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Abstract
Removal of emerging pollutants, such as pharmaceuticals, from wastewater is a challenge. Adsorption is a simple and efficient
process that can be applied. Clays, which are natural and low-cost materials, have been investigated as adsorbent. In this work,
raw vermiculite and its three modified forms (expanded, base, and acid/base treated) were tested for removal of a widely used
antidepressant, venlafaxine. Adsorption kinetics followed Elovich’s model for raw vermiculite while the pseudo-2nd order model
was a better fit in the case of other materials. Equilibrium followed Langmuir’s model for the raw and the acid/base-treated
vermiculite, while Redlich-Peterson’s model fitted better the expanded and the base-treated materials. The adsorption capacity of
vermiculite was significantly influenced by the changes in the physical and chemical properties of the materials caused by the
treatments. The base-treated, raw, and expanded vermiculites showed lower maximum adsorption capacities (i.e., 6.3 ± 0.5, 5.8 ±
0.7, 3.9 ± 0.2 mg g−1, respectively) than the acid/base-treated material (33 ± 4 mg g−1). The acid/base-treated vermiculite exhib-
ited good properties as a potential adsorbent for tertiary treatment of wastewater in treatment plants, in particular for cationic
species as venlafaxine due to facilitation of diffusion of the species to the interlayer gallery upon such treatment.
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Introduction

The global community is becoming increasingly aware of
both the environmental presence and the real or potential en-
vironmental impact of man-made chemicals. Continuous con-
tamination of the environment with chemical compounds and
their adverse effects on both ecosystems and human health are
among the most relevant environmental issues of today
(Kuzmanovic et al. 2013). According to European Inventory
of Existing Commercial Chemical Substances (EINECS), in
the European Union (EU), there are more than 100,000 regis-
tered chemicals of which 70,000 are in daily use (Kuzmanovic
et al. 2013).

Pharmaceuticals are a large group of chemicals that are
used daily in human and veterinary medicine. They represent
one with the largest inputs to the environment and by far are
the most extensive range of emerging contaminants reported
to date. The excretion of pharmaceuticals (and metabolites) is
a logical consequence of their consumption and constitutes the
major source of entry into the environment, whereas dis-
charges of unused medicines and effluents from manufactur-
ing facilities are secondary (Eichhorn 2013). The presence of
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pharmaceuticals in drinking water sources has now become an
important water quality issue (Eichhorn 2013; Ferrer and
Thurman 2013; Kuzmanovic et al. 2013). Although pharma-
ceuticals are present at low concentrations in the environment,
their effects of exposure to multiple stressors on ecosystems
are still unknown. Moreover, they occur in complex chemical
mixtures and it has been found that mixtures might exhibit
different effects than single compounds (Daughton 2013;
Kümmerer 2008; Kuzmanovic et al. 2013). Whereas acute
ecotoxicity effects at those levels of concentrations are not
very probable, chronic effects can be more likely expected
such as endocrine disruption, genotoxicity, and development
of antibiotic-resistant pathogenic bacteria (Kuzmanovic et al.
2013).

Antidepressants are usually prescribed for long-term use;
thus, they are produced in increased volumes compared to
many other types of pharmaceuticals (Lambropoulou et al.
2017). A commonly used antidepressant, venlafaxine, and
its major metabolite, O-desmethyl-venlafaxine, were shown
to be present in various environment water samples (Bueno
et al. 2012; de Jongh et al. 2012; Lajeunesse et al. 2012;
Metcalfe et al. 2010; Papageorgiou et al. 2016; Schultz and
Furlong 2008; Valcarcel et al. 2011). The degree of removal
and biodegradation of pharmaceuticals during wastewater
treatment varies considerably. Thus, the parent compounds
and the associated transformation products may enter the en-
vironment since they are only partially eliminated by conven-
tional wastewater treatment plants (Kuzmanovic et al. 2013).
The presence of antidepressants at low concentrations
(ngL−1), which are present as a mixture in the aquatic envi-
ronment, may induce chronic toxicity effects in the aquatic
organisms (Santos et al. 2010). Among the various techniques
of tertiary water treatment that can be applied for pharmaceu-
tical removal, such as membrane filtration, advanced oxida-
tion processes, and adsorption, the last has been proven to be
superior to other techniques for a variety of reasons, including
simplicity of design, easy operation, low operation cost, high
removal efficiency, possibility of adsorbent regeneration, and
wide range of applications. Therefore, it is considered one of
the most promising, effective, and attractive approach for ter-
tiary water treatment (Gupta and Ali 2012; Teng and Low
2012). Activated carbon is an industrially produced material
with broad applications and high removal efficiencies; how-
ever, its application is restricted due to high costs (Gupta and
Ali 2012; Teng and Low 2012; Worch 2012). Therefore, there
is a need to search for cheaper alternatives. Clays show good
perspectives in this field owing to their low cost, large specific
surface area, excellent physical and chemical stability, and
other advantageous structural and surface properties (Teng
and Low 2012; Worch 2012).

Although there are a few studies where clays have been
used as adsorbents to remove pharmaceuticals (Table 1), the
application of vermiculite in this field is not yet properly

investigated. There is also one preliminary study by Styszko
et al. (2015) who tested several clays, including exfoliated
vermiculite, for removal of ibuprofen, diclofenac, ketoprofen,
carbamazepine, and triclosan.

The aim of this study was application of raw and expanded
vermiculite together with two previously developed
vermiculite-based adsorbents obtained on a way of acid-base
and the base treatment for removal of venlafaxine from aque-
ous solution. The modified materials were extensively tested
in adsorption of heavy metals and dyes and showed signifi-
cantly increased maximum adsorption capacity (Stawiński
et al. 2017b); thus, they can also find application in remedia-
tion of wastewater laden with pharmaceuticals. Moreover, to
the authors’ best knowledge, such application has not been
reported in the literature.

Materials and methods

Reagents

Venlafaxine was used in the form of venlafaxine hydrochlo-
ride, purity ≥ 98% (Sigma-Aldrich, Steinheim, Germany). Its
main properties are depicted in Table 2. HPLC-grade metha-
nol (MeOH), HPLC-grade acetonitrile, and formic acid, purity
99–100% (VWRChemicals BDH Prolabo, PA, USA). HPLC-
grade water was obtained from purification of deionized water
in a Millipore Simplicity 185 System (Darmstadt, Germany).
Venlafaxine stock standard solution was prepared by dissolv-
ing an appropriate amount of the reagent in methanol and
stored at − 20 °C.

Adsorbents

Raw vermiculite (W) and its expanded version (Ve), in com-
mercially available form, widely used in various fields (e.g.,
civil engineering, farming), were supplied by Rominco Polska
Sp. z o.o. (Krakow, Poland). Treated materials included a
base-treated raw vermiculite (WNaOH) and an acid/base-
activated raw vermiculite (WN-OH). WNaOH was prepared
by mixing of a weighted portion of W with 2 mol L−1 sodium
hydroxide solution, in proportion of 1 g ofW for each 100 mL
of the solution, at room temperature under constant stirring for
4 h. WN-OH was prepared from W by boiling it at 98 °C
under constant stirring in a round bottom flask equipped with
a condenser, for 2 h in 1.8 mol L−1 nitric acid solution (1 g of
W for each 100 mL of acid solution), then a washing in 10%
citric acid solution was performed under stirring for 2 h, which
was followed by stirring for 1 h in 0.5 mol L−1 sodium hy-
droxide solution (Stawinski et al. 2016). Table 3 presents se-
lected properties of these materials. Detailed characterization
of each material on each step of the treatment can be found in



the following publications: Stawiński et al. (2016), Stawiński
et al. (2017a), and Stawiński et al. (2017b).

The structure of the fresh and saturated materials was stud-
ied by analysis of XRD patterns recorded using an X-ray
powder diffractometer (Bruker, D2 PHASER) equipped with
CuKα radiation source.

Determination of venlafaxine concentration

The quantification of venlafaxine was performed by high-
performance liquid chromatographic analysis with fluores-
cence detection (HPLC-FLD) using a Shimadzu LC
Prominence (Shimadzu Corporation, Kyoto, Japan) equipped

Table 1 Application of clay
minerals in remediation of water
polluted with pharmaceuticals

Pharmaceutical Materials used Adsorption capacity (mol g−1) Reference

Tramadol Smectite 0.8 × 10−3 Thiebault et al. (2015)
Doxepin 10−3

Ciprofloxacin Montmorillonite 1.19 × 10−3 Wang et al. (2011)
Rectorite 4.1 × 10−4

Illite 10−4

Birnessite 2.2 × 10−4 Jiang et al. (2013)

Tetracycline Illite 7.2 × 10−5 Chang et al. (2012)

Montmorillonite 1.04 × 10−3 Li et al. (2010a)

Kaolinite 9.0 × 10−6 Li et al. (2010b)

Rectorite 3.15 × 10−4 Chang et al. (2009)
Palygorskite 2.1 × 10−4

Amitriptyline Palygorskite 1.68 × 10−4 Tsai et al. (2016)

Enrofloxaxin Kaolinite 5.52 × 10−5 Rivagli et al. (2014)
Montmorillonite 6.41 × 10−4

6.67 × 10−4 Wan et al. (2013)
Illite 2.28 × 10−4

Kaolinite 2.0 × 10−5

Ranitidine Palygorskite 1.56 × 10−4 Li et al. (2016)

Diphenhydramine Montmorillonite 8.8 × 10−4 Li et al. (2011)

Gemfibrozil Exfoliated vermiculite 4.2 × 10−6 Dordio et al. (2017)
Mefenamic acid 8.38 × 10−6

Naproxen

2.85 × 10−7

Table 2 Physico-chemical properties of venlafaxine hydrochloride

Property Reference

Formula C17H27NO2.HCl

Structure

Mw (g mol-1) 313.86 Sigma-Aldrich

Sw (mg mL-1) 0.23 DrugBank

pKa 8.91; 14.42 DrugBank

log Kow 2.69 Sigma-Aldrich

Mw molecular weight, Sw water solubility, pKa logarithm of the acid dissociation constant, log Kow logarithm of the octanol-water partition coefficient



with a LC-20AB pump, a DGU-20A5 degasser, a SIL-20A
autosampler, a CTO-20AC column oven, and a RF-10A-XL
fluorescence detector (FLD). The control of the chromato-
graphic system and the acquisition and processing of chro-
matographic data were made using LC solution version 1.25
SP2 software.

The chromatographic separation was achieved in a Luna
C18 (4.6 × 150 mm, 5 μm) column (Phenomenex, USA). The
mobile phase consisted in ultrapure water containing 0.1%
formic acid (eluent A) and acetonitrile (eluent B). Samples
were eluted using the following gradients: 0 min, 10%
B/90% A; 0–7 min, increase from 10 to 80% B; 7–10 min,
return to initial conditions (10% B/90% A); 10–14 min, equil-
ibration of the column. The flow rate was 1 mL min−1 and the
column was maintained at 35 °C. The injection volume was
20 μL. The excitation and emission wavelengths were 274
and 610 nm, respectively. The run time was 14 min and
venlafaxine had a retention time of 4.47 min. Estimated limits
of detection and quantification were 23.4 and 78.2 μg L−1 of
venlafaxine, respectively.

Batch adsorption experiments

Kinetic and equilibrium experiments were carried out at room
temperature (20 °C), with constant stirring at 400 rpm (Digital
Ceramic Hot Plate Stirrer–AREC with VTF Digital
Thermoregulator, VELP Scientifica, Italy). The pH was mon-
itored from the initial value, close to 6, up to the final value,
around 7.

In the kinetic experiments, weighted portions of 300 mg of
WandVe, and of 100mg in the case ofWNaOH andWN-OH,
were placed in beakers and mixed with 250 mL of
883.9 μg L−1 aqueous solution of venlafaxine for 130 min.
Samples were collected at determined time intervals, immedi-
ately centrifuged for 10 min at 9000 rpm (Heraeus Fresco 21
Microcentrifuge, Thermo Scientific, USA), and the

concentration of venlafaxine in the supernatants was deter-
mined by HPLC-FLD.

In the equilibrium experiments, portions of 30mg ofWand
Ve, and 10 mg, in the case of WNaOH and WN-OH, were
stirred for 60 min (time enough to reach equilibrium) in
Erlenmeyer flasks with 20 mL of venlafaxine aqueous solu-
tion of concentrations varying from 100 to 15,000 μg L−1. In
the next step, the samples were centrifuged and the concentra-
tion of venlafaxine was determined as described above.

The adsorption capacity of the materials was calculated
according to Eq. 1:

qt ¼ C0−Ctð Þ∙V=m ð1Þ
where C0 (μg L−1) and Ct (μg L−1) are the initial and time t
(min) venlafaxine concentrations, respectively, V (L) is the
volume of venlafaxine solution at time t and m (g) is the
adsorbent mass.

After each experiment, the saturated materials were collect-
ed, washed with water in 5 cycles of mixing and centrifuga-
tion, and left to dry overnight at 40 °C; then, they were char-
acterized by X-ray diffraction.

Data analyses

Kinetic and equilibrium parameters were estimated by non-
linear regression. Considering the stirring speed used during
the experiments, sufficient to eliminate the external resistance
to mass transfer, the influence of external film diffusion was
neglected. Three kinetic models were adjusted to the experi-
mental data: pseudo-1st order model (Lagergren 1898),
pseudo-2nd order model (Ho 2004), and Elovich’s model
(Low 1960). Experimental equilibrium results were fitted by
the five following isotherm models: Freundlich’s model
(Freundlich 1906), Langmuir’s model (Langmuir 1918),
Sips’ model (Sips 1948), Redlich-Peterson’s model (Redlich

Table 3 Physical and chemical
properties of adsorbent materials
(adapted from Stawinski et al.
2016)

Property W Ve WNaOH WN-OH

SBET (m
2 g−1) 21 9 18 45

Pores volumes (cm3 g−1)

Vmeso 2.84 × 10−3 2.94 × 10−4 1.12 × 10−2 3.34 × 10−3

Vmicro 2.06 × 10−3 4.28 × 10−4 1.93 × 10−3 1.05 × 10−3

CEC (mmol 100 g−1) 93 38 97 44

pHpzc 8.1 n.a. n.a. 7.9

Chemical composition (weight %)

MgO 23.3 n.a. 24.0 3.1

Al2O3 12.2 10.3 12.0 39.4

Fe2O3 9.7 10.4 11.0 10.4

SiO2 58.0 31.7 52.0 43.3

SBET, Brunauer, Emmett, and Teller specific surface area; Vmeso, volume of mesoporous; Vmicro, volume of
microporous; CEC, cation exchange capacity; pHpzc, point of zero charge; n.a., not analyzed



and Peterson 1959), and Tóth’s model (Tóth 1971). Models’
equations are presented in the BSupplementary Materials.^

Results

X-ray diffraction studies

The interlayer hydration complexes of clay minerals arise from
intercalation of a discrete number of water layers. This number
ranges from 0 to 3, corresponding to zero-, one-, two-, or three-
layer hydrates. One of the main factors affecting the interlayer
hydration is the interlayer cation and its polarization energy
(Brigatti et al. 2006). Generally speaking, divalent interlayer
cations tend to form two- and three-layer hydrates, whilemono-
valent cations are hydrated with one water layer (Sposito and
Prost 1982). Moreover, the hydration states change upon ther-
mal treatment of the materials (Marcos et al. 2003). The XRD
pattern of the raw vermiculite (W) exhibited characteristic d002
reflection corresponding to the interlayer space height, ascribed
to the presence of double water layer in interlayer galleries
accompanying the charge-balancing cations (Fig. 1a). In the
expanded material (Ve), a series of reflections corresponding
to the presence of double, single, and zero water layers were
identified (Fig. 1b). The peak at the pattern of the material
treated with acid and base (WN-OH) might be attributed to a
new phase, saturated with Mg (Sakharov et al. 1999), com-
posed of smectite-like layers and hydroxy-intercalated

vermiculite (HIV) formed due to migration of metal ions from
the active dissolution of sites into the interlayer space
(Kalinowski and Schweda 2007; Mareschal et al. 2009)
(Fig. 1c). The reflection of the material treated with base
(WNaOH) may be attributed to a phase originating from two-
(Mg-vermiculite) and one-sheet (Na-vermiculite) (Huo et al.
2012) layers of water (Collins et al. 1992; Marcos et al. 2003;
Ruiz-Conde et al. 1996) and interstratification between
contracting and non-contracting phases (Walker 1961)
(Fig. 1d). After saturation of the adsorbents, the peaks shifted
towards lower angles, and in the case of the material Ve, the
reflection at 1.025 nm had decreased its intensity.

Kinetic studies

The data gathered during the kinetic experiments with fitted
models are presented in Fig. 2. Estimated kinetic parameters
and results of statistical analysis are shown in Table 4. The
kinetic profiles showed that equilibrium was reached within
around 15 min in the case of the materials Ve and WN-OH,
and in approximately 40 min in the case of WNaOH and W.
The pseudo-2nd order model was the best fit for the first three
materials; however, the results for W were better fitted by the
Elovich’s model. The kinetic constant (k2) for the material Ve
was the highest, followed by that for the materials W, WN-
OH, and WNaOH. The latter one had the parameter an order
of magnitude lower than that of the other adsorbents. In order
to ease their comparison, the kinetic parameters were analyzed
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according to the results of fitting of the pseudo-2nd order
model for all adsorbents.

Equilibrium studies

The results of the equilibrium studies for the four investigated
systems containing VLF and W, Ve, WNaOH, and WN-OH
together with the fitted models are presented in Fig. 3.
Estimated models’ parameters and results of statistical analysis

are gathered in Table 5. Adsorption ofVLF onto the raw (W) and
acid-base-treated material (WN-OH) followed the Langmuir’s
model, whereas the Redlich-Peterson’s isotherm equation was a
better fit in the case of the expanded vermiculite (Ve) and in the
base-treated material (WNaOH). According to the Langmuir’s
model, the material WN-OH showed the highest adsorption ca-
pacity, 33 ± 4 mg g−1. The materials WNaOH andWwere char-
acterized by statistically similar removal efficiencies, 6.3 ± 0.5
and 5.8 ± 0.7 mg g−1, respectively, and the lowest adsorption
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order model (a), pseudo-2nd
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model (c), for adsorption of VLF
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Table 4 Kinetic parameters determined for the systems venlafaxine/W, Ve, WNaOH, and WN-OH and the respective statistical analysis

Material Kinetic model Parameters Statistical analysis

R2 s χ2
red AIC

W Pseudo-1st order qe 529 ± 5 k1 1.2 ± 0.1 0.946 24.8 6.13 × 102 2.898

Pseudo-2nd order qe 550 ± 3 k2 0.0040 ± 0.0003 0.990 10.7 1.14 × 102 2.166

Elovich α 1.21 × 107 ± 0.99 × 107 β 0.029 ± 0.002 0.991 10.2 1.03 × 102 2.125

Ve Pseudo-1st order qe 505 ± 3 k1 1.6 ± 0.1 0.964 15.6 2.44 × 102 2.464

Pseudo-2nd order qe 515 ± 2 k2 0.007 ± 0.001 0.984 10.5 1.10 × 102 2.117

Elovich α 1.9 × 1012 ± 5.1 × 1012 β 0.056 ± 0.006 0.981 11.4 1.30 × 102 2.191

WNaOH Pseudo-1st order qe 1619 ± 38 k1 0.54 ± 0.08 0.888 137.9 1.90 × 104 4.434

Pseudo-2nd order qe 1723 ± 7 k2 0.00060 ± 0.00003 0.998 17.6 3.10 × 102 2.594

Elovich α 3.8 × 105 ± 5.0 × 105 β 0.007 ± 0.001 0.929 109.5 1.20 × 104 4.233

WN-OH Pseudo-1st order qe 1672 ± 16 k1 1.1 ± 0.1 0.956 73.2 5.35 × 103 3.848

Pseudo-2nd order qe 1723 ± 7 k2 0.0014 ± 0.0001 0.994 27.1 7.34 × 102 2.985

Elovich α 1.9 × 1010 ± 4.5 × 1010 β 0.014 ± 0.001 0.975 55.2 3.05 × 103 3.604

qe (μg g−1 ); α (μg g−1 min−1 ); k1 (min−1 ); k2 (g μg
−1 min−1 ); β (μg g−1 )



capacity, 3.9 ± 0.2 mg g−1, was verified for Ve. All fitted iso-
therms had L-type configuration which suggests high affinity
of VLF to the studied adsorbents. Additionally, VLF exhibits a
low solubility in water (Sw), 0.23 mg mL−1, and has a high
octanol-water partition coefficient value (log Kow), 2.69
(Table 2), which favors the adsorption of this pharmaceutical.

A slight increase in pH of the solutions was noticed in all
investigated systems. Initial pH was around 6 and increased
about 1 during the adsorption experiments. In this range of
pH, venlafaxine is positively charged (Table 2).

Discussion

The adsorption properties of studied materials are strongly
dependent on their treatment method. The expanded

vermiculite (Ve), during its exfoliation, was subjected to high
temperatures. Such process causes various changes in the ma-
terial: a decrease in its specific surface area, dehydroxylation
of its structure (Barshad 1950; Walker 1961) depriving the
material of adsorption sites, and a significant loss of cation
exchange capacity that can decrease almost to zero (Földvári
2011; Stefanova 2001). Owing to that, adsorption on Ve was
very low. In this case, based on these facts and on the results of
the kinetic experiments, it may be supposed that adsorption
took place mostly on the external surface of the mineral, as it
should be expected the migration of the relatively large phar-
maceutical molecule would require longer time to be complet-
ed, especially for very low concentrations of the compound
(low driving force of the process). Consequently, the adsorp-
tion process was completed faster, and therefore the kinetic
parameter is high. The changes visible in the XRD pattern
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after adsorption should be associated with disappearance of
the zero water layer phase due to hydration of the material (the
water molecule is considerably smaller than the molecule of
VLF, thus it can easily migrate into the interlayer gallery of the
clay mineral) (Marcos et al. 2009), rather than intercalation of
VLF between the material’s layers. It cannot be unambiguous-
ly stated that no VLF molecule was intercalated into the inter-
layer space; however, this phenomenon was not reflected in
the XRD patterns thus no increase in the interlayer distance
occurred. Moreover, it is likely that adsorption capacity has
also been influenced by the loss of some meso- and micropo-
rosity (Haul 1982), from 2.84 × 10−3 (W) to 2.94 ×
10−4 cm3 g−1 (Ve) and 2.06 × 10−3 (W) to 4.28 × 10−4 cm3 g−1

(Ve), respectively.
The adsorption capacity of the raw (W) and the base-

treated material (WNaOH) reached a similar level. These ma-
terials have comparable specific surface areas, cationic ex-
change capacity (Table 3), and chemical composition; hence,
there is no difference in the maximum adsorption capacity.
However, there was a significant discrepancy between the
values of the kinetic parameters, which was lower on the latter
material. This phenomenon might be attributed to the fact that
during base activation, exchangeable Mg2+ cations present in
the interlayer gallery were exchanged by Na+ (Stawiński et al.

2017b). Sodium having lower polarizing power is easier to
exchange by another species than magnesium. Although there
was a slight shift of the d002 reflection in the case of W after
saturation, it should be rather attributed to varying the number
of interlayer water molecules that do not cause any changes in
the hydration state (Ferrage et al. 2005) than to intercalation of
the adsorbate. It is possible, therefore, that the adsorption oc-
curred essentially on the external surface of vermiculite, in
particular in the structural hydroxyl groups located on the
surface and at its broken edges (Schoonheydt and Johnston
2006). However, the longer time to reach equilibrium may
suggest that some of the VLF is adsorbed via the mechanism
of ion exchange with interlayer cations. On the other hand, in
the case ofWNaOH, the reflection present in the pattern of the
unsaturated material at 1.265 nm shifted to 1.368 nm (Fig. 1),
which may be interpreted as intercalation of the adsorbate
between the layers. Such process is more time consuming,
thus the adsorption rate is lower and the time to achieve equi-
librium is also longer when compared to the material Ve and
WN-OH.

The material subjected to acid-base treatment exhibited the
best adsorption properties, and moderate adsorption rate.
Also, in this case, the shift of the reflection in the XDR pattern
(Fig. 1) may be associated with intercalation of VLF between

Table 5 Isotherm parameters determined for the four systems venlafaxine/W, Ve, WNaOH, and WN-OH and the respective statistical analysis

Material Isotherm model Parameters Statistical analysis

R2 s χ2
red AIC

W Freundlich n 1.6 ± 0.2 kF 51 ± 26 0.883 453.2 2.05 × 105 5.531

Langmuir qm 5.8 × 103 ± 0.7 × 103 kL 0.0016 ± 0.0004 0.949 299.8 8.99 × 104 5.173

Sips nS 1.0 ± 0.2 qm 5.8 × 103 ± 1.7 × 103 kS 0.002 ± 0.001 0.949 313.2 9.81 × 104 5.316

Redlich-Peterson β 1.0 ± 0.4 kRP 9 ± 3 aRP 0.002 ± 0.005 0.949 313.2 9.81 × 104 5.315

Tóth nT 1.0 ± 0.7 qm 5.8 × 103 ± 2.6 × 103 bT 637 ± 2770 0.949 313.2 9.81 × 104 5.315

Ve Freundlich n 2.2 ± 0.1 kF 81 ± 18 0.973 193.7 3.75 × 104 4.809

Langmuir qm 3.9 × 103 ± 0.2 × 103 kL 0.0011 ± 0.0001 0.981 161.5 2.61 × 104 4.674

Sips nS 0.75 ± 0.09 qm 5.1 × 103 ± 0.8 × 103 kS 0.0005 ± 0.0002 0.989 132.1 1.75 × 104 4.589

Redlich-Peterson β 0.77 ± 0.06 kRP 7 ± 2 aRP 0.01 ± 0.01 0.992 112.8 1.27 × 104 4.452

Tóth nT 0.5 ± 0.2 qm 6.5 × 103 ± 2.0 × 103 bT 26 ± 28 0.990 122.2 1.49 × 104 4.522

WNaOH Freundlich n 3.6 ± 0.6 kF 6.4 × 102 ± 2.4 × 102 0.862 996.5 9.93 × 105 6.216

Langmuir qm 6.3 × 103 ± 0.5 × 103 kL 0.005 ± 0.003 0.855 1022.3 1.05 × 106 6.238

Sips nS 0.4 ± 0.1 qm 1.4 × 104 ± 1.3 × 104 kS 0.0001 ± 0.0004 0.948 592.6 3.51 × 105 5.828

Redlich-Peterson β 0.78 ± 0.05 kRP 1.6 × 102 ± 1.4 × 102 aRP 0.2 ± 0.2 0.956 548.1 3.00 × 105 5.760

Tóth nT 0.2 ± 0.2 qm 2.9 × 104 ± 5.7 × 104 bT 1 ± 1 0.950 578.6 3.35 × 105 5.807

WN-OH Freundlich n 1.5 ± 0.1 kF 287 ± 102 0.952 1357.1 1.84 × 106 6.484

Langmuir qm 3.3 × 104 ± 0.4 × 104 kL 0.0022 ± 0.0005 0.974 1006.6 1.01 × 106 6.225

Sips nS 1.0 ± 0.2 qm 3.2 × 104 ± 1.3 × 104 kS 0.002 ± 0.002 0.974 1051.7 1.11 × 106 6.368

Redlich-Peterson β 1.0 ± 0.5 kRP 71 ± 20 aRP 0.002 ± 0.007 0.973 1061.9 1.13 × 106 6.376

Tóth nT 1.0 ± 0.8 qm 3.3 × 104 ± 2.1 × 104 bT 0.5 × 103 ± 2.1 × 103 0.974 1053.4 1.11 × 106 6.369

n (dimensionless); qm (μg g−1 ); nS (dimensionless); β (dimensionless); nT (dimensionless); kF (μg g−1 (L μg−1 )1/n ); kL (L μg−1 ); kRP
((μg g−1 )(L μg−1 )); kS (L μg−1 ); aRP (L μg−1 )β ; bT (μg L−1 )



material’s layers. The first step of this modification comprised
acid activation. In the course of this process, some of the
interlayer cations and metal cations from the octahedral layers
were leached, causing formation of highly distorted material’s
structure. These changes resulted in a decrease in crystallinity
and cationic exchange capacity, delamination of the layer
structure, weakening of interaction between the layers, and
formation of new adsorption sites on amorphous silica that
cross-links the material giving it a Bhouse of cards^ structure
(Stawiński et al. 2016). Nonetheless, this new amorphous
phase also acted as a cementing agent impeding good disper-
sion of the material in solution, and it also clogged the en-
trance between the layers, rendering some of the adsorption
sites inaccessible (Fernandes et al. 2007; Kaviratna and
Pinnavaia 1994; Stawiński et al. 2016). Base treatment pro-
motes the leaching of silicon and aluminum species from the
mineral surface (Jozefaciuk et al. 2002; Kunze 1965). When
such prepared material entered into contact with NaOH, the
amorphous cementing phase was dissolved, the entrance to
the interlayer was opened, and moreover, the remaining inter-
layer cation exchanged to Na+. This subsequent treatment left
a material that had decreased cationic exchange capacity,
which facilitates migration of the species between layers, with
Na+ interlayer cations that are easier to exchange, and without
amorphous silica causing a spherical obstruction. This mate-
rial had also an increase in the specific surface area due to
possible formation of surface cracks and voids, and by accu-
mulation of iron and magnesium hydroxides (Jozefaciuk et al.
2002).

The slight increase in the pH of the solutions during the
equilibrium experiments can be explained by adsorption of H+

onto the structure of adsorbents (e.g., unsaturated bonds on the
Bbroken edges^). Nonetheless, the final pH was lower than
pKa of VLF, thus the molecule was protonated, and hence its
interaction with the adsorbent surface enhanced.

Conclusions

Adsorption of venlaflaxine (VLF) on a natural clay mineral
vermiculite (W), its thermally expanded version (Ve), and two
other adsorbents derived fromW, by base (WNaOH) and acid-
base activation (WN-OH), have been tested. The adsorption
kinetics followed the pseudo-2nd order model in all cases
except for W, where Elovich’s model was a better fit. The
process was fast and was completed in approximately
15 min on Ve and WN-OH, and in around 40 min on
WNaOH and W. Regarding equilibrium, the Langmuir’s iso-
therm model represented the adsorption on W and WN-OH,
whereas Redlich-Peterson’s equation was the best fit for Ve
and WNaOH.

The raw vermiculite reached a maximum adsorption capac-
ity of 5.8 ± 0.7 mg g−1; and after base activation, no significant

change in the capacity was observed. Thermal treatment of the
material resulted in deterioration of its adsorption capacity that
decreased to 3.9 ± 0.2 mg g−1. However, subsequent acid-base
activation increased the capacity by 550% in relation to the
starting vermiculite, reaching 33 ± 4 mg g−1. This is a result of
changes occurring in the material’s structure (i.e., leaching of
the layers, lowering the cation exchange capacity, and disso-
lution of the amorphous phase created during acid activation)
that enable the whole interlayer space for adsorption of
species.

The acid-base-treated vermiculite, so far, has been applied
only for removal of metal cations and cationic dyestuffs from
aqueous solution. This study proves that such adsorbents may
be successfully applied for removal of other species from
wastewater opening new perspectives for removal of
pharmaceuticals.
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