates 
over the life of the engine. Maintenance cost will hence be predicted using a discrete event simulation 
(DES) model developed in the IPAS project [20]. Simulation is suitable for this kind of problem as it is 
able to handle the required statistical and logical demands. The costs considered in the model include 
fixed shop visit costs, labor costs, repair costs, and component replacement costs. 

3. Manufacturing Cost: It is expected that raised operating temperatures will increase the cost of 
manufacturing due to different materials and manufacturing methods used. Manufacturing cost of the 
engine was calculated using cost models developed from the Design Analysis Tool for Unit-cost 
Modeling (DATUM) project [21]. The main aim of DATUM was to establish a costing capability to 
support design decision making for all phases of the product development process. These models generate 
component costs from inputs such as component geometries and materials.  

4. NOx and CO2 emissions: Gas turbine emissions are linked to the TET of the engine as it controls thermal 
efficiency and SFC. The calculation of total emissions produced is also dependent on the specific flight 
profile. The relationship of emissions with TET was modeled using the FLOPS tool. 

5. SFC: A spreadsheet model of the open-gas turbine cycle was used to predict the changes in engine design 
with changes in TET. The model is able to generate the diameters, angular velocities, temperatures and 
pressures for the various stages in the designed turbine. In gas turbine design, a change in TET influences 
many aspects of the aero-engine such as core size, thermal efficiency, overall pressure ratio, thrust and 
SFC. To produce an improvement in SFC, the thrust requirement must be held constant for the varying 
levels of TET. 

 
3. Results 

 

Figure 14 shows how Surplus Value varies with TET and overall pressure ratio (OPR); TET and OPR need to be 
adjusted concurrently to maximize thermal efficiency [18]. The highest Surplus Values are concentrated around the 
highest TET values and this indicates that engine fuel burn is dominant. At the lower scale of TET for all OPR 
values, there is a steep step change in Surplus Value. This was due to a change in stage length which increased 
utilization of the aircraft; thereby significantly raising revenue. As mentioned earlier, the main aim of the case study 
was to illustrate the VDD process in the context of aero-engine design and guess estimates were used where real 
data was not available.  

 
 
 
 
 
 
 
 
 
 
 
 
 



 
American Institute of Aeronautics and Astronautics 

 

 

17 

 
 

C. Case Study 2: Discrete Design Variable – Low Pressure Fan Blade Material 
1. Introduction     

Consider a chief design engineer at a design review meeting with their team reviewing the choices of titanium 
fan blades and new carbon composite fan blades (Figure 15), they will face highly complex decisions in the trade-
off. Considerations such as performance (component efficiency), weight, all forms of cost, life (reliability), 
maintainability and noise will all need to be taken into account. Each of these attributes would be addressed by a 
team of specialists, known as an Integrated Project Team (IPT), to perform detailed analysis on the design of a fan 
blade. Although there may be local level trade-offs for instance between life and unit cost, or performance and 
weight, the consideration of the entire system is not formally practiced. This is where VDD would be beneficial – to 
support design decision-making and to use the value measure to rank designs, where the design with a greater value 
would be more favorable. 

Component attributes are the features of the blade. As models are required for each engine attribute, only a 
manageable selection were chosen and linked to fan blade attributes. Design features of the fan blade were chosen 
based on three high-level parameters, which were blade weight, number of blades and fan stage diameter. However, 
there are more intricate design features of a fan blade design which has not been considered here. 

 

     
  a)          b) 

 

Figure 15: Low pressure fan blades (a) Conventional Titanium blades, 

(b) Carbon composite blade 

 
 

Figure 14: Sample results - Surplus Value vs. engine OPR and engine design TET 
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2. Model Architecture 

The engine attributes that had connections with the fan blade attributes were: Nacelle Drag, Manufacturing Cost, 
Maintenance Cost, SFC, Noise and Weight. The mapping of the attributes is shown in Figure 16. Due to limited 
information for certain attributes, simple scaling rules were developed using information that was available. 
Currently, the models assume that the fan blade attributes are independent of other engine component changes. 

For each engine attribute, a data point exists each for the titanium blade and the composite blade such as two 
different manufacturing costs or noise output. The following explains the dependencies between the engine and 
component attribute: 

 
1. Manufacturing cost: This depends on material type, the amount of material used and the manufacturing 

process. A combination of manufacturing process cost models and parametric cost models were developed, 
and scaled to the relevant stage diameter. 

2. Weight: Material properties, stage diameter and number of blades are all factors that impact the weight. The 
weight is a rough estimate and a factor was applied, since detailed fan blade geometries are proprietary 
information.  

3. SFC: The calculation for determining SFC was based on a turbofan engine cycle calculator. The component 
efficiency represented the performance of the fan blade. In future, a relationship between the efficiency and 
fan blade geometry could be used to evaluate the impact on SFC. 

4. Nacelle drag: It is assumed that the nacelle drag is directly proportional to the fan stage diameter. An 
empirical formula was used based on engine cycle parameters and the stage diameter [22]. 

5. Maintenance cost: This is determined by the life of the fan blade and how many there are in an engine set. 
The Mean-Time-Between-Failure / fatigue life should be taken into consideration to identify how often the 
blades will need to be replaced. Due to limited information, the maintenance cost was factored to provide a 
rough estimate. 

6. Engine noise: The NASA FLOPS tool was used to predict the perceived noise with respect to the fan stage 
diameter and number of blades. 

 
 

Figure 16: Engine and component attributes map for fan blade material study 
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3. Results 

The Surplus Value model results were generated and shown in Figure 17. The results provide an insight to how the 
Surplus Value could be used for reviewing design decisions, for instance how design or operating parameters affect 
the overall system value. The design option with the highest Surplus Value would be the best solution. In this case 
the results suggest that the composite fan blade would generate more Surplus Value, thus it would be more 
profitable for the whole system. These are currently preliminary results for illustration, as multifidelity models were 
utilized. The complex behavior between the design parameters and Surplus Value is undergoing further investigation 
with improvements to model fidelity. 

D. Model Validation 
The models created so far have been validated via an expert panel only. The range of experience of the panel and 

validation against industry data from trusted sources has allowed an approximate model to be produced that 
produces a realistic value for overall Surplus Value. However, it is good practice to investigate alternative methods 
for calculating the Surplus Value terms and if this demonstration model proves popular, such refinements may be 
made during future collaborations. The validity of the detailed models will be thoroughly tested as part of the 
research programs through which they were initially constructed. 

Of course, numerous sensitivity studies will be carried out on the model as new terms are added and refinements 
will be made as necessary. This relies upon the experience of the experts constructing the model, but where 
knowledge is lacking advice will be sought from industry to refine the model. 

The models are for demonstration purposes and, as such, it is required to behave as one expects in terms of 
magnitudes and trends but detailed refinements will need to be made if the models are to be considered in industry. 
Design of Experiment (DoE) methods might also be suitable to identify the effects of each attribute. 

V. Conclusion 

The main objective of this research was to improve the understanding of VDD by applying and demonstrating 
the framework to an air transportation system, with particular focus on the aero-engine. A methodology was 
developed for the integration of computational models required for the Surplus Value Theory, which enabled VDD 
to be performed. Identifying attributes for the entire system was an important task to ensure that each system level 
was connected such that the Surplus Value can be calculated.  

Two case studies were presented to investigate the effects of changing TET and fan blade material on the 
Surplus Value. The outcome of these studies showed how detailed design can be included in VDD. Illustrative 
results were shown to highlight how VDD could evaluate which design solution would yield the greatest value.  

           
    a)                      b) 

 

Figure 17: Sample results, a) surface plot of Surplus Value against FPR and TET,  

b) Surplus Value difference between Titanium and Composite fan blades 
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Once a System Value model has been constructed, VDD can be applied with the potential to enhance a business 
by providing an aid to design decision making and ultimately increase profit through its use in the following 
applications: 

 

 System trade studies – the impact on system value of selecting different propulsion system options, such 
as open rotor versus conventional 2/3 shaft. 

 Technology evaluation – the impact of new technology insertion can be assessed in value terms: 
Composite fan versus conventional fan for example. 

 Parametric studies – robust assessment of cycle parameters such as pressure ratios and cycle temperatures 
to optimize value. 

 Distributed optimal design – the value metric can act as a single measure of system „goodness‟. This can 
be used in multidisciplinary optimization studies. 

 Linking market and economic models with propulsion systems design ensures the impact of changes in 
one area can be quickly seen in another. This helps to improve Systems Engineering decision making 
capability. 

 
Finally, for future work, the models can ultimately be developed to a level of confidence such that the results of 

the Surplus Value model can be analyzed in detail, in particular to establish the design objective functions for 
components. This can then provide a platform for optimization and automation to generate the best design in the 
case studies.  
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