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Application of variable criterion theory
to choice reaction time
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A theory of choice reaction time (CRT) is presented which is based on a variable criterion
model assuming the decision criterion to be normally distributed. The theory provides func­
tions of time describing the growth of component processes following stimulus onset. For
correct responses, these processes are sensory and associative strength. For errors, the
processes are sensory strength, generalized associative strength, and associative inhibition. A
model for separating the effects of these processes from that of response competition is
presented. The theory describes, with great accuracy, the CRT distributions of correct re­
sponses and errors, not only for the experiment for which it was derived, but also for a second
experiment in which the criterion was experimentally manipulated. It accounts for the basic
facts of the speed-accuracy tradeoff, not only with respect to the two experiments with differ­
ent speed requirements, but also with respect to the variation of speed over trials within each
experiment. While derived from group data, the theory also describes the performance of
individual subjects. The mean and variability of the criterion distribution and the ability to
utilize associative inhibition are identified as the major sources of individual differences.
Methodological problems involved in the scaling analysis of group data are also discussed.

The many years of continued interest in reaction

time (RT) research lies largely in the fact that RT
measures the time required for the processes involved
in response evocation. Through experimental and
theoretical analysis, it has been the goal to identify
these processes and to specify their temporal and
other properties. One approach, instituted by

Donders and pursued more recently with increasing
sophistication, is that RT is merely the sum of the
times required for each of the necessary component
-processes. An alternative is that each of the processes
involved may develop as a separate function of time
following stimulus onset, and that these functions
may, at least in part, grow simultaneously. It is this
type of interpretation which has resulted when vari­
able criterion theory (Grice, 1968) has been applied
to the analysis of latency phenomena. According to
this view, response evocation will result when the

combined strength of the processes satisfies a de­

cision criterion.
In analysis using the variable criterion principle,

we assume the criterion to be a normally distributed
random variable, under homogeneous conditions of
performance, and treat it as the only source of ran­
dom variability. This is in contrast to other models
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of latency phenomena which have typically attributed

variability to assumed stochastic properties of
sensory, perceptual, or associative processes, and
have assumed the criterion to be constant. Grice
(1968) argued that this latter assumption is implaus­
ible on the basis of evidence that the criterion is so
easily manipulated that it must be extremely labile

and the prime candidate to be the major source of
variability. Since then, evidence has accumulated
that the criterion is readily affected by a wide variety
of experimental variables. The major classes of
processes involved include motivation, instructions,
attention, set, adaptation, and individual differ­
ences. The assumption of normality stems from the
principle that a complex process, determined by a
large number of independent factors, is normally
distributed. As Grice (1968, 1972a) has pointed out,
the treatment of the criterion as the sole source of
RT variability is a simplification. Presumably, no

biological process is free from variability, and our
variability estimates may properly be regarded as the
sum of variability from all sources. However, it is
our assumption that criterion variability is large with
respect to that from other sources (Grice, 1968). The
assumption of normality makes possible the applica­
tions of Thurstonian scaling procedures which
provide the metric for theoretical analysis.

Our analysis of latency data, from simple reaction
time (SRT), disjunctive reaction time involving a
single response (DRT), and conditioning, has been
based on the cumulative probability distributions
of latency. This is in essential agreement with the
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approaches of Luce and Green (1972) and McGill
(1963) in viewing the distributions as reflecting the
development of stimulus-produced information.
That is, any point on a cumulative distribution may
be taken as an index of the average amount of in­
formation processed by that time following stimulus
onset. In terms of the variable criterion model, the
cumulative distribution indicates the proportion of
trials upon which the excitatory strength of the
stimulus information was equal to or greater than
the criterion. The probability density at any time
reflects the rate of gain of information at that time.
Other that this similarity, the present approach is
quite different from that of the above authors.
Rather than viewing the distributions as reflecting
directly the probabilistic properties of stimulus input,
we consider them as reflecting orderly functions
indicating the growth of excitatory strength acting
with respect to a normally distributed criterion
distribution.

It should also be clear that there is a fundamental
difference in philosophy between the present approach
and many current mathematical models based upon
probability theory. The most common approach
is to begin with a priori assumptions concerning the
probabilistic nature of the processes, and to formu­
late a model with sufficient precision that it leads
immediately to, perhaps limited but at least directly
testable, implications. Our goal, which is long term,
is the development of a general theory of response
evocation which will include quantitative descrip­
tions of all of the underlying processes involved and
their relations to the experimental variables which
affect response latency, error production, and such
phenomena as the speed-accuracy tradeoff. We
believe that the development of such a theory de­
pends more upon discovery than upon the formula­
tion of elegant but limited models with immediately
testable implications. Such discovery comes about
through judicious experimentation in combination
with thorough analysis of the data at a theoretical
level. The variable criterion principle, with its limited
assumptions, provides the rationale and the methods
by means of which we propose to conduct such
theoretical investigations. Thus, we regard theory
development as a more gradual and inductive process
than appears to be the present vogue. Certainly, there
is a basis for legitimate differences of opinion con­
cerning choices of scientific strategy, and only time
will be the judge. The present approach does not
imply that experimental tests of theory should never
accompany the longer term process of theory
development. The present investigation, in fact,
includes a test of the theory derived here, based on
an experimental manipulation designed to affect
criterion parameters.

The Variable Criterion Model and
Its Scaling Implications

Variable criterion theory has so far been applied
only to situations involving a single response. While
the present paper is concerned with choice reaction
time (CRT), it is desirable first to present the model
as it applies to the single response case. The prob­
ability of response by any time following stimulus
onset is equal to the probability that excitatory
strength is equal to or greater than the criterion.
Excitatory strength, expressed in scale units, is a
deterministic, increasing function of time. Over
trials, the criterion is a normally distributed, random
variable. The mean and standard deviation of a cri­
terion distribution depend upon the nature of the
task, the nature of the subject, and a variety of ex­
perimental manipulations. The model, as illustrated
in Figure I, represents a case in which experimental
conditions have produced differences in both the
mean and variability. The two normal criterion dis­
tributions, with means C 1 and C 2 and standard
deviations 0 1 and 02, are plotted on the theoretical
dimension of excitatory strength (E). Also indicated
on this dimension are selected values of a function
indicating the growth of excitatory strength as a
function of time since stimulus onset. These values
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Figure 1. Graphic illustration of the variable criterion model

applied to the evocation of a single response. The two normal

functions, with means (;, and (;2' represent the theoretical dis­
tributions of the criterion. The vertical lines represent values,

equally spaced in time, of a function describing the increase
of excitatory strength with time following stimulus onset. The

cumulative probabilities of response by ~ are given by the areas

of the normal functions to the left of f(~).
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fitting a mutual regression line, recognizing the
presence of error in both sets of measures, e.g.,
Grice, Hunt, Kushner, and Morrow (1974). If, in
fact, a linear relation is obtained, it implies that the
data conform to the model of Figure 1, although
it does not necessarily imply that they may not con­
form to other models as well. If C. is taken as the
origin of the scale and a. as its unit, Equation 1 re­
duces to

On this scale, the slope and intercept directly estimate
Ozand C z•

Estimates of f(ti) are given directly by the deviates
of the original cumulative proportions, and the form
of the function may be described by curve fitting
procedures. One approach is to convert the estimates
from C, to the scale of C. by the transformation of
Equation 2 and use the mean at each value of t as
the estimate. On the other hand, if a model has been
derived for one condition only, the resulting func­
tion may be converted to the scale of another by
Equation 2, or its inverse if appropriate, and good­
ness of fit to the new condition evaluated. This pro­
cedure will be used later in this paper. When an REC
is used to relate a new condition to a computed func­
tion derived from another, conventional unidirec­
tional linear regression is appropriate, treating the
computed function as error free.

This model is based primarily on Thurstone's
(1925) original model for the scaling of abilities. Its
conceptual as well as mathematical relationships to
signal detection are also apparent. However, there
are no implications of a metric or decision process
based on likelihood ratio.

The function, f(t), obtained from the cumulative
distribution describes only total excitatory strength.
However, with appropriate experimental designs and
additional scaling procedures, it is possible to analyze
it further into functions which may be taken as
descriptive of the component psychological processes.
In general agreement with Luce and Green (1972),
and McGill (1963), SRT is conceptualized as de­
pendent upon stimulus detection. In our analyses, the
growth of excitatory strength is described by a single
negatively accelerated function indicating the growth
of sensory strength (V). When stimulus intensity is
varied, there results a family of such functions, the
rate of growth depending upon intensity (Grice
et aI., 1974). The latency distributions of human
eyelid conditioning may be described by two
component functions. The first of these describes the
growth of sensory strength, the rate depending upon
CS intensity. The second function, which describes
the growth of associative strength, begins at a later
time and tends to be inflected. The amount of growth
depends upon the number of conditioning trials. and

(1)
Oz Cz C.

E. i = - EZi +----
0.' o.

where Eli and E2i are the normal deviates of the two
cumulative proportions at ti. Solving both ex­
pressions for f(ti), we obtain,

are indicated by the vertical lines, one of which is
labeled f(ti)' For SRT, such functions are negatively
accelerated and the values of the function indicated
here are equally spaced in time. For each distribu­
tion, the proportion of trials on which excitatory
strength equals or exceeds the criterion by ti is given
by the proportion of the normal function below
(to the left of) f(ti)' This also estimates the cumu­
lative probability of response at t.. In other words,
cumulative probability of response at ti is given by
the integral of the normal function from minus
infinity to f(ti)' The empirical data are cumulative RT
distributions which give the proportions of response
by each ti. The scaling task is to obtain from the
empirical data values on the theoretical excitatory

strength dimension for C I, C" 0" 0" and also to
obtain sufficient values of f(t) that the form of the
entire function may be determined. The first step
is to obtain the inverse normal function (normal
deviate) of each proportion on the two cumulative
latency distributions. These give the values of f(t)
expressed as distances from C, and C z in units of
a, and oz. Thus, within the overlap of the distribu­
tions, there are two estimates of each value of f(t),

one on the scale of each distribution. These may be
expressed as follows:

and

Setting the two resulting expressions equal and
solving for E. i , the result is:

Thus, if the E values for the pairs of proportions at
all values of t are plotted against each other, the

result is a linear relation with the slope estimating

oz/o. and the intercept estimating (C z - C .)/0 1 , In
previous papers in this series (Grice, 1972a), we have
termed such a plot a response evocation char­
acteristic (REC). Parameter estimates are made by
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and

where 1 - p(e<t) = p(e<t). The numerator of this
expression is the probability of the joint occurrence
of the correct response reaching criterion at ti and the
absence of a prior error, and the denominator is the
probability of the absence of a prior error. Thus,
Equation 4 is also the conditional probability of the
response reaching criterion at ti, given that an error
has not previously occurred. Under the assump­
tion of independence, this is the proper estimate of
y(Ct). Substituting the empirical estimates of the
terms of Equation 4, the estimation expression is as
follows:

(4)

(5)

(3)

pendent. This leads to the rather simple conclusion
that the probability density of the correct response
reaching criterion at ti, independently of response
competition, is equal to the conditional probability
of reaching criterion given that an error has not
previously occurred. This latter probability may be
estimated directly from the empirical RT distribu­
tions. More formally, we now consider the situation
in which a stimulus is presented and define the
theoretical values relevant to the evocation of the
correct response. Let y(Ct) be the theoretical prob­
ability density of the correct response reaching cri­
terion at ti, depending purely on the stimulus input
and the criterion distribution of that response. This
would also be the probability density of actually
reaching criterion in error-free performance. The
integral of y(Ct) estimates f(t) according to the model
of Figure 1, but the cumulative latency distribution
of correct responses does not provide these estimates
if errors are present. Let y(ct n e<t) represent the
theoretical probability density of the correct response
reaching criterion at ti in the absence of an error
with latency less than ti. This is also the density of
actually reaching criterion in performance with
errors present, and is estimated directly from the
RT distribution for correct responses. Let p(e<t) and
p(e<t) represent, respectively, the probabilities that
an error has or has not occurred prior to t., These
values are estimated directly from the cumulative
distribution of errors. The principle is that the
correct response will occur at ti with probability
density y(Ct) on trials when the opportunity exists.
Under the assumption of independence of the two
response systems:

Application of the Variable Criterion Principle

to CRT
The model as presented in Figure 1 does not apply

directly to the cumulative distributions of CRT in
other than error-free performance. We shall limit
our treatment here to the two-choice situation. In this
situation, there are two responses, but only one
response per trial. The trial is terminated by the
first response to occur, whether it is a correct re­
sponse or an error. It is our conception that there
is a separate function of time describing the growth
of excitatory strength to each response contingent
upon the presentation of a given stimulus. These
functions are continuous, and when the trial is
terminated, it is possible that the alternative response
may have reached criterion later had the competing
response not occurred. Thus, the cumulative CRT
distributions depend upon two factors: the growth
of excitatory strenth for each response separately
and the effect of response competition. Our objective
is to obtain estimates of the growth of the excitatory
strength of each response with the effect of competi­
tion excluded. A trial is then terminated when the
first response reaches criterion.

The basic specific assumption for CRT is that
there is a separate criterion distribution for each
response, and that these distributions are inde-

the rate is inversely proportional to the length of the
interstimulus interval (Grice 1972a, 1977).

The situation seems to be somewhat more
complicated for DRT of the single response or
c-reaction type. Here there is evidence for two kinds
of associative processes, positive and inhibitory,
which follow different time functions. Short-latency
correct responses appear to be entirely under the
control of the sensory strength function, yet false
alarms may be associatively inhibited with increas­
ing effectiveness as time passes. Thus, a low false
alarm rate may be achieved by responding on the
basis of detection if the criterion is sufficiently high
to permit the growth of associative inhibition. How­
ever, there is also a later function indicating the
growth of associative strength to the positive stimu­
lus. The situation is further complicated by the fact
that subjects may adopt strategies which emphasize
the use of either of these associative processes. In
any case, the speed-accuracy tradeoff is accom­
plished by adjusting the level of the criterion (Grice,
Hunt, Kushner, & Nullmeyer, 1976). The lower the
criterion and the faster the response, the greater is
the probability of error. Both the ability to inhibit
errors below the level of pure detection and positive
associative strength increase with time since stimulus
onset. Thus, both processes result in improved
accuracy with higher criterion levels. Variable cri­
terion theory has not yet been applied to CRT, and
that is the task of the present paper.
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Values of y(cr) and y(et) are then obtained for each
interval by successive subtraction of the cumulatix e
probabilities. Equation 3 for correct responses,
including the correction for competition within the
finite interval, becomes

where Ptc.) is the proportion of trials on which the
correct response occurred at ti, and P(e<t) is the
proportion of trials on which errors occurred before

ti·
The cumulative probability that the strength of

the correct response is equal to or greater than cri­
terion, dependent purely on stimulus input and the
criterion distribution and independent of competing
errors, is given by

(6)

{y(ct)[1 - p(e<tl}

{y(et)[1 - p(c<t)]}

(8)

(7)

Normal deviates of Pcum are the values of Ec f(t),
which are required for the model of Figure I. In
obtaining estimates from experimental data, cal­
culations are based on proportions for brief, finite
intervals and summated over these intervals. It is
therefore desirable to include in Equation 5 a cor­
rection for the small effect of competition within
the interval under the condition of independence.
With this correction included, the finite expression
for Equations 5 and 6 combined becomes

A 1 P(Ct) IPcum = Lt=0 ,
[l - P(e<t)) - .5 Pte.)

where Pcum is the estimate of cumulative probability,
Pte.) is the proportion of trials on which an error
occurred within the interval, and the other terms are
as previously defined. Similar computations are also
made in order to obtain E, = f(t) for errors. These
are made in exactly the same way, by interchanging
the symbols for correct responses (c) and errors (e)
in Equations 3 through 7. Equation 7 is applied to each
-of the two responses, correct responses and errors,
beginning with the first interval with nonzero fre­
quencies. It is then applied successively to each inter­

val throughout the distributions, and Pcum is success­
ively summated for each response. Normal deviates
of the successive values of Pcum provide the estimates
of Ec = fc(t) and E, = fe(t). Strictly, Equation 7
applies separately to each stimulus-response
combination. However, if the RT distributions are
essentially the same, data for the two stimuli may
be combined before applying Equation 7. In this
case, the two responses are identified simply as
"correct" and "error." This is the situation which
obtains in the data of the present analysis.

In order to evaluate the fit to empirical data of a
model derived in this way, calculated distributions
must be obtained from the theoretical E functions.
For correct responses, the term Y(Ct n e<t) directly
predicts the probability densities of the RT distribu­
tion, and the calculations are based on Equation 3.
First, the theoretical cumulative proportions of
Equation 6 are obtained by taking the normal func­
tion of values of the theoretical functions for Ec =
fc(t) and E, = fe(t) at successive brief intervals.

The first term in Equation 8 is simply Equation 3.
The correction term is one-half the probability that
both responses will reach criterion in the interval.
The equation is adapted to the calculation of the
error distribution by interchanging the c and e
symbols. The correction term is the same. The
predicted cumulative CRT distributions are the sum­
mations of the values of Equation 8 over all inter­
vals. It is first applied to both responses for the
earliest interval in which the values of y(Ct) or y(et)
are nonzero in the number of decimal places desired.
It is then computed successively for all intervals.
Summations are made after each interval in order
that the values of p(C<t) and p(c<t) may be con­
tinuously available for the next calculation.

Current RT theories are generally theories of the
behavior of the individual subject, and analyses are
limited in this way. Under the assumption of a
normally distributed criterion from trial to trial, the
present model is also a theory of the individual sub­
ject. However, we believe that a more adequate
theory should be able to deal not only with individual
data, but also group data and individual differences.
Based on evidence that the criterion parameters con­
stitute the major source of individual differences
(Grice, 1968, I972a), we believe that variable cri­
terion theory has this potential. There are alternative
ways of approaching this problem, but the most
simple is to apply the analysis to the mixed distribu­
tion of all subjects and trials combined. While this
approach is unconventional, there are clear ad­
vantages. First, there is the greater generality of
theoretical functions or laws based on group as
opposed to individual data. Second, very reliable
data and regular functions are obtainable in this way.
Because of the large N readily obtainable, the data
are substantially more regular than those obtained
from even highly practiced individual subjects.
Third, it provides a method for identifying and
measuring the sources of individual differences
among the subjects who comprise the group. Fourth,
it is possible to obtain a substantial body of stable
data all based on the same level of practice. Fifth,
it is possible to compare two or more experimental
conditions in comparable groups without the compli­
cation of using subjects who experience more than
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may be computed from Equations 10 and II. If

normality is further assumed between subjects, the

third moment reduces to

Thus, if estimates of the subject means and vari­

ances are available, an estimate of 114 may be ob­

tained and a measure of kurtosis computed from

Equations 10 and 13. With the additional assump­

tion of normality between subjects, the fourth

moment may be further reduced to

This is three times the covariance of the subject

means and variances, and, in the absence of such

correlation, the mixed distribution will be sym­

metrical. However, even if a moderate correlation

does exist, the covariance will be small in relation

to the variance of the distribution and only minimal

skewness may be expected.

Also from Equation 9 and under the assumption

of normality within subjects only, the fourth moment

of the mixed distribution may be shown to be

(12)

one condition. Finally, but of course not decisive

factors, are the matters of relative simplicity of

analysis and economy of data collection procedures.

There is the limitation that parameter estimation or

goodness of fit procedures involving independence

are not applicable. Also, because of its unconven­

tional and relatively unprecedented nature, this use

of the mixed distribution requires further technical

justification.

It is our assumption that the mixed criterion distri­

bution will sufficiently approximate normality that

distortions will not be introduced by the use of

normal scaling procedures. Within the scaling litera­

ture, Bock and Jones (1968) have presented a model

for multiple judgments by each subject in paired

comparisons, and have shown the mixed distribution

of the discriminal process to be normal under condi­

tions of normality both within and between subjects.

However, their model treats the within-subjects error

distribution as a single distribution, which is equiva­

lent to assuming homogeneous variance across sub­

jects. This almost certainly does not apply in the

case of individual criterion distributions in RT, so

the analysis must be carried further. Following Bock

and Jones, we apply a three-component model in

'1Nhich a value of the criterion consists of a value for

the experimental condition, the general mean; a

value for the subject, the subject mean; and a value

specific to the trial. In deviate form, this becomes

,N 2

"'-'OEk
114 = 3(0~ +-N-_)2 + 6cov s ' a ~ + 302a~k·(14)

The measure of kurtosis, {32' is

(15)
,N 2

"'-1 0Ek
( O ~ + )2

N

6 covs'a' + 30
2

E a~k
3 +-------{32

(9)

where xki is the value of the criterion of the kth sub­

ject on trial i, the general mean is zero, sk is the

deviation of the mean of the distribution of the kth

subject from the general mean, and fli is the devia­

tion from sk on trial i. From this it may be shown

~ t h a t the variance of the mixed distribution is. "

Thus, if estimates of the subject means and variances

are available, estimates of skewness, which involve

only the assumption of normality within subjects,

where o ~ is the variance of the mixed distribution,

o ~ is the variance of the subject means, Oik is the

variance of the distribution of the kth subject, and N

is the number of subjects. Under the assumption

ofnormality within subjects, it may be shown further

that the third moment of the mixed distribution is

0
2
X O~ + (10)

(11)

The covariance is between the subject variances and

the squared deviations of the subject means from

the general mean. It seems quite improbable that

this relation would be other than of zero order. The

term

is the variance of the subject variances, and will be

nonzero except in the case of homogeneous variance.

Since {32 = 3 for normal kurtosis, it may be inferred

that the mixed distribution will tend to be somewhat

leptokurtic. However, two circumstances mitigate

the importance of this conclusion. First, the variance

of the subject variances is likely to be small in rela­

tion to the squared variance of the mixed distribu-



tion, so that the departure from normality will be
small. Second, a moderate degree of leptokurtosis
will introduce negligible distortion in a scaling solu­
tion based on the normal model. Thus, the major
analyses of the present investigation are based on

the mixed distributions, and the degree of normality
is evaluated by means of Equations 10, 11, and 13.
However, an additional solution which is not based
on the mixed model is also provided in order that

the two approaches may be compared. It should also
be noted that, based on Equation 1, the presence of
linear RECs between conditions provide an addi­
tional way of evaluating the applicability of the

normal model of Figure 1.

The following theoretical investigation is based
upon four experiments, all using the same auditory
stimuli. The primary theoretical analysis is applied to

a speeded CRT experiment in which a substantial

error rate and the speed-accuracy tradeoff were
obtained. It is our belief that such an experiment
yields the most information about information
processing dynamics. A second CRT experiment,
with accuracy instructions, serves as a test of the
theory derived in a condition which should differ

only with respect to the criterion parameters. An
SRT experiment is included solely to obtain the func­
tion describing the growth of sensory strength that is
required for the CRT analysis. A DRT, c-reaction,
experiment is also included as the source of a func­
tion describing the growth of associative inhibition,
which is also used in the CRT analysis.

METHOD

Subjects
The subjects were 95 female students from a university course

in introductory psychology, and received course credit for their
participation. There were 24 subjects in each of the CRT experi­
ments, 22 in the DRT experiment, and 25 in the SRT experiment.

Apparatus and Procedure
RT responses were performed by depressing, with the index

finger of each hand, two conventional telegraph keys located
conveniently on a small table before which the subject was seated­
Also before the subject were three 3.5 x 7.5 ern milk-glass
windows, arranged vertically, which could be illuminated by
7-W incandescent bulbs. The top window was illuminated in
white and served as the warning signal. This signal was .5 sec
in duration and appeared in an irregular order, 1.0, 1.5, or 2.0 sec
before the RT signal in all conditions. The second window,
illuminated in red, was lighted immediately following each in­
correct response. The third window contained the word SLOW
and was illuminated in yellow. This was used in the deadline
experiments only, and was lighted at the conclusion of each
response greater than the deadline. The RT signals were 100-dB
SPL tones of 1,000 and 1,300 Hz, presented in headphones.
They were switched with rise and decay times of 10 msec and
were response terminated. Programming and timing were con­
trolled by paper-tape readers in combination with solid state
logic devices driven by a precision time base. The intertrial interval
in all conditions was 6 sec. Responses were recorded to an
accuracy of I rnsec by a digital counter.
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The four experiments were as follows:
CRT, accuracy. Subjects wcre instructed to press the right

key to the high tone and the left key to the low tone as fast as
possible while avoiding errors. There were 264 trials. The first
4 trials were used to introduce the tones and the required re­
sponses, and the following 20 were treated as practice. Data
analyzed were 120 trials with each stimulus, presented in an
irregular order. This experiment was conducted first in order to
provide a basis for selecting the deadline in the speeded condition.

CRT, deadline. This experiment was identical to the accuracy
experiment except for the addition of a deadline contingency.
It was the intention to produce sufficient speeding to induce a
moderate level of the speed-accuracy tradeoff. The deadline
selected was the general third quartile of the accuracy condition.
Subjects were instructed to be as accurate as possible while meeting
the deadline. The deadline signal was presented at the conclusion
of each response which exceeded it.

SRT. There were 264 trials, half with each of the two tones
in an irregular order. The first 24 trials were treated as practice
only. In addition, there were catch trials, amounting to 10070
of the RT trials, on which no tone was presented. Subjects were
instructed to respond as fast as possible, but to avoid responses
on catch trials. Only the right key was used.

DRT. Only the right key was present, and subjects were in­
structed to respond to the high tone only. Following the 24
practice trials, there were 120 presentations of each tone. The
duration of the low tone was 1.5 sec if a false alarm response
did not occur. A deadline was also employed which was the
general third quartile of a comparable experiment conducted
under accuracy instructions.

RESULTS AND THEORETICAL ANALYSIS

Summary Statistics

The distributions for the two stimulus-response
combinations in both of the CRT experiments turned

out to be essentially the same. The median latencies
for correct responses differed by just 4 msec in the
deadline experiment and by 5 msec in the accuracy
experiment. None of the corresponding values of the
first and third quartiles differed by more than

4 msec. For this reason, data for the two stimuli
have been combined and summary statistics are
presented for correct responses and errors. For the
deadline experiment, the median latency for correct

responses was 351 msec and the interquartile range
(Q) was 116 msec. For errors, the median was 302

and Q was 130. For correct responses in the accuracy

experiment, the median was 383 and Q was 119. For
errors, the median was 344 and Q was 108. Thus,
in both experiments, we obtained the common find­

ing that errors are faster than correct responses.
The error rates were .098 in the deadline experiment

and .035 in the accuracy experiment. In the SRT
experiment, the median latency was 236 and Q was

80. In the DRT experiment, the median for correct
responses was 275 and Q was 78. For errors (false

alarms) the median was 224 and Q was 65. The false
alarm rate was .049.

Analysis of the DRT Experiment
An analysis of the DRT experiment is necessary
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since the associative inhibition function obtained
from this analysis will be used in the CRT analysis.
The first step was to obtain from the simple RT data
a function describing the temporal growth of sensory
strength (V). Both stimuli were included in this
experiment in case it was necessary to obtain a
separate function for each stimulus. Since the two
distributions were essentially the same, they were
combined and a single function was determined. The
distribution was first expressed as a cumulative prob­
ability distribution at lO-msec intervals, and these
proportions were then transformed to normal
deviates. As in previous analyses, this produced a
smooth, negatively accelerated function. Since SRT
is assumed to depend only upon sensory detection in
relation to the criterion distribution, this function
gives the expected values of E, = (Vt - C)/o, where
C is the mean of the criterion distribution and is
its standard deviation. Thus, these values estimate
V as a function of time, measured from the mean
of the criterion distribution, in units of o, This func­
tion was quite precisely described by the relation:

V = 2.283 - 13.583e- .OO758t, (16)

with t in milliseconds. This function is on the scale
of the SRT experiment, where the unit is the 0 of
the criterion distribution and zero is the mean, C.
Thus, the function has a value of zero at the time of
the median RT when it has exceeded the criterion on
half of the trials. The asymptote, 2.283, is an em­
pirical value obtained from the curve fitting proce­
dure. The intercept, - 11.3, also derives from the
curve fitting procedure, but is so long before the
occurrence of any response that it is not psycho­
logically meaningful. This problem and the possi­
bility of an irreducible minimum RT have been dis­
cussed elsewhere (Grice et al., 1976, p. 445). The
three-decimal-place accuracy used in these analyses
is useful in the description of the present sets of
regular data. It is not implied that this degree of
accuracy applies to the statement of general laws. .

The cumulative DRT distributions for both correct
responses and false alarms were also converted to
normal deviates at lO-msec intervals. The resulting
function for correct responses was then plotted, at
lO-msec intervals, as an REC against corresponding
values of V computed from Equation 16. This REC
relating the growth of E in DRT to that in SRT is
presented in Figure 2. This extremely linear relation
is described by the following least squares regression

line:

Equation 1. The DRT group was responding on the
basis of the same function describing the growth
of E as used in SRT, but with an increased mean
criterion level (C) and decreased variability (0). The
values of 0 and C of SRT on the DRT scale are given
by Equation 17. The values of 0 and C of DRT on
the SRT scale are given by the inverse function,

i.e., 00isj = .693 and COisj = + .603 when 0 and
C for SRT are one and zero. Figure 1 was actually
constructed from these data. C. is the SRT criterion
distribution and C2 is the DRT distribution. Loca­
tions of the lines indicating f(t) were computed from
Equation 16 at equally spaced intervals of time. The
scale is that of SRT. The fit of Equation 17, which
corresponds to the inverse of Equation 1, indicates
that the correspondence of the data to the model is
nearly complete. The spacing of the points along
the fitted line indicate the growth of excitatory
strength with respect to time at 10-msec intervals.
When read on the abscissa, they are the calculated
values of Equation 16 for SRT. When read on the
ordinate, they are the values for DRT. The degree
of linearity indicates that the two functions are the
same except for the linear transformation represent­
ing the different parameters of the criterion distribu­
tions in the two experiments. These scale values are
directly related to the empirical response probabilities
by the normal function.

These DRT data represent a pure case of what
Grice et al. (1976) termed the inhibitory strategy.
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The value of r2 is .9996. This relation has an obvious
implication in terms of the model of Figure 1 and

Eo = 1.442 Vs - .870. (17) Figure 2. REC relating the growth of excitatory strength of
correct responses in the DRT experiment to calculated values of
the function describing the growth of sensory strength (V) derived
from the SRT experiment. Zero points are at the means of the
two criterion distributions. Points are at IO-msec intervals.
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EFA = (V, - It - C)/o. (21)

where Vt is the value of Equation 16 at time t, and
the criterion, C, is a normally distributed random
variable with mean C and standard deviation, o,

The expected value at any time is

Correct responses are based entirely on the growth
of sensory strength (detection information) and the
criterion distribution. Excitatory strength for correct
responses at any time following stimulus onset is
simply

(23)I = 3.700 (7.9286 x 10-16
) 98 63' ,

TIr-
V 0

-I

I
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I
-3~'

----
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with t in milliseconds. (For those unfamiliar with the
Gompertz growth function,' the very small values of
the term in parenthesis which appear in this and
subsequent functions may require explanation. This
term is the intercept at t = 0 and is technically non­
zero. However, the function does not begin to reach
noticeable values until much later. For practical
purposes, it may be regarded as asymptotic to zero
in this region.) This function and the V function
on the DRT scale are presented graphically in Fig­

ure 3.

For correct responses, the growth of E is given
directly by the V function. For false alarms, it is the
V function minus the I function according to Equa­
tion 18. The two cumulative distributions are then
given by the integral of the normal function from
minus infinity to f(tj) at each point on each of the
functions. The resulting calculated distributions

deviates of the proportions from the empirical

cumulative distribution of false alarms. These
estimates were obtained at lO-msec intervals and
formed a smooth inflected function describing the
growth of I. It was fitted with the following
Gompertz function which describes the growth of I:

(18)

(19)

(20)p = ( Eet<l>
ct )-00 '

Ee = (V t - C)/o,

When V, is transformed to the DRT scale by Equa­
tion 17, C = 0 and a = 1. Thus, the expectation
of Ee is equal to Vt. On any given trial, the value of
Ee is equal to Vt minus a value of the normal random
variable with mean zero and standard deviation
one. Since, at any time, Vt is a constant, Ee is also
normally distributed. The cumulative probability of
response by any time is given by

where Pet is the cumulative response probability,
Eet is the value of excitatory strength of the correct
response at time t, and <l> is the unit normal function
with mean zero and standard deviation one. This
reasoning applies to all subsequent functions for the
composition of E which are presented in terms of
their expectations. As mentioned above, this model

-attributes all empirical RT variability to criterion
variation. It may also be noted that for a fixed value
of the theoretical parameter, a, RT variability will
increase with increasing levels of C because of the
negatively accelerated growth of E. The form of the
RT distribution is determined jointly by the growth
of E and the normal criterion distribution.

The ability to reduce false alarms below the rate
predictable on the basis of detection depends upon the
temporal growth of associative inhibition. The ex­
pectation of excitatory strength for false alarms at
any given time after stimulus onset is given by

Vt is from the transformation of Equation 16, and
It is the strength of associative inhibition. Since C
is the zero point of this scale and a = 1, It may be
estimated by

0,' I

o 200 400

MSEC.

(22)

where it is the estimate of associative inhibition at
each ti, VI are calculated values, and E( are normal

Figure 3. Component functions of the theory describing the

ORT data. The upper function.is the sensory strength (V) func­

tion from SRT, transformed to the ORT scale. The lower func­

tion indicates the growth of associative inhibition (I) as derived
from the ORT, false-alarm data.
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Figure 4. Calculated and obtained cumulative distributions
for correct responses and false-alarms in tbe DRT experiment.

Data points are at 20-msec intervals.
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Figure 5. Functions indicating the growth of excitatory strength
(E) for correct responses and errors in the deadline CRT experi­
ment. Points are plotted at 20-msec intervals only. The two normal

functions, C. and C" indicate the identical criterion distributions
for the correct and incorrect responses. The smooth curves were
calculated from functions derived by the variable criterion model.
Theoretical cumulative probabilities that a response will have
reached criterion by ~, with the effect of response competition
excluded, are given by areas of the criterion distributions below
the functions at ~.

tively accelerated phase, followed by a relatively
linear section, and then resuming negative accelera­
tion. Also included in Figure 5 are two normal func­
tions representing the criterion distribution of the
two responses. These two distributions are the same,
with "equal means and variances, but this would not
be true in an experiment where response bias existed.
It may also be noted that if there were stimulus bias
or if the stimuli differed in intensity, there would be
a separate pair of E functions for each stimulus.
Here, the probability that either of the responses
will be equal to or greater than the criterion by tj
is given by the proportion of the area of the normal
function below either of the functions at ti. But, of
course, a trial is terminated when either response
reaches criterion and occurs. Errors occur on these
trials when the incorrect response criterion is
sufficiently lower than that of the correct re­
sponse so that the error function reaches criterion
first. For example, if on a given trial the error cri­
terion was - 1.6 and the correct response criterion
was at the mean, 0, the trial would end with an error
of about 300 msec latency. The correct response
would not have reached criterion until about
360 msec.

The next goal of the analysis is an attempt to

provide a description of these functions in terms
of the growth of component processes which deter­
mine them. The first step was to determine if the
early portion of either the correct response function
or the error function is determined purely by the
growth of sensory strength. If this were true for
errors, a form of fast-guess interpretation would be
supported in which early errors were dependent only
on detection and correct responses also depended
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are presented in Figure 4 with plotted points in­
dicating the empirical distributions. Calculated at
lO-msec intervals, for correct responses the pro­
portion of variance accounted for by the calculated
values was .9997. The proportion for false alarms
was .9406. This lower figure reflects primarily the lack
of variance in the flat distribution. The average error
of prediction was just .0026. (Aside from r 2 for linear
regression, when proportion of variance accounted
for is reported in this paper, it is simply the propor­

tion accounted for by the relation Yobtained =
Ycalculated.) This model for the inhibitory strategy
in DRT, which was derived by Grice et al. (1976)
from individual subject data, also is seen to apply to
the present group data.

1.0

Analysis of the CRT Deadline Experiment
The first step of the CRT and analysis is to obtain

functions describing the growth of E as it depends
only upon stimulus input and criterion variability as
explained in the introduction. Since the distributions
for the two stimuli were essentially the same, the
data were combined, resulting in two distributions,
one for correct responses and one for errors. The
cumulative probability (Pcum) that each of the re­
sponses would be equal to or greater than criterion
by tj was then calculated by Equation 7 at lO-msec
intervals. The theoretical analysis was limited to

points under 600 msec. These estimated probabilities
were then transformed to the scale of' E by trans­
forming them to normal deviates. The resulting func­
tions are indicated by the data points of Figure 5,
plotted here at 20-msec intervals only. The func­
tions are very regular, consisting of an initial nega-



where E, are now the normal deviates of the prob-
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A = 1.400 (1.0009 x 10-52
) 98 79 \ (27)

abilities estimated by Equation 7, and V. are cal­

culated from Equation 16 transformed to the CRT

scale. These estimates, which are also the residuals

of Figure 6, were obtained at 10-msec intervals from

280 to 600 msec. The result was a smooth inflected

function which was fitted with the following

Gompenz growth function:

Figure 6. REC relating correct response E values of the CRT
deadline experiment to corresponding calculated values of the
sensory strength (V) function from the SRT experiment. Points
are at 10-msec intervals up to 600 msec. The regression line is
fitted to points up to 280 msec.

v (FROM SIMPLE RT)

where t is in milliseconds. Indicating the regularity

of the function obtained by Equation 26, the pro­

portion of the variance of the estimates of A

accounted for by Equation 27 is .998. This function,

which shows the growth of associative strength with

respect to time, is presented graphically in the second

panel of Figure 7. along with the other component

functions of the model. E as a function of time is

then the sum of V and A according to Equation 25.

This is the smooth function for correct responses

presented in Figure 5.

We turn now to the analysis of the function

describing the growth of E for errors. Since the

growth of E for correct response is dependent purely
upon sensory strength (V) until 280 msec, and since

the correct and error functions clearly diverge during

this time, the presence of associative inhibition may

be inferred just as in DRT. However, in addition,

there is the possibility of generalization of associative

strength beginning at 280 msec when this process (A)

begins to influence correct responses. The result

would be a new increase in error rate at this time.

(24)

(26)

(25)

EeRT = .839V - 1.478.

where At is the associative strength at each ti and

E. is the expected value of excitatory strength. Since

a = 1 and C = 0, associative strength is estimated

by:

upon a positive associative component. On the other

hand, if it were true for correct responses, the in­

hibitory interpretation would be supported. The

hypothesis is evaluated by examining RECs relating
the growth of E to the growth of V in order to deter­

mine if an early linear relation exists. The hypothesis
was supported for correct responses, but not for

errors. Figure 6 shows the REC relating the correct

response E values to calculated values of the V func­

tion from SRT at 1O-msec intervals up to 600 msec.

There is, in fact, a highly linear relation up to

280 msec. Fitted to this portion of the REC only,

the least squares regression line is

The value of r 2 for the fit in this region is .9990. In

terms of the model of Figure 1, this implies that,

until 280 msec, the growth of E was determined

entirely by sensory strength (V), but with a sub­

stantially higher mean criterion level and somewhat

increased variability. The slope and intercept of

Equation 24 give a and C of the SRT experiment on

the CRT scale. When Equation 16, the V function

from SRT, is transformed to the deadline CRT scale
by Equation 24, it describes the deadline E function

up to 280 msec and the entire transformed func­
tion is used in the subsequent portions of the

analysis.
Beyond 280 msec, scale values for the CRT condi­

tion begin to go above the extrapolation of the linear

relation to Figure 6 ir an orderly and curvilinear

fashion. When plotted as a function of time, the

residuals form a smooth function which begins

gradually, grows with positive acceleration, and then

becomes inflected to negative acceleration. This

change from linearity is an extremely regular process,

and the inference is quite compelling to us that it

describes a second process which develops after the

initial dependence of E purely on sensory strength.

As in the case of a similar picture with DRT (Grice

et al., 1976), we assume this second process to be

associative strength relating the stimulus and the

correct response. In both the models for DRT and

conditioning (Grice, 1977), the combination of the

sensory and associative components has been the

simple additive one:
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Figure 7. Graphs of the component functions of the theory

describing the CRT deadline experiment. The upper function,
describing the growth of sensory strength (VI, was derived from

the SRT experiment. The second function describes the growth

of associative strength (AI for the correct response. The third

function describes the growth of generalized associative strength

(Ag) to the incorrect response. The bottom function, obtained
from the DRT experiment, indicates the development of associ­

ative inhibition (I). All functions are on the scale of the CRT
deadline experiment.
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There is, in fact, a small change in curvature of the

error function at this point, suggesting the influence

of such generalization. Thus, the expression for

errors which is analogous to Equation 25 for correct

responses is

The proportion of CRT variance up to 280 msec

accounted for by this relation to ORT is .9970. CRT

involved both a higher mean criterion level and

greater criterion variability than DRT. Equation 23,

describing the growth of I for DRT, was then trans­

formed to the scale of CRT. Since C does not appear

in this expression, only the slope constant of Equa­

tion 29, estimating the a ratio, is used for this trans­

formation to change the size of the unit. For CRT,

estimates of I were based on Equation 28 with C

= 0, a = 1, and Ag = 0 before 280 msec. The

estimates, then, were obtained by the relation.

CRT = .582 DRT - .965. (29)

where Eel is the expectation of excitatory strength

for errors at each ti, II is the amount of associative

inhibition, and Ag { is the amount of generalized

associative strength to the incorrect response. The

obvious source of the function for II is the one ob­

tained from the ORT experiment. To be applicable,

it must first be converted to the CRT scale. Since

both CRT and ORT have been related to V from

SRT, a separate REC relating the two is unnecessary.

From Equations 17 and 24, the relationship may

be shown to be

Eel = (VI - II + AgI - C)/a, (28)

(30)

where VI are computed values and Eel are the normal

deviates of the probability estimates for errors ob­

tained by Equation 7. These estimates were obtained

at lO-msec intervals for the intervals below 280 msec,
When these estimates were plotted against the trans­

formed I function from ORT, the relation was clearly

linear, but with a slope less than one. The fitted line

passed through the origin with a slope of .751. What

this means is that the function from DRT does

accurately describe the development of associative

inhibition in the CRT experiment but with a weight­

ing factor less than one, i.e., .751. This is not a sur­

prising result in view of previous findings of in­

dividual differences in this process (Grice et al.,

1976). Thus, the I function for CRT was obtained

by multiplying the transformed function from ORT

by the weighting factor. The resulting function is

shown in the bottom panel of Figure 7. It describes

the increase, with the passage of time since stimulus

onset, of the ability to inhibit errors below the level

based upon detection.

Finally, an estimate must be obtained of the

growth of the generalized associative strength of the

incorrect response. From Equation 28,

(31 )

where values of I, are computed from the trans­

formed function from DRT. Such estimates were

obtained at lO-msec intervals from 280 to 600 rnsec.

The result was an inflected function filled by the
following Gornpertz function: .

Ag = .390(1.3700 -" 10-1 1 17 ) "",, 1, (32)

with t in milliseconds. The function appears in the

third panel of Figure 7. It is seen to have a lower

limit than that of associative strength of the correct

response but approaches its limit more rapidly. As

a result, generalized associative strength is a de­

creasing proportion of the correct strength follow­

ing its origin at about 280 msec. This is ~one of the

factors in the dynamics of the speed-accuracy trade-



CHOICE REACTION TIME 443

l
:8~

.6, DEADLINE

Z .4r
0
f=
n::
5: 2r

~ " ,if! I
Q oLt

W
1.0

1
>

I~
.--J .8r-
=> iz I

=>
.6~U

ACCURACY

t

L
I

2r

I

oL I ! , 0 ! I

0 200 300 400 500 fIJO

MSEC.

desirable to approach this problem with respect to
the present analysis. If it should turn out that the
form of the theoretical functions obtained from
the mixed model derive primarily from the pattern
of individual differences, they would be of less
interest than if they also describe laws of individual
behavior. The first step of the individual difference
analysis is to relate the temporal growth of E for
each subject to the group function for correct re­
sponse as shown in Figure 5. Thus, we obtained the
cumulative distributions of correct responses and
errors for each of the 24 subjects and, by means of
Equation 7, computed the theoretical cumulative
probabilities that the response would equal or exceed
the criterion by each ti. These computations were
made at 20-msec intervals up to 600 msec, and were
transformed to normal deviates giving the E func­
tions for each subject. The 24 functions for correct
responses were then related to the group function
by means of RECs in the following manner. First, we
identified the intervals of t in which each subject
was nearest the following percentiles in the cumu­
lative function: .05, .10, .25, .50, .75, .90, and .95.
The RECs consisted of conventional linear regression
between the normal deviates at each of these intervals
and the group scale value at the same interval, with
the subject values as the predicted variable. These
relationships were highly linear.' The values of r2

Figure 8. Calculated and obtained cumulative probability
distributions for the CRT deadline and accuracy experiments. In
each case, the lower, Oat distributions are for errors. Data points
are at 20-msec intervals.

Individual Differences and Evaluation of the
Mixed Model Solution

From the outset (Grice, 1968), it has been
suggested that differences in the criterion parameters
constitute the major source of individual differ­
ence in the evocation of simple responses. For
example, Grice (l972a) showed that wide individual
differences in both the level and form of conditioning
curves could be accounted for in this way. It is also

off. More generally, the tradeoff is described by the
diverging E functions for correct responses and
errors. This increasing separation is produced both
by the growth of associative inhibition and by the
later increasing difference between correct and
generalized associative strength. Between experi­
mental conditions, the tradeoff is also controlled by
the values of C and o.

From the three theoretical functions, excitatory
strength for errors was computed at lO-msec inter­
vals according to Equation 28. This is the smooth
curve for errors shown in Figure 5. It is obvious that
the theoretical function fits very well the scale values
derived from the distributions. However, we shall
evaluate the goodness of fit of the model with respect
to the distributions themselves. From the two E func­
tions, the implied CRT cumulative distributions for
both correct responses and errors were calculated at
lO-msec intervals by means of Equation 8. The
resulting calculated distributions were presented in
the upper panel of Figure 8 with data points plotted
at 20-msec intervals only. Calculated at lO-msec
intervals, the proportions of variance of the data
points accounted by the calculated values is .9998
for correct responses and .9984 for errors. Of course,
cumulative distributions are necessarily smooth and
to some degree the goodness of the fit derives from
the cumulative property. It is also desirable to ob­
serve the probability distributions directly. Cal­
culated and obtained values of the distributions in
noncumulative form are presented in the upper panel
in Figure 9 for intervals of 30 msec. In this case,
the proportions of variance accounted are .9940 for
correct responses and .9396 for errors. While two of
-the component functions were obtained from other
experiments, it must be recognized that this fit of the
data also depends upon a total of nine parameters
estimated from the data themselves. In doing this,
however, we have produced the framework of a
theory which describes the data with great accuracy
in terms of psychologically interpretable under­
lying processes. The theory will gain strength when i.t
is applied to data from which it was not derived,
and which involve an additional experimental
manipulation. In that case, the component functions
are already defined, and only the experimentally
manipulated parameters are free to vary.
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Figure 9. Calculated and obtained probability distributions for
the two CRT experiments. The lower, flat distributions are for

errors. Both calculated and obtained densities are for 30-msec

intervals.

(33)
I - (Eeo
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moments of the mixed distribution may be calculated

by Equations 10, 11, and 13, and measures of skew­

ness and kurtosis may be obtained under the assump­

tion of criterion normality within subjects only. The

measure of skewness, (3" is .0004, indicating negligible

asymmetry. The measure of kurtosis, (32, is 3.51. This

indicates moderate leptokurtosis, as expected. How­

ever, these two measures indicate that the mixed

distribution is essentially identical 10 that of t with

16 degrees of freedom. Such a distribution would

clearly not introduce detectable distortion in a scal­

ing solution based on the normal model.

While the strong linear relations between the group

and individual E functions clearly indicate the appli­

cability of the model to individuals, it is desirable

to carry the analysis further in order to evaluate

the fit of the individual CRT distributions and to

investigate the factors underlying individual differ­

ences in error rate. The individual values of C and

a have been estimated from the correct response

data, but it is also necessary to estimate individual

differences in the inhibitory process. This requires

a two-stage process. The first stage was to convert

the four functions of the model to the scales of each

of the subjects by means of the 24 regression equa­

tions, and to compute the correct and error E func­

tions for each subject. These error functions have

equal weighting of I for all subjects. At this stage,

it is' possible to compute the proportion of vari­

ance in error rate accounted for by the' criterion

parameters estimated from the correct response func­

tions only. Error rates varied from .008 to .242 with

a mean of.098 and SD of .07. Calculated error rates

for each subject were obtained by the application

of Equation 8 at 20-msec intervals. These accounted

for .484 of the individual difference variance. This

is a substantial proportion, but leaves considerable

variance unaccounted for.

Because of the individual differences in error

rates, estimation of the inhibition weighting factor

below 280 msec was not possible for all subjects.

Therefore, the weights were estimated at 360 msec,

a time generally not in either tail of the distributions

and by which all subjects had made at least one error.

The procedure was to obtain the difference between

the obtained value of E, and that calculated from

the equal weighting solution, and to assume that

these discrepancies were produced by differential

weighting of the I function. The expression used was

where I is the value for the subject computed from

the equal weight solution, Eeo is the obtained value

of Ee , Eec is the calculated value, and WI is the
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ranged from a low of .972 to a high of .999. The

mean value of r 2 was .991, and the median was .994.

Thus, on the average, the group function fails 10

account for less than 1010 of the variance in the

growth of E for individual subjects when individual

differences in C and a are estimated by the regression

solution.

The slopes and intercepts of the 24 regression

equations give estimates of the group a and C on

the scales of the individual subjects. However, the

slopes and intercepts of the inverse of these equations

estimate a and C for each subject on the common

group scale. With these estimates available for all

subjects, the variance and the third and fourth



weight. The weights obtained in this way varied from

.528 to 1.805, with mean of 1.006 and SD of .289.

The I function of each subject was then multiplied
by the weight, and the error functions were recal­
culated by Equation 28. Cumulative distributions for
correct responses and errors were then obtained at

20-msec intervals by Equation 8. The calculated dis­
tributions accounted for high proportions of the

variance of the individual cumulative correct re­
sponse distributions. These proportions varied from
a low of.973 to a high of .999. The mean proportion
was .993 and the median was .995. In noncumulative

form, the distributions for unpracticed, individual
subjects are, of course, quite irregular. However,

calculated and obtained proportions for the distribu­
tions in this form were obtained at 60-msec intervals.
In this form, the proportions of variance accounted

for varied from .618 to .989. The mean proportion

was .860, and the median was .908. The proportion

of variance in error rate accounted for by the
weighted solution was .923.

Alternate Solution with the Individual

Difference Model

There appears to be ample reason for confidence
in the solution based on the mixed model both be­
cause of its applicability to individual subject data

and because of the evidence concerning the form of
the mixed distribution. Previously, however, we

have used another method for combining the data of
a smaller number of subjects, which does not make

use of the mixed model (Grice, 1972b). We also
apply this procedure here for comparison purposes.

This involves a complete between-subjects scaling
'solution under the assumption that they share a
common function for the growth of E, but that they

differ in their criterion parameters. These parameters

are estimated by RECs relating all subjects to each
other, i.e., the number of RECs is one less than the
number of subjects. There are various ways of going

about this, but the most simple is to do all of the
scaling with respect to a single reference subject­

Here, we selected as the reference subject one whose
correct response E function covered, insofar as
possible, the entire range of the group. We then

identified for this subject the class intervals most

closely approximating the same seven percentile
points used in the previous analysis. RECs were then
computed relating the scale values obtained by
Equation 7 at these intervals to those of each of the

other subjects at the same intervals. Because of lack
of overlap, the RECs for two subjects were based on
only six points, and that for one subject on only five.
Computations were by unweighted, least squares,

mutual linear regression (Grice et aI., 1974). In re­

gression of this kind, for high correlations, r 2 closely
approximates the proportion of total variance of
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both subjects accounted for by the mutual regression

line (Grice et al., 1976). The 23 values of r 2 varied
from .969 to .999, with a mean of .990 and
a mean of .991. This model is the same as that of

Figure 1, with 24 criterion distributions representing

subjects rather than experimental conditions. This

degree of linearity indicates that the model closely

applies. The slopes and intercepts of the 23 regression
equations give the values for C and 0 for each sub­

ject on the scale of the reference subject, the values
for the reference subject being zero and one, re­
spectively. However, for convenience in comparing

the result with that of the mixed model, the values

were transformed to a scale with the mean of the
subject Cs at zero and with the mean of the variances
as the unit.

The goal of the individual difference analysis is to

estimate the points on E = f(t) as the means of the

individual values when all of the individual functions

are on a common scale. From Equation 3:

(34)

where E, is on the common scale, Ok is the qJor sub­
ject k, Ekt; is subject k's scale value at ti, Ck is the
mean of the subject k's criterion distribution. Thus,

any value of E is transformed to the common scale
by Equation 34. For each subject, all of the values
of E obtained from Equation 7 were transformed

to the common scale at 20-msec intervals. At this

point, we have 24 estimates of the theoretical func­
tion, E = f(t) , all on the common scale. The joint

estimate is the mean of the 24 values at each ti.
Actually, at short and long latencies, the number
is less than 24 because of the lack of full overlap of
the subject distributions. Mean estimates of E = f(t)

were obtained in this way for both correct responses
and errors. To the extent that the functions from the

mixed and individual difference models are the same,
their values should be equal at all values of ti except

for a linear transformation relating the two scales.
The origin of the individual difference scale is at the

mean of the subject means, which is also the mean of

a mixed distribution and the origin of that scale.
Hence, the transformation will have zero intercept.
The slope of the transformation is the ratio of the

size of the units. The unit of the individual differ­
ence scale is based on the mean of the subject vari­

ances, and the unit of the mixed model scale is the

o of the mixed distribution. Calculated from Equa­
tion 10, this is 1.041 in relation to the unit of the

individual differences scale. Thus, if values of E
from the individual differences solution are plotted
against those from the mixed model at correspond­

ing times, the relation should be linear with a slope
of 1.041 and an intercept of zero.

In Figure 10, the mean values of E for correct
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Figure 10. Mean correct response scale values obtained from the
individual differences solution, applied to the CRT deadline
experiment, plotted against computed scale values from the theory
derived from the mixed model. Points are at 10-msec intervals.
The slope of the unfitted line is the ratio of the standard deviation
of the mixed, criterion distribution to the size of the unit of the
individual differences scale.

responses from the individual differences solution
are plotted against corresponding calculated values
from the mixed model solution. Points are at 20­
msec intervals. The regression line is not a fitted one,
bur is the one with the rational slope of 1.041. The
proportion of variance of the mean E values
accounted for by this relation is .9977. The two func­
tions for errors were also linearly related by the same
relationship, the proportion of variance accounted
for being .9927. It is of interest to note that the pro­
portion of variance of the original data points
accounted for by the correct response function
presented in Figure 5 was .9998, and the proportion
accounted for by the error function was .9966. Thus,
in applying the functions to data points derived by
the individual difference model, from which the
functions were not derived, the loss in terms of pro­
portions of variance accounted for is just .0021 for
correct responses and .0039 for errors. It is our con­
clusion that, except for the small differences in unit
size, the mixed and individual difference models
produce essentially identical results. The difference
in unit size is accurately described by Equation 10,
which relates the variance of the mixed distribution
to the variance between and within subjects.

Application of the Theory to the
Accuracy Experiment

The theory of CRT which has been derived ob­
viously gives an accurate description of the data as
well as providing an analysis of the underlying
processes. However, confidence in the theory would
be strengthened if it also applies to other experiments
from which it was not derived. This is especially so if
a second experiment involves an additional experi­
mental manipulation with predictable con­
sequences. Such a manipulation is the use of accur­
acy instructions rather than a deadline procedure.
Within this theory, accuracy may be increased in two
ways-by increasing the level of the criterion and by
decreasing its variability. Both of these effects will
reduce the intersection of the criterion distribution
with the error function and consequently reduce the
error rate. Elevation of the criterion distribution will
also increase the latency of correct responses since its
intersection with the correct response function is
later. Thus, the between-experiments speed-accuracy
tradeoff is a part of the theory. The theory will be
supported if it will describe the data of the accuracy
experiment with the predicted changes in the criterion
parameters. Whether the weighting of the associative
inhibition function should be affected is uncertain,
but it is recognized that this factor is at least subject
to sampling error due to individual differences.

Analysis of the accuracy experiment began with
the estimation from the cumulative distributions of
functions for the growth of E for correct responses

and errors by means of Equation 7. For correct re­
sponses, these values were then plotted at 10-msec
intervals against calculated values of the theoretical
function from the deadline experiment. This rela­
tion was linear and is described by the least squares
regression line

EAcc = 1.139 EDL - .323. (35)

The value of r2 is .9988. This means that the propor­
tion of variance accounted for by the theoretical
function is just .001 less than it was for the deadline
data from which it was obtained. This is convincing
evidence that, for correct responses, the same under­
lying process determines the growth of E in both
experiments. The slope and intercept of Equation 35
give a and C of the deadline experiment on the
accuracy scale. On the deadline scale, the parameters
for the accuracy experiment are a = .878 and C
= + .289. Thus, as predicted, we observe both a
decrease in criterion variability and an increase in the
criterion mean.

At this point, the four component function from
the deadline experiment were transformed to the
scale of the accuracy experiment by Equation 35
and the functions of E obtained by Equations 25
and 28. These scale values were then converted to

probabilities, and calculated cumulative probability
distributions were obtained by Equation 8. The
calculated error rate was .047, while the obtained rate
was .035. While this is not a large discrepancy, it



indicates that it would be worthwhile to estimate a
new weighting factor for the inhibition function.
Due to the absence of reliable scale values for errors
under 280 msec, the estimate was made in the same
way as for individual subjects in the previous
analysis. Its value was 1.077, differing only slightly
from one, as would be expected from the small dis­
crepancy in predicted error rate. The associative
inhibition function was weighted by this factor, and
the E function for errors was obtained from
Equation 28.

The predicted cumulative distributions for correct
responses and errors were then calculated by Equa­
tion 8 using the error E function containing the
weighted inhibition function. These calculated dis­
tributions are presented in the lower panel of Fig­
ure 8 with data points plotted at 20-msec intervals.
Calculated at lO-msec intervals, the proportion of
variance accounted for by the calculated correct
distribution was .9994. For the error distribution,
the proportion was .9917. Thus, the quality of the
fit is of the same order as it was for the deadline
experiment. The distributions in noncumulative
form are also presented in the lower panel of Fig­
ure 9. Here, the proportions of variance accounted
for are .9835 for correct and .7707 for errors. Of
course, there is little variance to account for in the
flat, slightly bimodal error distribution. Actually,
the fit is surprisingly good. It may be noted that, in
applying the theory to the accuracy experiment,
only three parameters were estimated from the
data-the two criterion parameters estimated from
the correct data only and WI estimated from the
error data. All parameters of the theoretical func­

'tions defined for the deadline experiment are in-
variant in this application.

The final step in the analysis of the accuracy
experiment is an individual difference analysis to
evaluate the applicability of the theory to the in­
dividual subjects and provide evidence concerning
the form of mixed distribution. RECs were
computed, in the same manner as previously, relating

the correct response E functions to computed values
of the group function. Again, the relations were
highly linear. The 24 values of r2 varied from a low
of .9798 to a high for two subjects with .9996. The
mean was .9933, and the median was .9958. Thus,
the theory accounts for the individual subject data to
an even greater degree than it did in the case of the
deadline experiment.

Estimates of C and a were also obtained for each
subject from the 24 regression equations, and from
these the variance and third and fourth moments of
the mixed distribution were calculated. Under the
assumption of normality within subjects, these
resulted in values of .0025 for {3t and 3.094 for {32.

These values essentially describe the t distribution
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with 64 degrees of freedom, which is not percep­
tiblydifferent from normal.

DISCUSSION

One unusual feature of the present theory is the
apparent identification of associative inhibition as
an important process in CRT. While the possible
role of inhibition has been previously suggested by
Kornblum (1965), this is, to the best of our knowl­
edge, the first explicit identification of the process
in CRT theory. Certainly, it is possible that even­
tually some other explanation of the short latency
separation of the correct and error distributions will
be found preferable. At the present time, however,
we find the evidence convincing. The fact that it is
the early portion of the correct distribution rather
than the error distribution which resembles SRT

indicates that it is these correct responses which
depend upon detection and that errors are being
inhibited. This finding is also contrary to the expecta­
tion, based on fast guess theory, that errors should
be SRT responses. Evidence of this kind has been
consistent now, not only in the present experiments,

but in previous results with DRT (Grice et a., 1976).
Of course, in DRT, it is logically possible for correct
performance to be entirely based on this principle,
but this is not true in CRT, since each trial must end
with a response. One kind of evidence suggesting
the reasonability of our assumption that inhibition
may be effective at very short latencies is that ob­
tained by Lappin and Eriksen (1966). They found
that, when a delayed second signal countermanded
the go signal, RT need be extended only by a few
milliseconds beyond the delay in order to obtain
reliable inhibition.

An account of the speed-accuracy tradeoff is an
integral part of the theory. The dynamics of the
tradeoff are described by the divergence of the func­
tions for excitatory strength for correct responses
and errors as presented in Figure 5. Of course, the
tradeoff is also affected. by both parameters of the
criterion distributions. If one desired a single trade­
off function, the difference between the two func­
tions could be plotted as a function of time. Such a
function would not, however, provide an account of
the dynamics which produced it, and it now appears
that functions of this kind are not of as much signifi­
cance as commonly believed. The theory does
provide an accurate description of the basic facts of
the tradeoff as they appear in the present data and as
they have been commonly reported in the literature.
For example, the faster a response, the greater is the
probability of an error. For the deadline experiment
and the functions presented in Figure 5, at 200 msec
the calculated conditional probability of an error,
given that a response has occurred, is .39. This prob-
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ability is reduced to .17 at 300 msec and .10 at

500 msec. With the parameters of the accuracy ex­

periment, the corresponding conditional prob­

abilities are .33, .08, and .04. The theory also

predicts the common finding that the average latency

of errors is faster than that for correct responses.

The theory accurately predicts the median latencies

which illustrate this point. In theoretical terms, this

effect is produced primarily by the continued late

growth of associative strength to the positive

stimulus.

Another feature of this approach is the inclusion

of individual differences within the theory. We

suggest that it would be desirable if this were more

common in theories originating within experimental

psychology. When the three individual difference

variables are taken into account, the theory describes

the individual subject data with considerable

accuracy, as well as the group data. One possible

kind of future research is to investigate whether these

variables represent consistent traits measured by

conventional ability and personality tests. Here, we

have performed one simple individual differences

analysis with respect to error rate in the deadline

experiment. The multiple correlation for predicting

error rate from the three individual difference vari­

ables is .968. The multiple regression equation in

standard score form is

Zerrors = - .097ZC + .732za - .481zw
j

• (36)

The most interesting feature of this result is that the

a parameter, which was estimated from the correct

response functions only, has the greatest weight in

predicting error rate. The low weight of the criterion

mean (C) is attributable to the fact that there was

relatively small variance i.i this variable.

Certainly, it is desirable to provide both experi­

mental and conceptual comparisons of this theory

with other theoretical accounts of CRT. It is our in­

tention, however, to defer experimental and ex­

tensive conceptual comparison until further develop­

ment of the theory, and perhaps others as well,

provide more points of meaningful contact. Only one

contrasting approach will be discussed here. This

is the recent example of a random walk model

presented by Link (1975). It appears to be a promis­

ing approach for analyzing relations between experi­

mentally manipulated variables, mean correct and

incorrect latencies to each stimulus, and the pro­

portions of correct responses and errors to each

stimulus within a set of trials. In this model, the

subject compares by subtraction, a transduced

representation of the stimulus with a psychological

referent. Both are values on a psychological

dimension, and the referent is bounded by represen-

tations of the two stimuli. The transduced stimulus

is a random variable, and the referent may be as well.

The basic random variable is the difference between

them. Comparison continues sequentially over time

and the difference is accumulated algebraically. The

result is a random walk which terminates with a

response when the difference reaches one of the two

fixed criteria for the two responses. We have

previously expressed and still affirm our skepticism

concerning the reasonability of fixed criteria. How­

ever, one of the features of our model is achieved

by indicating that response bias is achieved when the

start of the random walk is not at the midpoint be­

tween the two criteria. Our intent here is not to

criticize the- random walk model, but merely to

explain our own preference on the basis of greater

scientific optimism. The random walk model treats

the events which take place between stimulus onset

and the response as random processes. Variable cri­

terion theory places variability in trial-to-trial vari­

ation of the criterion, which is treated as constant for

the duration of the trial. The intratrial events are

regarded as orderly sensory and associative processes

which develop with time in a lawful manner. Our

goal is to identify them and describe their dynamics.

If such processes do, in fact, exist, they are more

likely to be discovered if one looks for them than if

one begins with the assumption that the intratrial

events are largely random. Variable criterion theory

provides a framework as well as methods for the

analysis of a variety of experimental variables. We

hope that such analysis will lead to a more detailed

understanding of this area than has so far been

achieved.

One way of expressing the results of our analysis

is that we have obtained transformations of the time

dimension which make the distributions Gaussian

on the transformed scale. The rationale for seeking

such transformations is our assumption of a normal

distribution of the criterion. This is a rational

assumption based upon our conception of criterion

processes. Under this assumption, the RT distribu­

tions would be normal if the growth of excitatory

strength were linear. However, one would hardly

expect this to be the case. More reasonably, one

would expect the temporal growth of such processes

to be according to a principle of decreasing gain,

either with or without an early recruitment phase

with positive acceleration. This is the class of func­

tions we have found. It is true that in the analysis

of the deadline experiment the nature of the func­

tions was not defined prior to the analysis. This is

a part of our strategy of theory development which

recognizes that theoretical processes cannot be

quantitatively described prior to their discovery. The

transformation which will normalize any given dis-



tribution is unique within the limits of curve fitting
accuracy. On the other hand, if the transformation
is to consist of component functions, a particular
combination is not unique. However, given our
hypothesis that early responses may be dependent on
the growth of detection information only, the solu­
tion becomes unique if the implied early linearity with
V is present in the data. If it were not present, the
hypothesis would be rejected. Had the linearity been
with errors, different theoretical conclusions would
have followed. It should be emphasized that the
linear relation is specific to the time dimension and
the growth of V and not to the portions of the dis­
tributions involved. In the case of SRT, the linearity
is in the range of cumulative proportions from .12
to .74. In terms of proportion of correct responses
for the deadline experiment, the range was from less
than .01 to .19. For the accuracy experiment in the
time of the linear relation with V, the proportions
were from less than .01 to .09. The application of the
inhibition function to the error function was based
on the inference that since early correct responses
were based on detection, the incorrect response must
be subject to early inhibitory control. The source of
the function was from the DRT experiment where
the evidence indicated that it was in its pure form
throughout its range. If the two stimuli were
sufficiently similar for the generalization of associa­
tive strength (A), it would be expected that E for
error would begin to rise above the value of V-I at
the time of origin of A for correct responses. This
expectation was precisely confirmed. .

It is conventional, and sometimes proper, to
express a degree of skepticism about approaches

'which rely heavily upon curve-fitting. For example,
with data as regular as that of these experiments, if
one "peels off" one smooth function, there is bound
to be another smooth function left. What this means
is that goodness of fit alone is not a sufficient basis
for the evaluation of such analysis. The skepticism
is justified only to the extent that the analysis is arbi­
trary and unguided by adequate rational and
theoretical considerations. When the analysis is
guided by an adequate model, the approach may be
powerful. In the present analysis, each step has been
determined by the logical properties of the variable
criterion model or by the nature of accumulated
evidence. The result is a system with substantial
internal consistency, which interrelates several kinds
of RT experiments, and within which the component
functions are psychologically interpretable. The
precise confirmation of the theory in a second experi-
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ment with experimental manipulation of the cri­
terion parameters provides a strong basis for in­
creasing confidence.
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NOTE

I. The Gompertz function has been used for the description of

growth or developmental processes. It is of the form:

where Y is the amount of growth at time T, v is the asymptote

or amount of growth at maturity, g is the intercept at T = 0
or the amount of initial growth, and h determines the rate of

growth. A discussion of the properties of the function is given

by Lewis (1960, pp. 80-88 and 182-185).
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