
  

  

Abstract—Vibration analysis is essential in improving 

condition monitoring and fault diagnostics of rotating 

machinery. Many signal analysis methods are able to extract 

useful information from vibration data. Currently, the most of 

these methods use spectral analysis based on Fourier 

Transform (FT). However, these methods present some 

limitations; it is the case of non-stationary signals. In the 

present work, we are interested to the vibration signal analysis 

by the Wavelet Transform (WT). The WT is one of the most 

important methods for signal processing; it is especially suitable 

for non-stationary vibration measurements obtained from 

accelerometer sensors. The monitoring results indicate that the 

WT can diagnose the abnormal change in the measured data. 

 
Index Terms—Vibration analysis, fault diagnosis, rotating 

machinery, spectral analysis, wavelet transform 

 

I. INTRODUCTION 

Growing demand for higher performance, safety and 

reliability of industrial systems has increased the need for 

fault diagnosis. Fault diagnosis has been becoming more and 

more important for process monitoring. During the last two 

decades, various sensors have been developed and employed 

for condition monitoring and fault diagnosis, include; 

displacement, vibration, dynamic force, acoustic emission, 

temperature, etc. 

The vibration signal analysis is one of the most important 

methods used for condition monitoring and fault diagnostics, 

because they always carry the dynamic information of the 

system. Effective utilization of the vibration signals, however, 

depends upon the effectiveness of the applied signal 

processing techniques for fault diagnostics. With the rapid 

development of the signal processing techniques, the analysis 

of stationary signals has largely been based on well-known 

spectral techniques such as: Fourier Transform (FT), Fast 

Fourier Transform (FFT) and Short Time Fourier Transform 

(STFT) [1], [2]. Unfortunately, the methods based on FT are 

not suitable for non-stationary signal analysis [3]. In addition, 

they are not able to reveal the inherent information of 

non-stationary signals. These methods provide only a limited 

performance for machinery diagnostics [4]. In order to solve 

these problems, Wavelet Transform (WT) has been 
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developed. WT is a kind of variable window technology, 

which uses a time interval to analyze the high frequency and 

the low frequency components of the signal [5], [6]. The data 

using WT can be decomposed into approximation and detail 

coefficients in a multiscale, presenting then a more effective 

tool for non-stationary signal analysis than the FT. Many 

studies present the applications of WT to decompose signals 

for improving the performance of fault detection and 

diagnosis in rotating machinery [7]–[10]. 

In this work, we propose to implement the WT for 

condition monitoring of rotating machinery. It is evaluated 

using the experimental measurements data in the cases of 

mass unbalance and gear fault. The main goal of this 

technique is to obtain more detailed information contained in 

the measured data. 

The remainder of this paper is organized as follows. 

Section 2 presents WT method and its formulations. System 

and faults descriptions are presented in Section 3. The 

monitoring results are discussed in Section 4. Finally, Section 

5 concludes our contributions.   

 

II. WAVELET TRANSFORM  

In the last 20 years, WT has grown at an explosive rate. 

Wavelets have appealed to scientists and engineers of many 

different backgrounds. WT has led to exciting applications in 

signal analysis and numerical analysis, and many other 

applications are being studied [11], [12]. 

WT is a time-frequency analysis technique. Due to its 

strong capability in time and frequency domain, it is applied 

recently by many researchers in rotating machinery. It 

decomposes a signal in both time and frequency in terms of a 

wavelet, called mother wavelet. The WT includes 

Continuous Wavelet Transform (CWT) and Discrete 

Wavelet Transform (DWT). Let s(t) is the signal; the CWT of 

s(t) is defined as 

∫
∞

∞−

= td)ab)-(t()ts()a(1(a,b)CWT
*

ψ     (1) 

where ψ*(t) is the conjugate function of the mother wavelet 

ψ(t) (2), a and b are the dilation (scaling) and translation 

(shift) parameters, respectively. The factor a1 is used to 

ensure energy preservation. 

)a/)bt(()a(1)t( −= ψψ                  (2) 

The mother wavelet must be compactly supported and 

satisfied with the admissibility condition 

∫
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ψ                         (3) 
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where  

∫ −= dt)jwtexp()t()w(ˆ ψψ                 (4) 

The DWT is derived from the discretization of CWT. The 

most common discretization is dyadic. The DWT is given 

by 

∫
∞

∞−

= td)2)k2-(t()ts()2(1)k,jDWT(
jj*j

ψ  

(5) 

where a and b are replaced by 2j and 2jk, j is an integer.  

A very useful implementation of DWT, called 

multiresolution analysis [13], is demonstrated in fig. 1. DWT 

analyzes the signal at different scales. It employs two sets of 

functions, called scaling functions and wavelet functions [13], 

[14], which are associated with low pass and high pass filters, 

respectively. The discrete signal is passed through a high 

pass filter (H) and a low pass filter (L), resulting in two 

vectors at the first level; approximation coefficient (A1) and 

detail coefficient (D1) [15], [16]. Application of the same 

transform on the approximation (A1) causes it to be 

decomposed further into approximation (A2) and detail (D2) 

coefficients at the second level. Finally, the signal is 

decomposed at the expected level. The approximations are 

the high-scale, low-frequency components and the details are 

the low-scale, high-frequency components of the signal.  

The wavelet decomposition for level 3 is illustrated in fig. 

1. Each vector Aj includes approximately, N/2j coefficients, 

where N is the number of data points in the input signal s, and 

provides information about a frequency band [0, Fs/2j+1], 

where Fs is the sampling frequency. In fig. 1 H and L 

represent the decomposition filters, and ↓2 denotes a down 

sampling by a factor of 2. An important property of the DWT 

is: 

              s = A3+D1+D2+D3                              (6) 

 

 
Fig. 1. Principle of DWT decomposition. 

 

III. EXPERIMENTAL SETUP 

A. System Description 

The measurement of vibration applied to condition 

monitoring and fault diagnosis requires different types of 

equipment and techniques. These depend on the investment 

and available expertise. It is essential to have a mean of 

analysis of vibration which may consist of the following: in 

addition to the studied structure itself, sensors, data collectors 

and the analyzer. 

The experiment equipment used throughout this paper 

performs the condition monitoring of rotating machinery. It 

consists of two gears 1 and 2 (1 with 60 teeth and the other 

with 48 teeth), four bearing housings (H1, H2, H3 and H4), 

coupling and disk, as shown in fig. 2. The system is driven by 

a 0.18 kW induction motor, giving an output of 0-1500 rpm, 

controlled by a variable speed drive. In order to predict any 

anomalies that may occur under different measurement 

conditions, we collected real vibration signals from this 

experimental system. The vibration signals were taken on 

bearing housing H1 through a piezoelectric accelerometer 

measured the radial vibration. These measurements were 

repeated for different states of the system at different rotation 

speeds of the motor. The data acquisition was performed 

using the OROS25 software. Each measured vibration signal 

is available over a window of 400 milliseconds. Two kinds of 

faults were simulated in this work; mass unbalance and gear 

fault. 

 

 
Fig. 2. Illustration of experimental system. 

 

B. Faults Description 

1) Mass unbalance 

Mass unbalance is one of the most common causes of 

vibration; it is simulated in our application by an additional 

weight on the disk. Unbalance is a condition where the centre 

of mass does not coincide with the centre of rotation, due to 

the unequal distribution of the mass about the centre of 

rotation. The unbalance creates a vibration frequency exactly 

equal to the rotational speed, with amplitude proportional to 

the amount of unbalance (see fig. 3). 

 

 
Fig. 3. Frequency spectrum of mass unbalance. 

2) Gear fault 

The vibrations of a gear are mainly produced by the shock 

between the teeth of the two wheels. Gear fault is simulated 

with filled between teeth. The vibration monitored on a faulty 

gear generally exhibits a significant level of vibration at the 

tooth meshing frequency GMF (i.e. the number of teeth on a 
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gear multiplied by its rotational speed) and its harmonics of 

which the distance is equal to the rotational speed of each 

wheel (see fig. 4). 

 

 
Fig. 4. Frequency spectrum of gear fault. 

 

IV. RESULTS AND DISCUSSIONS 

The vibration signals used in this work were gained 

through the practical measurement. They were taken in radial 

direction at different rotating speeds, including a mass 

unbalance and a gear fault. The number of data points for 

each signal is 2048. 

Fig. 5 represents the vibration signal in time domain and its 

spectrum. The signal is collected from the mass unbalance at 

a speed of 1200 rpm (20Hz) on bearing housing H1 of the 

shaft1 only i.e. without meshing. It is not easy to detect fault 

from this figure. 
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Fig. 5. Vibration signal of mass unbalance and its spectrum. 

 

The vibration signal of the gear fault measured at a speed 

of 600rpm (10 Hz) in time and frequency domain is shown in 

fig. 6. Obviously, there is no particularly clear demonstration 

i.e. the characteristic gear fault frequency is not clear from 

the frequency spectrum. 

The identification and the monitoring of the mass 

unbalance and the gear fault using the spectral analysis are 

difficult, due to the non-stationary. To extract the fault 

information, the WT will be applied to the vibration signals.  

The selection of the appropriate wavelet is very important 

in signals analysis. There are many functions available can be 

used such as Haar, Daubechies, Meyer, and Morlet functions 

[17]. Different wavelets serve different purposes. In this 

application, we used the Daubechies wavelet [18] and the 

Morlet wavelet [19], [20] for the fault diagnosis of mass 

unbalance and gear, respectively. 

The multiresolution analysis is applied by using the 

Daubechies wavelet of order 4 (db4). In which level 4 

decomposition is employed to extract the approximation 

coefficient from vibration signals. The result of db4 

decomposition of the vibration signal of the mass unbalance 

collected at a rotation speed of 1200 rpm is given in fig. 7.  
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Fig. 6. Vibration signal of gear fault and its spectrum. 
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Fig. 7. Decomposition of vibration signal of mass unbalance at a speed of 

1200 rpm with db4 wavelet. 
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Fig. 8 shows the approximation 4 (A4) and its spectrum. A 

frequency peak at 20 Hz is present, which could be related to 

a mass unbalance fault, and its harmonics (40, 60, 80 Hz…) 

could be identified, these frequency components are well 

differentiated from the adjacent frequency in the spectrum, 

confirming the presence of a mass unbalance fault. 
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Fig. 8. A4 of mass unbalance and its spectrum. 
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Fig. 9. Decomposition of vibration signal of mass unbalance at a speed of 

900 rpm with db4 wavelet. 

 

 

Fig. 9, and 10 show the vibration signals of the mass 

unbalance collected at a speed of 900 and 1125 rpm (15 and 

18.75 Hz) and the corresponding approximation and detail 

coefficients (obtained by db4) up to four levels. In this case 

the vibration signals are measured on bearing housing H1 of 

the shaft 1 meshed with the shaft 2. Fig. 11 and 12 represent 

the FT of A4. It is clear that the peaks at 15 and 18.75 Hz are 

present; this is due to a mass unbalance fault, which is 

consistent with the theory. 
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Fig. 10. Decomposition of vibration signal of mass unbalance at a speed 

of 1125 rpm with db4 wavelet. 
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Fig. 11. A4 of mass unbalance and its spectrum. 
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Fig. 12. A4 of mass unbalance and its spectrum. 
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Fig. 13. Spectrum of gear fault obtained with Morlet wavelet. 

 

The identification of the gear fault is possible by using the 

Morlet wavelet, it is also called CWT. It can be seen from fig. 

13 that the peaks at the rotation frequencies of the shaft (7.5, 

10 and 15 Hz) and its multiples are present in the frequency 

spectrum. This clearly indicates a gear fault. 

 

V. CONCLUSION 

This paper presents a fault diagnosis method based on the 

WT. DWT and CWT have been tested on real measurement 

signals collected from a vibration system containing mass 

unbalance and gear fault. Better results are obtained by 

identifying the type of fault. Such method is useful for 

improving the conditions monitoring and faults diagnosis of 

rotating machines. It remains to test its application on a signal 

containing two or more types of faults. 
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