
Application Performance Modeling in a Virtualized Environment

Sajib Kundu† Raju Rangaswami† Kaushik Dutta‡ Ming Zhao†

† School of Computing & Information Sciences ‡ College of Business Administration

Florida International University

{skund001, raju}@cs.fiu.edu kaushik.dutta@business.fiu.edu zhaom@cs.fiu.edu

Abstract

Performance models provide the ability to predict appli-

cation performance for a given set of hardware resources

and are used for capacity planning and resource manage-

ment. Traditional performance models assume the avail-

ability of dedicated hardware for the application. With

growing application deployment on virtualized hardware,

hardware resources are increasingly shared across multiple

virtual machines. In this paper, we build performance mod-

els for applications in virtualized environments. We identify

a key set of virtualization architecture independent param-

eters that influence application performance for a diverse

and representative set of applications. We explore several

conventional modeling techniques and evaluate their effec-

tiveness in modeling application performance in a virtual-

ized environment. We propose an iterative model training

technique based on artificial neural networks which is found

to be accurate across a range of applications. The proposed

approach is implemented as a prototype in Xen-based vir-

tual machine environments and evaluated for accuracy, sen-

sitivity to the training process, and overhead. Median mod-

eling error in the range 1.16-6.65% across a diverse appli-

cation set and lowmodeling overhead suggest the suitability

of our approach in production virtualized environments.

1. Introduction

Accurately predicting application performance for a

given set of resources aids in effective management of

high performance IT infrastructure by enabling optimized

resource allocation. The importance of correctly mod-

eling application performance behavior is pronounced in

virtualized data centers, where multiple applications share

the same physical resources (host resources), sand-boxed

within virtual machines (VMs). Incorrect resource alloca-

tion to a specific VM has the potential to affect not just the

target VM but any or all of the other VMs running on the

same host.

A common practice in VM resource allocation involves

over-provisioning of resources to reduce the probability of

target SLA (Service Level Agreement) violations. Such

practice has shortcomings. First, over-provisioning leads to

underutilized resources which inflates the IT budget. When

the objective is to maximize SLA-based revenue for the data

center, over-provisioning resources for a VM may degrade

the SLA-based revenue otherwise obtainable by other VMs

that share host resources. Second, complex relationships

governing resource usage within a single VM invalidates

simple over-provisioning based on resource consumption

characteristics. For instance, an increase in CPU utilization

may not be due to inadequate CPU allocation, but due to

inadequately provisioned memory leading to frequent CPU-

intensive garbage collection, while an increase in disk band-

width utilization may be due to paging I/O resulting from

inadequately provisioned memory. Third, complex rela-

tionships governing resource usage across the VMs sharing

a physical host increase the variance in application behav-

ior at a given resource configuration. Resources such as

(disk and network) I/O bandwidth are not strictly partition-

able either because of the nature of the underlying hard-

ware resource and/or the limitations of current solutions for

resource partitioning; consequently, provisioning such re-

sources is not strictly feasible and contention may lead to

unexpected performance change.

We argue that it is feasible to implement near-optimal

resource provisioning in future high-performance virtual-

ized data centers based on the ability to predict a virtual-

ized application’s performance at a given allocation level of

partitionable resources and an observed competition level

of non-partitionable resources. Several challenges need ad-

dressing in developing such a solution. The first challenge

is the identification of the parameters of a virtualized sys-

tem that can affect the performance of a virtualized appli-

cation at the right level of abstraction and which are suf-

ficient to predict application behavior with high accuracy.

The second challenge is to identify techniques for either

observing or controlling these parameters in a virtualized

environment. The third challenge is in building a perfor-

mance model for a virtualized application based on the

above parameters that can accommodate the complexity of

both intra-VM and inter-VM resource usage dynamics.

The contributions of this work are three-fold. First, we

identify key system parameters that influence application

performance in a virtualized environment and demonstrate

that these are sufficient to create accurate performance mod-

els. These parameters are sufficiently high-level to facilitate

easy comprehension and reasoning by data center system

administrators. Second, we provide insight into the com-

plexities of application behavior in a virtualized environ-

ment that are distinct from those in non-virtualized envi-

ronments. Relatedly, we evaluate a number of techniques

for modeling application performance in a virtualized en-

vironment and isolate a specific artificial neural network

(ANN [19]) based model as both superior and adequate.

Third, we experimentally evaluate our approach in a Xen [5]

based virtual machine environment for a set of benchmark

applications representing various application classes such

as memory intensive, I/O intensive, CPU intensive, and a

combination of the above. We demonstrate that our ap-

proach can make predictions with a median error ranging

from 1.16-6.65% across these application classes.

The rest of this paper is organized as follows. In Sec-

tion 2 we provide the context for our work. Section 3 iden-

tifies generic and Xen-specific model parameters. Model-

ing techniques are evaluated in Section 4. A detailed ex-

perimental analysis of an ANN-based model is presented in

Section 5. We discuss related work in Section 6 and con-

clude with directions for future work in Section 7.

2. Background

System-level virtualization [2, 5, 22] is becoming in-

creasingly popular at data centers because it enables re-

source sharing while ensuring an almost strict partitioning

of physical resources across several applications running on

a single host. However, running a virtualized data center at

high efficiency is a non-trivial task. Within each physical

host, the virtual machine monitor controls the allocation of

physical resources to individual VMs. A change in the re-

source demand of an application (e.g., due to an upgrade to

its code-base, change in load, configuration changes, etc.)

may require reconfiguring one or more VM allocations to

maximize the performance and SLA-based data center rev-

enue. Today, these decisions are made manually based on

the administrator’s experience and limited knowledge about

the application performance based on staging runs.

Future virtualized data centers are likely to automate the

process of dynamic resource reallocation to the VMs both

within and across physical hosts [7, 23]. A key capabil-

ity for automated resource reallocation in either context is

the ability to predict application performance at any time

for a given allocation of VM resources and a given level

of resource competition from other VMs. Consequently,

Figure 1. Overview of approach.

in this work, we investigate automated techniques to accu-

rately model the performance of a virtualized application

which can then be used within either manual or automated

mechanisms for resource reallocation.

Figure 1 depicts a generic architecture for a virtualized

host in such a setting. The virtual machine monitor is re-

sponsible for allocating basic resources such as CPU cycles,

memory capacity, and disk and network I/O bandwidth. At

a high level, allocating a specific share of physical resources

to a VM results in a specific performance that is measurable

using application-specific performance metrics such as re-

sponse time and/or throughput.

The input to our target model is a set of parameters

that can either be observed or controlled easily by system

administrator and can be used to achieve a target perfor-

mance for the virtualized applications in a dynamic environ-

ment where resource consumption characteristics or target

SLA deliverables of any application are subject to change.

Since application resource usage characteristics may grad-

ually change over time, the model must be updated online

as new sets of observations are made, reflecting the changes

in the system state and application behavior. Further, when

VMs are migrated from one host to another, the model of

an application running in the VM of host A can be applied

to model the same application running in host B, provided

host hardware configurations are the same. Alternatively,

apriori model training across all possible deployment tar-

gets may be considered, or an entirely new model could

be constructed from scratch on host B post-deployment fol-

lowing the same principles as used to construct the original

model on host A. Finally, for distributed and multi-tier ap-

plications, this approach can be extended by modeling each

component of the application – storage servers, database

servers, application servers – separately, making this ap-

proach generically applicable in a variety of real-world data

center environments.

3. Parameter Selection

Identifying the ideal set of performance-influencing pa-

rameters for a VM requires addressing the following con-

cerns. First, the parameters must either directly map to

or indirectly reflect known resource usage behavior of pro-

cesses, and they must be easy to control and/or observe.

This will allow system administrators to intuitively use such

parameters. Second, the application behavior within a sin-

gle VM may depend on the nature of activity in other VMs

and the influence of such competition must be accounted for

and characterized accurately. For example, an I/O intensive

application running in one VM may affect the I/O opera-

tions of an application running in another VM. The third

challenge is identifying the minimum set of model param-

eters that efficiently captures application performance with

high-accuracy and are yet application-independent.

We take a minimalistic approach to parameter selec-

tion by starting from known, high-level, system resources

that can directly impact application performance including

CPU, memory, and disk and network I/O bandwidths. For

each target resource of interest, we reason about the control-

lability of candidate parameters, account for possible influ-

ence of competition on consumption of the resource, and

discuss generalizability to virtualization architecture alter-

natives. Although not considered in this paper, it is con-

ceivable that processor cache resource can be also incor-

porated as an additional parameter, either by controlling the

cache allocation (if it is partitionable) across VMs or by tak-

ing into account the influence of cache contention between

VMs via hardware performance counters. In this work, we

assume that other system resource properties such processor

architecture and operating system design remain invariant.

We use Xen-specific paravirtualization architecture to

both develop and evaluate our approach to modeling appli-

cation performance in a virtualized environment. In this ar-

chitecture, the host consists of an I/O driver domain (dom-0)

VM through which all disk and network I/O from user do-

main (dom-U) VMs is routed. Adequate CPU and memory

must be allocated to dom-0 to avoid I/O performance degra-

dation. For each of the generic parameters we identify, we

also provide a Xen-specific instantiation.

3.1 CPU Usage

The common practice in modeling CPU usage by an ap-

plication is establishing a correlation between the average

or peak CPU utilization of an application and its observed

performance [10, 20, 21, 25]. These models have been used

for application placement to predict running times of appli-

cations [10], to predict CPU utilization at different appli-

cation load levels for capacity planning purposes [21], for

cross-platform performance prediction [20], and for map-

ping resource usage of an application running natively to

that when the application runs within a VM [25].

Since a primary goal for performance modeling in our

case is to provide tunable knobs to the system administrator

for controlling performance, the commonly used CPU uti-

lization, an observable (rather than controllable) parameter,

is ill-suited. Moreover, forcing the application to specific

CPU utilization levels is necessary to create a model that

predicts performance based on CPU utilization and requires

changing application load levels, thus requiring knowledge

of application semantics. Instead, we choose the percentage

CPU allocation which merely imposes an upper limit on

CPU utilization, and is a basic control parameter across all

virtualization architectures and solutions. This parameter

can be directly utilized by a data center system administra-

tor to determine the expected application performance for

a given CPU resource allocation. Strictly bounding alloca-

tions may however lead to transitory non-work-conserving

CPU behavior as resource utilization characteristics of the

application change; the under-utilization of resources can

be addressed with an online performance model updating

mechanism as discussed in Section 2.

Xen-specific instantiation. By default, Xen uses a credit

scheduler for time-sharing CPU cycles across the VMs, in-

cluding the dom-0 VM. We instantiate the CPU allocation

generic parameter as the Xen-specificCAP parameter which

places a upper bound on a VM’s CPU usage and can be

changed dynamically from within dom-0 at run-time.

3.2 Memory Usage

The use of memory utilization for modeling application

performance has been explored before [21]. In a virtual-

ized environment, besides sharing the same drawbacks as

CPU utilization when used as a control knob, the memory

utilization metric also incorrectly characterizes an unused

portions of the file system page cache as part of the mem-

ory utilization of a VM which gets attributed to the resi-

dent application; application performance and its memory

utilization can change substantially while the VM memory

utilization remains constant, and vice-versa.

Virtualization allows the VMs sharing the host physical

memory to have their own isolated memory allocation. Fol-

lowing the rationale for the CPU resource parameter, we

choose the the VM memory allocation for the VM as our

model parameter. This parameter provides a control knob

that is available across all virtualization solutions.

Xen-specific instantiation. Changing memory allocation

for a VM is very straightforward in Xen. These memory

allocation limits are strictly enforced by the virtual machine

monitor. The xm mem-set command can be issued from

dom-0 to change the memory allocation of a VM dynam-

ically, allowing full control over dynamic memory repar-

titioning across VMs as needed. Thus, we instantiate the

memory allocation generic parameter as the Xen-specific

mem-set alloc (MEM) parameter.

3.3 Disk I/O Bandwidth Usage

Enforcing control over allocation of disk I/O bandwidth

is not straightforward. Currently there are no widely avail-

able mechanisms for strictly partitioning I/O bandwidth

across multiple VMs. Most virtualization solutions provide

a mechanism to prioritize I/O requests from different VMs

at the level of I/O scheduler which directly impacts the I/O

performance. Consequently, we incorporate disk I/O pri-

ority as a parameter for modeling the influence of disk I/O

bandwidth availability.

However, relative prioritization alone is insufficient to

model the influence of disk I/O resource on application per-

formance which ultimately depends on the disk I/O band-

width actually made available to the application VM. The

contending I/O volume due to concurrently running VMs

on the same host has a direct influence on the resource

availability, especially in case of shared storage. To address

this issue, we include an additional parameter to the model,

the competing disk IOPS (I/O Operations Per Second) from

other virtual machines on the same host. Though this is not

a controllable parameter, it is an exogenous parameter that

can easily be observed and used as an input to the model to

represent the current condition of the VM environment.

Xen-specific instantiation. In Xen, all disk I/O for a partic-

ular VM is attributed to its corresponding blkback process

running inside dom-0. Ionice values can be assigned to blk-

back processes to adjust their relative priorities in disk I/O

scheduling. Thus, the disk I/O priority generic parameter is

instantiated as the Xen-specific IONICE parameter for each

driver domain blkback process.

I/O operations from all VMs can be conveniently mea-

sured using the xentop tool, which provides cumulative

statistics of total number of read and write requests sepa-

rately from each domain. Thus, the competing disk IOPS

generic parameter is instantiated as the Xen-specific com-

peting disk I/O operations per second (CDIOPS) parameter.

3.4 Network I/O Bandwidth Usage

There are substantial similarities in resource consump-

tion across the disk and network I/O dimensions in both

non-virtualized and virtualized systems. Similarly to disk

I/O bandwidth resource modeling, we model network I/O

bandwidth resource usage with network I/O priority and

competing network IOPS. Similarly to disk I/O priorities,

controlling relative network I/O priorities across VMs is

readily available in common virtualization solutions. The

competing network IOPS is an easily observable parameter

in common virtualization solutions.

Xen-specific instantiation. Similarly to the blkback pro-

cess, there is a netback process running inside dom-0 and

associated with each VMwhich handles network I/O for the

VM. The network I/O priority generic parameter can be in-

stantiated as the Xen-specific CPU-nice parameter for each

driver domain netback process.

Network I/O competition from VMs can be also mea-

sured using xentop, which provides statistics for transmit as

well as receive traffic separately for each VM. The compet-

ing network IOPS can be instantiated as the Xen-specific

competing network bytes per second (CNBPS) parameter.

4. Modeling Virtualized Applications

In this section, we examine the behavior of several

benchmark applications in a virtualized environment and

evaluate common modeling techniques on their ability to

adequately capture the subtleties of behavior for each.

4.1. Benchmark Applications

We start by examining the subtleties in the behavior of

several benchmark applications under varied resource con-

figurations (varying the model parameter values) of a virtu-

alized system. The benchmark applications are chosen as a

representative set to address the various resource consump-

tion characteristics across applications in general. Config-

urable parameters are those identified for Xen in the previ-

ous section, excluding the network related parameters.

CPU-intensive benchmark We chose the CPU intensive

benchmark from the SysBench [4] package which con-

sists of configurable number of events that compute prime

numbers from 1 to N (user-specified). The benchmark re-

ports the average event handling time which we used as

the performance metric. This seemingly simple benchmark

showed interesting characteristics as the system configura-

tion was changed. First, as expected, the response time re-

duced as the CAP was increased, almost proportionately.

Second, the response time also decreased with increased

CDIOPS, an unexpected outcome that we verified several

times. However, on a different hardware platform, this

anomaly was not observed. It is likely that the anomalous

behavior on the first platform is due to cache contention,

which unfortunately we could not verify due to incompat-

ibility of the Xen-kernel with host hardware performance

counters. Third, we observed a notable impact of IONICE

and MEM on response time but with no apparent trends.

Memory-intensive benchmark We created a micro-

benchmark that allocates a large array in memory and

continuously writes to random elements of that array.

The application performs a fixed number of operations

(user-specified) and reports memory-operations-per-second

(MOPS). A 1 GB sized file in dom-0 was configured as the

SWAP virtual block device of the benchmark’s VM. Inter-

esting behaviors emerged as we varied configuration param-

eters for this micro-benchmark. First, as memory allocation

(MEM) was reduced, initially MOPS remained constant as

long as the array could fit entirely in the VMs physical

memory. However, as MEM was reduced further, MOPS

reduced super-linearly, a consequence of the large I/O la-

tencies incurred due to demand paging. Second, the bench-

mark’s dependence on the CDIOPS was non-linear - from

low to medium levels of competing disk I/O the MOPS was

constant, but from medium to high levels, MOPS decreased

substantially. Third, IONICE affected MOPS notably, with

no obvious trend. Finally, as expected, MOPS was found to

increase with an increase in CAP.

IO benchmark - Postmark PostMark [13] is a disk I/O

intensive benchmark which models e-mail systems, elec-

tronic news, and e-commerce systems. It creates a num-

ber of files and performs append, create, delete, and trun-

cate operations on the pool of files. The benchmark reports

Transactions Per Second (TPS) as the performance metric.

We configured the benchmark to create a data set of size 1.5

GB and perform 10000 transactions. The behavior of this

benchmark turned out to be quite predictable across all pa-

rameter dimensions. First, as expected, TPS decreased with

increased CDIOPS. Second, TPS was greatly influenced by

MEM since Postmark is a meta-data intensive workload and

is therefore sensitive to the size of the in-memory file sys-

tem page cache. Third, TPS decreased with increased ION-

ICE (reduced priority). Fourth, CAP had little to no im-

pact on TPS. Most importantly, a linear dependence was

observed for each of the above parameters.

OLTP benchmark We used the online transaction pro-

cessing (OLTP) benchmark of SysBench [4] suite with a

MySQL-based database setup. This benchmark utilizes all

the three types of resources intensively. We created a ta-

ble size of 2GB and configured the benchmark to perform

10000 database transactions. The benchmark reports the

transactions-per-second (TPS) as the performance metric.

This benchmark was quite complex in its behavior. First, it

was memory-dependent; while the TPS increased with an

increase in MEM, the dependence was non-linear. Second,

TPS was found to be inversely proportional to CDIOPS,

but the influence was nominal. Third, the dependence on

CAP was peculiar; as CAP was increased, TPS increased

but beyond a certain point, it started degrading. We attribute

this behavior to the split-driver architecture of Xen. If the

CAP of the target VM is increased beyond certain value,

the available CPU for dom 0 reduces with a negative impact

on the target VM’s I/O performance. Finally, quite unex-

pectedly, varying IONICE was found to have no significant

effect on the TPS. While we found this behavior consistent,

we could not find any reasonable explanation, another in-

stance of complex application behavior when virtualized.

4.2. Model Training Procedure

Training models adequately is a key step in the modeling

process which can significantly influence the accuracy of

the models. We now describe the model training procedure

(Figure 2) which is uniformly applied to all the modeling

techniques that we examine.

For each modeling technique explored, we start with a

boot-strapping step that identifies the set of boundary pa-

rameter configurations for initial benchmark runs. The

boot-strapping requires input from the system administra-

tor to identify the best-case and worst-case resource allo-

cation deemed feasible across each resource dimension for

Figure 2. Flowchart for Iterative Model Training.

the benchmark. Given these boundary allocations, the boot-

strapping step identifies a range for the application perfor-

mance metric (henceforth simply referred to as output pa-

rameter) for each benchmark application. The upper/lower

boundary of output parameter value range for an applica-

tion is obtained by allocating the highest/lowest values of

MEM and CAP and the lowest/highest values of IONICE

and CDIOPS as specified by the system administrator.

The next step identifies the set of training data for the

model. We use an iterative process that examines the in-

cremental improvement in modeling accuracy as the train-

ing set is augmented with data points gradually and sys-

tematically. This process starts by choosing the input pa-

rameter values at the boundaries and a configurable num-

ber (we used 1) of additional points equally-separated from

each other and the boundary points. All possible combina-

tions of the chosen input parameter values are then used for

benchmark runs. This set of input and output data forms

the initial training set which may be subsequently refined.

Additional input parameter values are chosen randomly to

conduct benchmark runs and populate the testing data set.

The subsequent iterative model training procedure is

summarized in Figure 2. After each model training step,

the testing set data is used to measure the prediction accu-

racy of the model. A∗ denotes the administrator’s desired

prediction accuracy and Ai denotes prediction accuracy at

iteration i. If the desired accuracy is not achieved, we fur-

ther subdivide the output parameter range to examine if out-

put parameter values from the training data are represented

within each sub-range. If not, additional data is collected

for adding to the training set by identifying input parameters

that are highly correlated with the output parameter [3] and

choosing values for such parameters that further subdivide

the corresponding input parameter space. The goal for this

additional data collection is to populate the output parame-

ter ranges in the training data more uniformly. If augment-

ing the training set does not improve the accuracy relative to

the previous iteration, we establish a case of over-fitting and

Benchmark CPU Memory Postmark OLTP

Modeling % prediction error % prediction error % prediction error % prediction error

Technique avg. med. stdev. 90p. avg. med. stdev. 90p. avg. med. stdev. 90p. avg. med. stdev. 90p.

Regress-L 24.90 20.12 20.11 54.88 19.87 20.24 12.98 34.87 6.04 4.73 5.60 11.42 23.95 17.91 19.29 50.54

Regress-LQ 21.69 17.81 17.83 48.88 8.66 6.47 8.12 19.36 6.27 5.09 5.51 11.19 73.51 53.12 74.75 195.49

Regress-LI 21.89 19.35 16.36 49.31 19.80 16.71 14.80 37.19 6.58 5.71 5.53 12.60 71.36 46.31 75.04 213.53

ANN-Linear 18.72 14.02 17.41 46.46 18.57 18.53 12.45 34.43 4.36 3.57 5.25 8.53 24.87 16.72 22.93 57.53

ANN-Gauss 27.42 21.13 23.84 57.16 47.34 46.53 29.73 96.15 25.58 21.00 24.54 33.34 40.00 20.89 48.22 120.04

ANN-Elliot 11.50 6.65 14.02 29.60 2.50 1.16 3.68 6.10 7.31 3.34 10.95 16.24 8.48 4.24 12.36 21.95

Table 1. Prediction error statistics for the regression and ANN techniques

instead discard from the training set data points that repre-

sent variation in the input parameters that are uncorrelated

to the output parameter [3]. C denotes the state that ade-

quate data collection has been evidenced with over-fitting

symptoms and the training set reduction has commenced.

The training procedure halts when either (i) prediction ac-

curacy is adequate or (ii) prediction accuracy stabilizes or

starts degrading.

4.3. Evaluating Alternative Modeling Techniques

Given the range of behaviors of virtualized applications,

identifying techniques that can adequately model them is

a challenge. We first examine the suitability of regression

techniques that have been used to model application behav-

ior in a non-virtualized environments. Observing the unsuit-

ability of regression-based models, we examine modeling

using artificial neural networks that have hitherto not been

explored for modeling application behavior. For evaluating

model accuracy, we uniformly use the percentage predic-

tion error when the model is applied for predicting applica-

tion performance and report the median, average, standard

deviation, and 90th percentile values for prediction error.

4.3.1 Regression Models

We first evaluate regression analysis, a common class of

techniques for modeling the influence of multiple indepen-

dent variables on a dependent variable. In our case, the in-

dependent variables are the input parameters of the model,

which we shall denote in this section using the following

notation within regression equations: C (CAP), M (MEM),

I (IONICE), IO (CDIOPS), and O (output parameter for

each benchmark). We used the R statistical package [3] to

do the regression analysis. Table 1 summarizes the predic-

tion errors across three regression models that we examined.

Regression-L We start with the simplest regression

model, Regression-L, that only uses linear terms for the de-

pendent parameters as: O = b1 +a1 ∗C +a2 ∗M +a3 ∗I +
a4 ∗ IO. For most of the benchmarks, the median errors of

different applications are considerably high. The reason can

be attributed to the fact that most of the benchmarks have a

non-linear dependency on the input parameters, which the

restricted linear equation cannot model adequately.

Regression-LQ We examined an alternate linear regres-

sion model, Regression-LQ, which included quadratic terms

for the dependent parameters in addition to the linear terms

as: O = c1 + a1 ∗ C + b1 ∗ C2 + a2 ∗ M + b2 ∗ M2 +
a3 ∗ I + b3 ∗ I2 + a4 ∗ IO + b4 ∗ IO2. Prediction errors,

while reduced compared to Regression-L, are still high, in-

dicating the behavior of the applications are too complex to

be captured with quadratic terms alone.

Regression-LI Observing that some of the input param-

eters, e.g., MEM and CDIOPS, had a combined influence

on the performance metric for certain benchmarks, we ex-

amined a linear regression model, Regression-LI, which in-

cluded pair-wise interactive terms in addition to the linear

terms as follows: O = b1 +a1 ∗C +a2 ∗M +a3 ∗ I +a4 ∗
IO + a12 ∗ C ∗ M + a13 ∗ C ∗ I + a14 ∗ C ∗ IO + a23 ∗
M ∗ I + a24 ∗ M ∗ IO + a34 ∗ I ∗ IO. Unfortunately, the

median errors were found to be high, with errors sometimes

better and sometimes worse than Regression-LQ.

Our experience with regression models led us to hypoth-

esize that it might be extremely difficult, to create a conven-

tional mathematical model which can predict a virtualized

application’s performance with acceptable accuracy. These

models primarily employ curve-smoothing techniques to fit

the training data which may not help in capturing behav-

iors when output changes non-smoothly in different ranges

of the input parameters. We therefore identified the need

for a technique which is adaptive and efficient in model-

ing complex non-linear relationships between outputs and

inputs. Evolutionary approaches such as fuzzy logic, arti-

ficial neural networks, and genetic algorithms provide such

an ability.

4.3.2 Artificial Neural Network Models

Artificial neural networks (ANN) [19] are advanced non-

linear statistical modeling tools based on biological neural

networks. At a high level, a neural network consists of cells

and links. Cells are computational elements and they gener-

ate activation signals for other cells, while links connect any

two cells and enable messages to flow between them. Each

link is weighted and unidirectional; the weight is used as a

multiplicative factor for the signal strength communicated.

We used the RPROP algorithm [18] for training the ANN

within each step of the iterative model training procedure

outlined earlier. The input and output variables of the ANN

can be separated by multiple layers each of which has a con-

figurable number of hidden neurons. The choice of these

parameters depends on the number of input and output vari-

ables and the complexity of their inter-relationships. After

evaluating different configurations for prediction accuracy,

we configured the ANN with two hidden layers with 20 in-

terconnecting neurons at each layer. There is an internal

ANN parameter which deserves further discussion, the ac-

tivation function which defines the output of a node or a

set of nodes based on a set of inputs. Our chosen ANN

implementation [1] offers multiple choices for the activa-

tion function. While we evaluated all of these functions,

we discuss only three, ANN-LINEAR, ANN-ELLIOT, and

ANN-GAUSSIAN, due to space constraints, and discuss only

two of these below. The LINEAR function is defined as:

O = X ∗ S, D = 1 ∗ S, where O represents output and

X represents the input set. Derivation (D) is used to update

the weights of the neurons. Steepness (S) is a configuration

parameter to the activation function; we used the default S

value of 0.5 which provided the best results in our case. The

ANN-LINEAR function provides accuracy similar to linear

regression (Table 1).

The ANN-ELLIOT outperformed all the other activation

functions in the ANN package as well as all the linear re-

gression techniques that we examined, given by:

O = ((X ∗ S)/2)/(1 + |X ∗ S|) + 0.5,
D = S ∗ 1/(2 ∗ (1 + |X ∗ S|) ∗ (1 + |X ∗ S|))

The error values for ANN-ELLIOT (Table 1) indicate that

it is able to adequately model the performance of all the

benchmarks providing median error in the range 1.16-

6.65%. It is well known that the most complex instances

of non-linearity can be represented in neural networks by

a sigmoidal function [24] of which the ANN-ELLIOT is a

specific instance that is also computationally efficient. It

is perhaps not surprising then that an ANN-ELLIOT with

sigmoidal properties was found suitable.

5. Experiments

In this section, we evaluate the ANN-Elliot model that

was identified to be adequate for modeling the performance

of virtualized applications. We analyze the distribution of

prediction error for each benchmark application, the sensi-

tivity of prediction accuracy to the training data set size, and

the training overhead.

5.1. Experimental Setup

For our experiments, we used a Dell Optiplex 755 dual

core Intel Pentium 4 machine with 2 GB of physical mem-

ory running Xen-3.2.0 and and Linux VMs. All VMs in-

cluding dom-0 ran Linux Kernel-2.6.18.8-xen. At any in-

stant, dom-0 could use one or more cores that were avail-

able. Guest machines were restricted to use a single core

with the choice of the specific core made at run-time by the

VMM, a default Xen option. The VMs used physical par-

tition backed virtual block devices for storage on the same

7.2K RPM SATA disk drive.

480-500 IOPS 2200-2400 IOPS 6000-6400 IOPS

Figure 3. Error Distribution for Sysbench-CPU

benchmark. Each row of heatmaps in the 2D heatmap

array corresponds to ionice values 0, 3, and 7 resp. from

top to bottom. Each column corresponds to the specified

CDIOPS range below. Within each heatmap, the X axis

represents CAP values of 8,15, and 20; the Y axis repre-

sents MEM allocations of 100MB, 200MB and 512MB. Er-

ror codes are same for these and all future heatmaps. Error

value 0-3% =white, 3-9% = light grey, 9-27% = dark grey,

27% and more = black.

Initial experiments indicated that inadequate CPU allo-

cation in dom-0 can adversely impact application perfor-

mance. In our setup, we ensure at least 25% CPU allocation

for dom-0 and did not impose any upper bound on the CPU

usage for dom-0. In addition, dom-0 memory allocation

(512 MB) was kept constant for all the experiments. To em-

ulate disk I/O contention, we created an additional VMwith

256 MB of memory and 20% CPU CAP, which ran an ap-

plication issuing random reads to large files at varied IOPS

values. To obtain training and testing data, each benchmark

was run thrice for each input parameter configuration, and

an average value of the performance metric was chosen as

the output parameter value.

5.2. Prediction Error Distributions

While the average and median error values are valuable

indicators of model accuracy, the distribution of the errors

across the various input parameter configurations can be a

valuable guide to the system administrator when choosing

allocation values. We depict error distribution across the

input parameter space using error heatmaps, a visual rep-

resentation that aids in performing allocations with known

confidence measures of performance.

Sysbench-CPU For the CPU benchmark, we used 53 and

81 data points for training and testing respectively. The

median error using ANN ELLIOT for the test data set is

6.65%. Figure 3 depicts the distribution of error under dif-

ferent allocation values. Careful examination indicates that

the training data set does not contain any data points corre-

sponding to CAP range 5-10, MEM 512 , and IONICE 0.

The absence of those points results in a greater inaccuracy

100-130 IOPS 400-600 IOPS 1100-1700 IOPS

Figure 4. Error Distribution for memory micro-

benchmark. X and Y axis are similar to those used in Fig-

ure 3. Changes include memory values – 100MB, 128MB

and 175MB, and the CAP values – 5, 15, 20.

of the model for these input parameters and is reflected in

the dark regions of the heatmap. Our training procedure did

not add more data points due to over-fitting symptoms.

Memorymicro-benchmark For training, 108 data points

are used; a separate 108 data points are used for testing. The

median error observed from ANN ELLIOT for the test data

set is 1.16%. The error heatmap (Figure 4) indicates that

high error values are concentrated in high values of MEM

and an IONICE value of 0 (highest I/O priority). At high

memory allocation, most pages are accessed from memory

and consequently, the application run-time is a small value

which increases its sensitivity.

PostMark For Postmark, 54 data points were used for

training and 62 data points were used for testing. For

this I/O intensive application, the median modeling error

is 3.34%. We do not present a heatmap for this benchmark

due to space constraints but we observe that the prediction

accuracy was high with the most error values being rela-

tively small.

OLTP For the OLTP benchmark with complex behavior,

180 data points were used for training and 136 data points

for testing. The median error observed from ANN ELLIOT

for the test data set is 4.24%. Figure 5 indicates that the

high error predictions are located in the region of 200 MB

when the range of competing IO is between 800-1600 IOPS.

From our training data, we found that there are relatively

fewer training data points observed in that range perhaps

leading to an under-fitting of the model and consequently,

increasing modeling error in that specific range. Augment-

ing the training set, unfortunately, resulted in over-fitting,

indicating that there is possibly room for improvement in

our training procedure.

5.3. Sensitivity to Training Data Set Size

To understand the sensitivity of model accuracy to the

training data set size, we trained the model with a randomly

20-40 IOPS 100-300 IOPS 800-1600 IOPS 1600-4200 IOPS

Figure 5. Error Distribution for the OLTP bench-

mark. X and Y axis are similar to those used in Figure 3.

Changes are in the CAP values – 5, 15, 20 used.

chosen subset of size 20%, 40%, 60%, 80%, and 100% of

the final training data set and measured the prediction accu-

racy for each benchmark. From Figure 6 it is evident that

the median error reduces and approaches acceptable values

quickly as the training data set size increases. These errors

do not monotonically decrease with increase in training data

set size owing to the random selection of the subsets used

in training, rendering them non-representative of the overall

training data set.

 0
 50

 100
 150
 200
 250
 300

C M P O C M P O C M P O C M P O C M P O

E
rr

o
r

%

Relative training data size

Median Error
90th Percentile Error

100%80%60%40%20%

Figure 6. Sensitivity of accuracy to training data

set size. C-Cpu benchmark, M-Memory benchmark, P-

Postmark, and O-OLTP

5.4. Training and Deployment Overhead

To understand the overhead of training and to determine

the suitability of the modeling approach in a dynamic en-

vironment where the model needs to be updated continu-

ously, we recorded the training time as we varied the num-

ber of data points in the training. We observed that the

training time for the ANN is proportional to the size of the

data set (due to space restriction we can not show that in

the paper). For the largest training data set of 180 training

points (from the OLTP benchmark), the training time is 34

seconds, which is typically much smaller than the average

steady state application performance duration in which the

average application load or business logic does not change

much. Such a model can quickly adapt to changes in appli-

cation and system behaviors, and it can be used at any time

by data center managers to predict application performance

at desired parameter configuration of the VM. Further, to

minimize the impact to the production virtualized hosts dur-

ing actual deployment, the monitored resource and perfor-

mance data can be sent via network to a dedicated system

that trains the models.

6. Related Work

6.1. Performance Modeling for Virtualized Systems

In early work on optimized resource allotment in util-

ity data centers, Doyle et al. investigated internal models

to estimate the service response time under different loads

and resource allocation [11]. The approach employs queu-

ing models for both server and storage service time predic-

tion and is application-aware since it employs performance

models based on knowledge of application load. Ben-

nani et al. also investigated application-aware multi class

open queuing networks to predict the response time and

throughput for both online and batch workloads [6]. Auto-

regressive models that map CPU allocation to the mean re-

sponse time with a fixed workload have been studied by

Liu and his colleagues [16]. Fuzzy logic has been used to

model the nonlinear relationship between a virtualized Web

server’s workload and its CPU usage [26]. Wood et al. pro-

pose a combination of application modeling and virtualiza-

tion overhead profiling for estimating the dom-0 and dom-U

CPU utilization of an application when it is moved from na-

tive to virtualized hardware [25]. Most recently, Padala et

al. proposed an auto-regressive moving average model to

represent the relationship between application performance

and its resource allocation, where the model parameters are

updated online using recursive least squares method [17].

The above approaches either do not adequately address

all resource dimensions or resource competition or both, the

effects of which are pronounced in a virtualized environ-

ment. Approaches for modeling resource utilization are not

naturally usable in a virtualized environment where the con-

trol knobs are for resource allocation. Our experience with

the benchmarking of virtualized applications underscores

the importance of choosing both the right set of parameters

and the right modeling technique to adequately incorporate

the influence of resource allocation and resource competi-

tion in a virtualized environment.

6.2. Performance Modeling for Non-virtualized Systems

Cross-platform performance prediction approaches can

potentially be useful in a virtualized environment where

resource configuration is subject to change. Lee et

al. [14] have proposed detailed machine regression mod-

els based on a large set of architecture-specific informa-

tion such as register count, cache sizes, etc. combined with

application-specific hardware counter information such as

L1/L2 misses, stalls, etc. to characterize application per-

formance and power. Subsequent work by them extended

the above and proposed to study architectural design spaces

using regression models [15]. The work of Ipek et al. [12]

took a similar approach but instead used ANNs trained with

a large number of architecture-specific parameter to explore

architectural design spaces. Recently, Stewart et al. [20]

proposed trait models which characterize various aspects of

a system’s influence on application performance, including

the influence of cache sizes on cache misses and the influ-

ence of the request mix on CPI and cache misses.

While architecture-specific and performance-counters

based models have the potential to provide more precise

predictions for a single application, they are difficult to train

and hard to use. Some of the above techniques only ad-

dress the CPU-intensive applications and model the CPU

resource consumption alone. Furthermore, given the large

number of parameters in such models, it is extremely diffi-

cult to intuitively reason about the nature of the model pa-

rameters’ influence on application performance. In a virtu-

alized environment, applications and operating systems are

sand-boxed while the data center administrators having lit-

tle to no knowledge about them, thus making application-

aware models unusable. Virtualization also introduces re-

source competition by other application VMs which can

compromise the accuracy of isolated application models. In

contrast, we propose and explore the accuracy of a simple,

practically usable models that take coarse-grained view of

a virtualized system’s resources along the various resource

dimensions of processing, memory, storage, and network.

Finally, a large body of work addresses application or

application-domain specific performance prediction. For

parallel applications, Katramatos and Chapin proposed run-

time prediction based on a network-latency model and ap-

plication profiling for different input data sizes over het-

erogeneous clusters [8]. Run-time predictions of finer-

granularity jobs, which are useful for scheduling interac-

tive applications were proposed by Dinda et al. [9] which is

based on the AR(16) model for CPU load estimations. For

Internet services, Stewart and Shen proposed response time

prediction through offline profiling of component-based

services in which each component service is individually

modeled by its CPU utilization, remote method invocation

overhead, and network delay [21]. These application and

domain-specific approaches assume a specific model of the

application or the deployment platform that does not apply

to applications running inside virtual machines running on

a shared piece of hardware alongside other applications.

7. Conclusions and Future Work

Modeling application performance in a virtualized data

center is a challenging and necessary task. It allows sys-

tem administrators to determine the minimum resources re-

quired by an application VM to deliver the required perfor-

mance that will meet the SLA guarantees. We identified

generic resource allocation and competition parameters that

contribute to influencing the performance of virtualized ap-

plications with widely varying resource consumption char-

acteristics. These parameters apply to the popular virtual-

ization architectures of today, are simple to interpret, and

thus easily usable by data center system administrators. We

demonstrated that conventional linear regression that has

been used with much success for modeling non-virtualized

application behavior fail to adequately model virtualized

applications with this newly identified parameter set. A spe-

cific implementation of an artificial neural network (ANN)

model combined with a custom training process was iden-

tified to predict virtualized application performance with

high accuracy. Median modeling error in the range of 1.16-

6.65% was observed for a variety of benchmark workloads.

Our work opens up several avenues for future research.

An important next step involves online model refinement

to address dynamically changing application behavior; the

key challenge here is to differentiate short-term or tran-

sitory changes in application performance characteristics

from stable or long term changes. Second, while the model

parameters that we proposed addressed the influence of ba-

sic, high-level resource types, it would be interesting to see

if refining the model to incorporate the influence of ad-

ditional hardware resource types, especially cache alloca-

tion and contention, further increases prediction accuracy.

Finally, comprehensively addressing data center resource

management would ultimately require exploring new tech-

niques for automatic resource redistribution for SLA-based

revenue maximization based on online model refinement

with real data center workloads.

References

[1] Fast Artficial Neural Network (FANN).

http://leenissen.dk/fann/.

[2] Microsoft virtual pc for windows. URL:

http://www.microsoft.com/windows/products/winfamily

/virtualpc/default.mspx.

[3] The R Project for Statistical Computing. http://www.r-

project.org/.

[4] Sysbench: a system performance benchmark.

http://sysbench.sourceforge.net/.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, and R. Neugebauer. Xen and the art of virtualiza-

tion. In Proceedings of the nineteenth ACM symposium on

Operating systems principles, pages 164–177, 2003.

[6] M. N. Bennani and D. A. Menascé. Resource allocation for

autonomic data centers using analytic performance models.

In ICAC, pages 229–240. IEEE Computer Society, 2005.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield. Live migration of

virtual machines. In Proc. of USENIX NSDI, 2005.

[8] S. J. C. Dimitrios Katramatos. A Cost/Benefit Estimat-

ing Service for Mapping Parallel Applications on Heteroge-

neous Clusters. IEEE International Conference on Cluster

Computing, September 2005.

[9] P. Dinda. Online Prediction of the Running Time of Tasks.

Cluster Computing, 5(3), 2002.
[10] P. A. Dinda and D. R. O’Hallaron. Host load prediction

using linear models. Cluster Computing, 3(4), 2000.
[11] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. Vah-

dat. Model-based resource provisioning in a web service

utility. In USENIX Symposium on Internet Technologies and

Systems, 2003.
[12] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and

M. Schulz. Accurate and efficient regression modeling for

microarchitectural performance and power prediction. Proc.

of the ACM Architectural Support for Programming Lan-

guages and Operating Systems Conference, October 2006.
[13] J. Katcher. Postmark: A new file system benehmark. Tech-

nical report, Network Appliance, 1997.
[14] B. C. Lee and D. M. Brooks. Efficiently exploring architec-

tural design spaces via predictive modeling. Proc. of the

ACM Architectural Support for Programming Languages

and Operating Systems Conference, October 2006.
[15] B. C. Lee and D. M. Brooks. Illustrative Design Space Stud-

ies with Microarchitectural Regression Models. Proc. of the

IEEE International Symposium on High Performance Com-

puter Architecture, February 2007.
[16] X. Liu, X. Zhu, S. Singhal, and M. F. Arlitt. Adaptive enti-

tlement control of resource containers on shared servers. In

IM, pages 163–176. IEEE, 2005.
[17] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Sing-

hal, A. Merchant, and K. Salem. Adaptive control of virtu-

alized resources in utility computing environments. In Pro-

ceedings of the 2nd ACM SIGOPS/EuroSys European Con-

ference on Computer Systems 2007, pages 289–302, 2007.
[18] M. Riedmiller and H. Braun. Rprop - a fast adaptive learning

algorithm. Technical report, Proc. of ISCIS VII, Universitat,

1992.
[19] W. S. Sarle. Neural networks and statistical models, 1994.
[20] C. Stewart, T. Kelly, A. Zhang, and K. Shen. A dollar from

15 cents: Cross-platform management for internet services.

In Proceedings of the USENIX Annual Techinal Conference,

pages 199–212, 2008.
[21] C. Stewart and K. Shen. Performance modeling and system

management for multi-component online services. Proc. of

the 2nd USENIX NSDI, 2005.
[22] G. Venkitachalam and B. Lim. Virtualizing i/o devices on

vmware workstation’s hosted virtual machine monitor. In

USENIX Annual Technical Conference, 2001.
[23] VMWare Inc. VMWare VMotion.

http://www.vmware.com/products/vi/vc/vmotion.html.
[24] B. M. Wilamowski and J. Binfet. Do fuzzy controllers have

advantages over neural controllers in microprocessor imple-

mentation. In Proceedings of the 2nd International Confer-

ence on Recent Advances in Mechatronics, pages 342–347,

1999.
[25] T.Wood, L. Cherkasova, K. Ozonat, and P. Shenoy. Profiling

and modeling resource usage of virtualized applications. In

Middleware ’08: Proceedings of the 9th ACM/IFIP/USENIX

International Conference on Middleware, 2008.
[26] J. Xu, M. Zhao, J. A. B. Fortes, R. Carpenter, and M. S.

Yousif. Autonomic resource management in virtualized data

centers using fuzzy logic-based approaches. Cluster Com-

puting, 11(3):213–227, 2008.

