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V
isual recognition of patterns is a basic capability

of most advanced species in nature. A big per-

centage of the human brain is devoted to visual

processing, with a substantial portion of this

area used for pattern recognition (see references

[1] and [2] for an in-depth treatment of the subject). Visual

pattern recognition enables a variety of tasks, such as object

and target recognition, navigation, and grasping and manip-

ulation, among others. Advances in camera technology

have dramatically reduced the cost of cameras, making

them the sensor of choice for robotics and automation.

Vision provides a variety of cues about the environment

(motion, color, shape, etc.) with a single sensor. Visual pat-

tern recognition solves some fundamental problems in

computer vision: correspondence, pose estimation, and

structure from motion. Therefore, we consider visual
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pattern recognition to be an important, cost-efficient prim-

itive for robotics and automation systems.

Recent advances in computer vision have given rise to a

robust and invariant visual pattern recognition technology that

is based on extracting a set of characteristic features from an

image. Such features are obtained with the scale invariant fea-

ture transform (SIFT) [5], [6], which represents the variations

in brightness of the image around the point of interest.

Recognition performed with these features has been shown

to be quite robust in realistic settings. This article describes

the application of this particular visual pattern recognition

technology to a variety of robotics applications: object recog-

nition, navigation, manipulation, and human-machine inter-

action. The following sections describe the technology in

more detail and present a business case for visual pattern

recognition in the field of robotics and automation.

Visual Pattern Recognition (ViPR)
The visual pattern recognition system developed by Evolution

Robotics is versatile and works robustly with low-cost cam-

eras. The underlying algorithm addresses an important chal-

lenge of all visual pattern recognition systems: performing

reliable and efficient recognition in realistic settings with inex-

pensive hardware and limited computing power. 

ViPR can be used in applications such as manipulation,

human-robot interaction, and security. It can be used in

mobile robots to support navigation, localization, map-

ping, and visual servoing. It can also be used in machine

vision applications for object identification and hand-eye

coordination. Other applications include entertainment

and education since ViPR enables the automatic identifi-

cation and retrieval of information about a painting or

sculpture in a museum. 

Based on the work of David Lowe [5], [6], ViPR repre-

sents an object as a set of SIFT features extracted from one or

more images of such an object. SIFT features are highly local-

ized visual templates, which are invariant to changes in scale

and rotation and partially invariant to changes in illumination

and viewpoint. Each SIFT feature is described by its location

in the image (at subpixel accuracy), its orientation, scale, and a

keypoint descriptor that has the above-mentioned invariance

properties. The key components of ViPR are both the partic-

ular choice of features to be used (SIFT features) and the very

efficient way of organizing and searching through a database

of hundreds of thousand of SIFT features.

On a 640 × 480 image, the detector would typically

find about 2,000 such features. In the training phase, the

features are added to the model database and labeled with

the object name associated with the training image. In the

matching phase, a new image is acquired, and the algorithm

searches through the database for all objects matching sub-

sets of the features extracted from the new image using a

bottom-up approach. Euclidean distance in the SIFT

descriptor space is used to find similar features. A greedy

version of a k-d tree allows for efficient search in this very

high-dimensional space. A voting technique is then used to

consolidate information coming from individual feature

matches into a global match hypothesis. Each hypothesis

contains features that match the same object and the same

change in viewpoint for that particular object. The last step

of the process refines the possible matches by computing an

affine transformation between the set of features and the

matched object(s) so that the relative position of the fea-

tures is preserved through the transformation. The residual

error after the transformation is used to decide whether to

accept or reject the match hypothesis.

Figure 1 shows the main characteristics of the recognition

algorithm. The first row displays the two objects to be recog-

nized, and the other rows present recognition results under

different conditions. The main characteristics of the algorithm

are summarized in the following.

Invariant to Rotation and Affine Transformations
ViPR recognizes objects even if they are rotated upside down

(rotation invariance) or placed at an angle with respect to the

optical axis (affine invariance). See the second and third rows

of Figure 1. 

Invariant to Changes in Scale
Objects can be recognized at different distances from the

camera, depending on the size of the objects and the camera

resolution. Recognition works reliably from distances of sev-

eral meters. See the second and third rows of Figure 1. 

Invariant to Changes in Lighting
ViPR handles changes in illumination ranging from natural to

artificial indoor lighting. The system is insensitive to artifacts

caused by reflections or backlighting. See the fourth row of

Figure 1.

Invariant to Occlusions
ViPR reliably recognizes objects that are partially blocked by

other objects and objects that are partially in the camera’s

view. The amount of allowed occlusions is typically between

50–90%, depending on the object and the camera quality. See

the fifth row of Figure 1.

Reliable Recognition
ViPR has an 80–95% success rate in uncontrolled settings. A

95–100% recognition rate is achieved in controlled settings. 

Recent advances in computer vision

have given rise to a robust and

invariant visual pattern recognition

technology based on extracting a

set of characteristic features 

from an image. 



The recognition speed is a logarithmic func-

tion of the number of objects in the database;

i.e., the recognition speed is proportional to log

(N), where N is the number of objects in the

database. The object library can store hundreds

or even thousands of objects without a signifi-

cant increase in computational requirements.

The recognition frame rate is proportional to

CPU power and image resolution. For exam-

ple, the recognition algorithm runs at 14–18

fps (frames per second) at an image resolution

of 208 × 160 on a 1,400-MHz Pentium IV

processor, 5  fps at 208 × 160 on a 600-MHz

MIPS-based 64-b RISC processor and 7 fps at

320 × 240o n a 400-MHz processor.

Reducing the image resolution decreases

the image quality and, ultimately, the recogni-

tion rate. However, the object recognition

system allows for graceful degradation with

decreasing image quality. Each object model

requires about 40 kB of memory. 

The ViPR algorithm was initially developed

at the laboratory of Prof. David Lowe at the

University of British Columbia. Evolution

Robotics faced the challenge of productizing

and commercializing ViPR. The first stage in

the process was the implementation of ViPR as

a reliable piece of code. A first level of quality

assurance (QA) was performed at this stage. QA

was designed in order to ensure that the algo-

rithm performed robustly and reliably in com-

pletely unknown and unstructured

environments. The next stage was documenta-

tion and usability. A powerful, yet simple to use

set of APIs was designed for ViPR, sample code

examples and documentation were written, and

a second level of QA was performed. At this

point in time, a graphical user interface (GUI)

application was developed in order to simplify

customer evaluation of ViPR. Optimization of

the code was also started at this point; we

achieved about a 15 times improvement in com-

putation while keeping the same recognition

performance. This optimization of ViPR

involved a lot of code reorganization, assembly

implementation of the most time-consuming

portions of the code, and modifications of the

original algorithm. The final stage of the process

has been the delivery and integration of the code

in actual robotics and automation products.

A Business Case for ViPR
in Robotics and Automation
In this section we analyze the different aspects

of ViPR that make it a significant innovation

for the robotics industry. 
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Figure 1. Examples of ViPR working under a variety of conditions. The first row
presents the two objects to be recognized. The other rows display recognition
results [the bounding box of the matched object is shown in red (dark gray)].

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)



Novelty
The ViPR algorithm presented in the previous section is the

first algorithm to date that has shown recognition rates above

90% in real-world conditions (undefined and unknown envi-

ronments, variable lighting, etc.). ViPR also provides the basis

for the visual simultaneous localization and mapping

(vSLAM) system [3], [4], the first simultaneous localization

and mapping (SLAM) system that enables low-cost and robust

navigation in cluttered and populated environments. SLAM is

one of the most fundamental, yet most challenging, problems

in mobile robotics. To achieve full autonomy, a robot must

possess the ability to explore its environment without user

intervention, build a reliable map, and localize itself in the

map. In particular, if global positioning sensor (GPS) data and

external beacons are unavailable, the robot must determine

autonomously what are appropriate reference points (or land-

marks) on which to build a map. ViPR provides the capability

for robust and reliable recognition of visual landmarks. 

Figure 2 shows the result of vSLAM after the robot has trav-

eled in a typical two-bedroom apartment. The robot was driven

along a reference path (this path is unknown to the SLAM algo-

rithm). The vSLAM algorithm builds a

map consisting of landmarks marked

with blue circles in the figure. The cor-

rected robot path, which uses a combi-

nation of visual features and odometry,

provides a robust and accurate position

determination for the robot as seen by

the red path in the figure.

The green path (odometry only) is

obviously incorrect, since, according

to this path, the robot is traversing

through walls and furniture. The red

path (the vSLAM corrected path), on

the other hand, is consistently fol-

lowing the reference path.

Based on experiments in various

typical home environments on different

floor surfaces (carpet and hardwood

floor), and using different image reso-

lution (low: 320 × 280, high:

640 × 480), robot localization accuracy

was achieved as shown in Table 1.

Potential for Commercialization
ViPR has already been integrated into

a series of commercial products and prototypes. ViPR is also

part of the Evolution Robotics Software Platform (ERSP)

and is being evaluated by a number of companies at the

moment. Some commercial products that currently use ViPR

are presented in Figure 3 and highlighted in the following.

Sony’s AIBO ERS-7

AIBO is an entertainment robot that has incorporated ViPR

for supporting two critical features: reliable human-robot

interaction and robust self-charging. AIBO recognizes a set of

commands issued with a set of predefined, feature-rich cards

that are reliably matched with ViPR. AIBO’s charging station

has a characteristic pattern that is recognized with ViPR, sup-

porting localization of the station and robust self-docking.

Yaskawa’s SmartPal

SmartPal [7] is a prototype robot that is capable of recognizing

a set of objects placed on a table understanding a user request
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Figure 2. Example result of SLAM using vSLAM. Red path: vSLAM estimate of robot
trajectory. Green path: odometry estimate of robot trajectory. Blue circles: vSLAM
landmarks created during operations.
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Carpet Low 13.6 9.4 4.79 7.99

Carpet High 12.9 10 5.97 7.03

HW Low 12.2 7.5 5.28 6.62

HW High 11.5 8.3 3.47 5.41

Table 1. Robot localization accuracy.

The key components of ViPR are

both the particular choice of

features to be used and the very

efficient way of organizing and

searching through a database 

of hundreds of thousand 

of SIFT features.



for one of the objects and then grabbing it. SmartPal uses

ViPR for object recognition and distance calculation in order

to perform manipulation and grasping of the object. 

Phillips’ iCat

The iCat [8], [9] is an experimentation platform for study-

ing human-robot interaction. The iCat uses ViPR to rec-

ognize cards with a par ticular picture/symbol that

represents a particular genre of music (e.g., rock, pop,

romantics, or children’s music). Once the type of music is

recognized, the iCat selects music of the desired genre

from a content server (PC) and sends

it to a music renderer (Phil ips

Streamium device).

Evolution Robotics’ LaneHawk

LaneHawk is a ViPR-based system

developed for the retail market that

helps in detecting and recognizing

items placed in the bottom of the

basket of shopping carts. A camera

flush-mounted in the checkout lane

is continuously checking for the

presence of the cart and for the exis-

tence of items in the bottom of the

basket. When ViPR recognizes an

item, its UPC information is passed

to the point of sale (POS). The

cashier verifies the quantity of items

that were found under the basket and

continues to close the transaction.

LaneHawk provides a solution for the

problem of bottom-of-basket (BOB)

losses (items that are overlooked or

forgotten at checkout) and also

improves productivity by increasing

the checkout speed of the lanes. 

Economic Viability
ViPR requires two pieces of hard-

ware to work: a camera and a CPU.

ViPR is able to perform at recogni-

tion rates better than 90% using a

US$40–80 Web camera or a US$4–9

sensor (640 × 480 pixels resolution).

We have implemented ViPR in a

var iety of computing platforms,

ranging from Pentium-based systems

to embedded processors, like the

PMC Sierra family of processors, to

DSP chips, like the 200-MHz TI

TMS320C6205. A complete ViPR

system composed of a custom cam-

era, a TI DSP, and a FPGA to inter-

face the camera and the DSP will

cost of about US$21 (US$9 + US$5
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Figure 3. Robots using ViPR: (a) Sony’s AIBO ERS-7, (b) Yaskawa’s SmartPal, and (c)

Phillips’ iCat.
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To achieve full autonomy, a robot

must possess the ability to explore

its environment without user

intervention, build a reliable map,

and localize itself in the map. 



+ US$7) in large volumes. We have also implemented

vSLAM in two different platforms: a Pentium-based system

and a custom-embedded board composed of a 400-MHz

PMC Sierra Processor and a TI DSP that handled the

image-filtering blocks of ViPR. The embedded implemen-

tation of vSLAM was developed for the robotic vacuum

cleaner market, targeting vacuum devices that would cost

about US$500. The embedded board also includes a mod-

ule for motor control of the robot for about US$100 in

large volumes. The embedded implementation of vSLAM

provides all the computing power needed for the vacuum

cleaner at a reasonable percentage of the estimated retail

price of the product. Therefore, we have a suite of imple-

mentations of ViPR that would enable robotic applica-

tions, ranging from the ones that already have a sizable

computing platform, such as AIBO, to the ones that have a

minimal computing platform (or none), such as simple

robotic toys or robotic vacuum cleaners.

On the industrial automation side, we have fully pro-

ductized LaneHawk. The system consists of a camera, a

lighting system, and a complete computer, and it sells for

about US$3,000. Losing about US$20 per lane per day in a

typical store (10–15 lanes) represents US$50,000 of annual

lost revenue. A LaneHawk installation would pay for itself

in less than 12 months, assuming a conservative BOB

detection rate of 50%. 

Conclusions
ViPR is a basic primitive for robotics systems. It has been

used for human-robotic interaction, localization and map-

ping, navigation and self-charging, and manipulation. ViPR

is the first algorithm of its kind that performs robustly and

reliably using low-cost hardware. ViPR could be integrated

as an add-on hardware component in its DSP implementa-

tion or as a pure software component, giving robotics

developers a variety of possibilities and great flexibility for

designing their applications. Therefore, we postulate that

ViPR could potentially be a very valuable component for

the robotics industry. 

Keywords
Visual pattern recognition, SIFT, vSLAM, SLAM, vision-

based robotics, vision-based automation.
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