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Abstract

The empirical velocity scale determined for zero pressure gradient turbulent
boundary layers of Zagarola and Smits [1], t/oo(<J*/£), is derived for bound-
ary layers with and without pressure gradient using similarity principles.
This scaling is successful in removing the Reynolds number dependence of
the outer mean velocity profiles. Even more interesting, it produces three
profiles in turbulent boundary layers regardless of the strength of the pres-
sure gradient: one for Adverse Pressure Gradient, APG, one for Favorable
Pressure Gradient, FPG, and one for Zero Pressure Gradient, ZPG. These
results have been shown to be consistent with Castillo and George [2] ob-
tained by means of similarity analysis of the RANS equations.

1 Introduction

For more than 50 years researchers in the turbulence community have been
trying to collapse (i.e. meaning profiles are described by a single curve) data
of turbulent boundary layer, especially boundary layers with pressure gra-
dient. In spite of the intense effort, attempts have not been quite successful.
More recently, Castillo [3] and Castillo and George [2] showed using similar-
ity analysis that the proper outer velocity scale in turbulent boundary layers
is the free stream velocity, f/oo- They were not able to completely collapse
the data, however, with just, UQQ. This was attributed to finite Reynolds
number effects. Furthermore, Castillo [4] showed that the Reynolds num-
ber dependence observed in the flow was primarily due to the effect of the
upstream conditions, and not to the local Reynolds number dependence as
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suggested by George and Castillo [5] paper for the zero pressure gradient
boundary layers. Even the classical scaling of the deficit velocity with the
friction velocity, %*, was not able to collapse the data as traditionally though
it will, Castillo [3]. Zagarola and Smits [1] found an empirical velocity scale,
t/oo (&/#), for the outer flow of the zero pressure gradient turbulent bound-
ary layers. Recently Wosnik and George [6] showed that this scaling was
consistent with the theory of George and Castillo [5] for zero pressure gra-
dient boundary layers.

The purpose of this paper is to extend the Zagarola/Smits scaling for in-
compressible turbulent boundary layers with pressure gradient and to show
that it removes all Reynolds number dependence observed in the overlap
region. This is done especially for flows at separation and flows with strong
dependence on the upstream conditions, for example, the "relax flow" data
of Bradshaw and Ferris [7]. A relax flow is one where the conditions of the
flow, like the pressure gradient, are suddenly changed to new conditions.
Also, it will be shown that this scaling leads to only three basic velocity
profiles: one for APG, one for FPG, and one for ZPG boundary layers.
These results are consistent with results shown by Castillo and George [2].
Using strictly similarity analysis they demonstrated that only three profiles
describing turbulent boundary layers exist. These conclusions hold regard-
less of the strength of the pressure gradient.

2 The mean velocity scale

In order to determine the outer velocity scale proposed by Zagarola and
Smits [1], the similarity ideas proposed by George and Castillo [3] will be
employed. The general concept is outlined below as:

• Similarity Analysis:
The outer mean velocity scale for turbulent boundary layers is de-
termined from the displacement thickness equation and not chosen a
priori or using dimensional analysis. George and Castillo [8] applied
this concept to the RANS equations in order to determine the mean
velocity, and Reynolds stresses scales in turbulent boundary layers.

• Asymptotic Invariance Principle: AIP
This principle means that in limit as the Re -> oo the boundary layer
equations become independent of Re and, therefore, any function or
scale must also be independent of Re as well.

• Similarity Solution Form:
The basic assumption is that it is possible to express any dependent
variable, in this case the outer mean velocity, U, as a product of two
functions,
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where Uso is the outer velocity scale and depends on x only. Castillo
and George [2] showed that for ZPG and PG flows the proper veloc-
ity scale in outer variables is the free stream velocity, Uso — UQQ(X).
The arguments inside the similarity function fop represent the outer
similarity length scale, y = y/5, the Reynolds number dependence,
6+ — du*/v, the pressure parameter, A, and any other possible de-
pendence on the upstream conditions, *, respectively. The pressure
parameter, A was determined via similarity analysis by Castillo [3],
and Castillo and George [2] using the RANS equations and is given
as,

A EE - — — = constant (2)
C/

or equivalently

Furthermore, it is assumed that the function fop could be expressed as a
product of two functions. The first one, G(<5+;*), contains the Reynolds
number dependence and the upstream conditions, and the second one,
/opoo(!7; A), contains the similarity length scale, y, and the pressure pa-
rameter. Thus, the function fop is written as,

/op(5, 6+; A; *) = 0(6+; *)̂ oo(& A) (4)

where fopoc represents the asymptotic profile in the limit as Re -» oo. As re-
quired by the AIP, this asymptotic profile must be independent of Reynolds
number and its shape maybe different for ZPG, FPG, and APG turbu-
lent flows. This decomposition of the profile has been used by Wosnik and
George [6] in ZPG boundary layers to show that the George and Castillo [3]
theory for ZPG is consistent with the Zagarola/Smits scaling. To determine
the scale for the G function, eqn (4) is substituted into the displacement
thickness equation,

/»o
/
Joo

Similarity exists only if the terms inside the square brackets vary together,
in other words they must have the same x-dependence. This implies,

G~(&/6) (6)

According to the Asymptotic Invariance Principle, AIP, the G function must
be asymptotically independent of Reynolds number. Thus, G — >• constant,
so the outer velocity scale proposed by [3], [/oo is the asymptotic outer
velocity scale of the Zagarola/Smits scale, U<x>(5*/6). The fact that the
Zagarola/Smits scaling contains the Reynolds number dependence term d*/8
means that the boundary layer is indeed Reynolds number dependent as
shown by [3] .
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3 Results

The goal is to show that the Zagarola/Smits scaling successfully removes
the Reynolds number dependence of the flow and to show that three basic
profiles are obtained in turbulent boundary layers, regardless of the strength
of the pressure gradient.

3.1 The outer mean velocity profiles

Figures 1 and 2 show the outer mean velocity profiles of three differ-
ent zero pressure gradient turbulent boundary layers of Smith and Walker
[9], Purtell et al. [10], and Osterlund [11]. The Smith and Walker pro-
files vary in Reynolds number based on momentum thickness from about
3,000 < Re < 48, 300. The data from Purtell et al. has a variation in
Reynolds number from about 460 < Re < 5,100. This is one of the
lowest Reynolds number data over a flat plate available today. Finally,
the most recent data of Osterlund varies in Reynolds number from about
4,000 < #0 < 26,000.

Figure 1 shows the corresponding velocity profiles plotted as a deficit and
normalized by UQQ and £99. Note that the Smith and Walker data, top
left, and the Osterlund data, bottom figures, show a Reynolds number de-
pendence. It can be observed that as the Reynolds number increases the
profiles tend to approach an asymptotic profile. This observation is con-
sistent with the Asymptotic Invariance Principle, AIP. However, the low
Reynolds number data of Purtell et al. collapsed with the free stream ve-
locity, C/oo, in spite of the fact that it is in this range of Reynolds number
(460 < Re < 5,100) where the boundary layers tend to exhibit a strong de-
pendence on Reynolds number. The difference between the data of Purtell
et al. and the other two relatively high Reynolds number data of Osterlund
and Smith and Walker is that Purtell et al. kept the upstream conditions
fixed and the other experiments basically kept the streamwise position fixed
and vary the upstream conditions, such as the wind tunnel speed.

The same data is shown in figure 2 but normalized by the outer velocity
scale, USQ = J7oo (&/#), the Zagarola/Smits scaling, and the boundary layer
thickness, £99. Although it is very clear that this scaling removes all the
Reynolds number dependence, Castillo [4]) showed that when the same
data are normalized by C/oo but for fixed upstream conditions (for example,
same wind tunnel speed, C/oo, or same dimensions of tripping wire etc.),
the variation in Re seen in these profiles of figure 1 is no longer observed
and the Zagarola/Smits scaling is not necessary. In other words, Castillo [4]
showed that the Reynolds number dependence in turbulent boundary layers
is due primarily to the upstream conditions and not to the local Reynolds
number dependence as originally suggested by George and Castillo [5] for
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ZPG turbulent boundary layers.

Figures 3 and 4 show the APG experimental data of Newman [12], Ludwieg
and Tillmann [13], Bradshaw and Ferris [7], and Clauser [14] normalized by
C/oo and Uoo($*/$), respectively. The data of Newman has a strong APG
over an airfoil and the profiles eventually separate. The range of Reynolds
number based on the momentum thickness for this data is between, 5, 510 <
Re < 26, 800. The Ludwieg and Tillmann experiment has also a very strong
APG and eventually separation takes place from the diverging channel. The
Reynolds number varies from about 5,400 < Re < 48,300. In the experi-
mental data of Bradshaw and Ferris the conditions of the flow are suddenly
changed from moderate adverse pressure gradient to zero pressure gradient
and the profiles vary in Reynolds number from about 8, 600 < Re < 22, 600.
This flow is called "relax flow", Coles and Hirst [15], because conditions in
flow are suddenly changed. Finally, the experiment from Clauser is very
unique and different from the previous APG data. This data varies in
Reynolds number from 8, 000 to 31,000 In this experiment a moderate APG
data was design particularly to show that equilibrium flows (according to
Clauser [4] definition) do not vary with streamwise direction when scaled
with the friction velocity, u*. However, notice that these profiles are not
supposed to collapse with the free stream velocity, C/oo, but they do collapse.
Castillo [4] showed that when the upstream conditions are maintained con-
stant the outer mean profiles collapse with just C/oo as in Clauser's own data.

The mean velocity profiles are shown in figure 3 as a deficit and normalized
by C/oo and 699. Clearly, the mean profiles show a dependence on Reynolds
number and they tend to approach an asymptotic state as the Reynolds
number increases. On the other hand, the same data are shown in figure 4
but normalized by Uso = C/oo (£*/£) and 699. As before, the Zagarola/Smits
scaling successfully removes all the Reynolds number dependence of the
mean profiles, even for near separated flows and at separated turbulent
flows. It is very important to understand that these profiles do not collapse
at all if the data is normalized by the classical scaling, (C/oo — U)/u*, where
u* is the friction velocity. Castillo and George [2] include other data in their
analysis, such as Clauser [14] and Bradshaw [16], and were able to collapse
those mean profiles with just C/oo better than using the tradition scaling.

The mild favorable pressure gradient data of Herring and Norbury [17], and
the moderate FPG data of Ludwieg and Tillmann [13] are shown in figure 5.
The top figures are the mean profiles normalized with just C/oo, while the
bottom figures represent the same data normalized with Û (8̂ /d̂ }. The
Zagarola/Smits scaling is not necessary for these data because the profiles
collapse with just C/oo reasonably well, however, it will be used later to prove
that only three profiles exist in turbulent boundary layers.
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3.2 The three basic velocity profiles

The purpose of this section is to use the Zagarola/Smits scaling to show that
there are only three basic profiles needed to characterize turbulent bound-
ary layers, and that this result is independent of the strength (weak, mild,
strong) of the pressure gradient.

The first plot from the top of figure 6 shows some of the zero pressure gra-
dient data of figures 1 and 2. Also note that all ZPG data collapse to a
single curve. The second plot from the top of figure 6 represents some of
the adverse pressure gradient data shown in figures 3 and 4. It is important
to clarify that these profiles eventually separate and some of these profiles
are from the relaxed flow data of Bradshaw and Ferris. Again, it is clear
from figure 6 that all APG do collapse to a single curve, indicating that all
APG have same profile shape. The third plot from the top of figure 6 is the
favorable pressure gradient data, which clearly proves that all FPG data
also collapse to one single curve. The fourth plot from the top of figure 6
shows the ZPG, APG, and FPG data together and clearly it illustrates that
there are three basic profiles in turbulent boundary layers. The APG profile
is distinctly different from the other two. The differences between the ZPG
and FPG profiles are less obvious, but real nonetheless.

These results are consistent with Castillo and George [2] which showed that
there are only three values of the pressure parameter, A: one for ZPG, A = 0,
one for APG, A = 0.22 and one for FPG, A = -1.915. Furthermore, they
showed that the outer boundary layer equation is only dependent on this
pressure parameter, and if there are only three values of A then there must
be only three profiles, which has been shown here using the Zagarola/Smits
scaling. Moreover, Castillo [4] was able to show that when all the upstream
conditions of the flow are maintained fixed the outer mean profiles do not
exhibit the Reynolds number dependence observed in most profiles shown
here.

4 Conclusion

It is clear after careful analysis of the data for turbulent boundary layers
that the flow does not scale with a single velocity scale as suggested in clas-
sical theory of Clauser [14] and Townsend [18]. In fact, from the similarity
analysis of the outer boundary layer equations [3], it was shown that the
free stream velocity, E/oo» is the proper outer velocity scale. Furthermore,
it was shown by [5] that the overlap region is governed by a two velocity
scale. As a result, the overlap layer is indeed a Reynolds number dependent
region. Moreover, when the Zagarola and Smits scaling, [/oo(&/<%99), is used
to normalize the outer mean profiles, the Reynolds number dependence is
successfully removed. This result indicates that the boundary layer is in-
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deed Reynolds number dependent. Even more interesting, is the fact that
this scaling yields three basic velocity profiles, regardless of the strength
of pressure gradient: one for ZPG, one for APG, and one for FPG. These
results are consistent with the similarity analysis of [4] which achieved the
same conclusion by using the RANS equations. Finally, the Zagarola/Smits
scaling, C/oo (&/#), is asymptotically equivalent to the scaling determined
by [2,5], [/oo, for ZPG and PG boundary layers.
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Figure 1: Mean velocity profiles in zero pressure gradient normalized by C/oo
and &>g. Top Zê , Smith and Walker [9], fop r?#f, Purtell et al. [10], and
bottom figures, Osterlund [11].
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Displacement Thickness Scale:

****a0«*3«sittir0«H'Hr-t"

Figure 2: Mean velocity profiles in zero pressure gradient normalized by
[/so = LW&/W and 699. Top % Smith and Walker [9], (op r#f, Purtell
et al. [10], and bottom figures, Osterlund [11].
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Newman 1951: Very Strong Adverse Pressure Grader

p* 0.5

LurJweig & Tillmann 1950; Strong Adverse Pressure Gra

»°s

Bradhaw (1966): Relax Flow (Mod APG to ZPG) (1954): Moderate APG

• R,=8592OR,=9896

•Vx R,,=
>FVGR,=

°<%

• R,=8
%OR,= 1• R.= ix R,-20917D> R,=264382R,=31017

'̂ ##̂

Figure 3: Mean velocity profiles in adverse pressure gradient boundary lay-
ers normalized by U^ and 6gg. Top left is the strong APG data of Newman
[12], top right is the strong APG data of Ludwieg and Tillmann [13], at
the bottom left is the relax flow data of Bradshaw and Ferris [7], and at the
bottom right is the moderate APG data of Clauser [14].
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~**.-_

Figure 4: Mean velocity profiles in adverse pressure gradient boundary lay-
ers normalized by Uso = f/oo(<W<$) and &»g. Top left is the strong APG data
of Newman [12], top right is the strong APG data of Ludwieg and Tillmann
[13], at the bottom left is the "relax flow" data of Bradshaw and Ferris [7],
and finally at the bottom right is the moderate APG data of Clauser [14].
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Herring & Norbury: Mild Favorable Pressure Gradient Ludweig & Tiilmann 1949: Moderate Favorable Pressure Gradient

V

Figure 5: Mean velocity profiles in favorable pressure gradient boundary
layers. The upper figures are the data of Herring and Norbury [17] at
mild FPG, and Ludweig and Tillman [13] at moderate FPG respectively.
These profiles are normalized by f/oo and £99. while the bottom figures are
normalized by Ugo — Uoo(5*/6] and £99.
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o Purtell et al.:Dif. Initial Cond.: R,=49R-5100 |Smith & Walker. Oil. Initial Cond.:R,-3,00 -48,2920 !

sClauser: Mild APGNewman: Strong APGodauserModAPGJwieg & Tillman: Very Strong APG (sep.)• Bradshaw: Mild APGBradshaw: Mod APG

•• Newman: Strong APGo UxJwieg & Tillman: Mild FPG• Purtell: ZPG

Figure 6: The three basic velocity profiles in turbulent boundary layers
normalized by f7oo(&/<W arid 699- F̂ rgf Zop figure is the ZPG profiles,
second figure is the FPG profiles and, third figure is the APG, and the

re is the combined plot of the APG (#), FPG (o) and ZPG (*).
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