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Abstract—The DEEP projects have developed a variety of
hardware and software technologies aiming at improving the
efficiency and usability of next generation high-performance
computers. They evolve around an innovative concept for he-
terogeneous systems: the Cluster-Booster architecture. In it, a
general purpose cluster is tightly coupled to a many-core system
(the Booster). This modular way of integrating heterogeneous
components enables applications to freely choose the kind of
computing resources on which it runs most efficiently. Codes
might even be partitioned to map specific requirements of code-
parts onto the best suited hardware. This paper presents for
the first time measurements done by a real world scientific
application demonstrating the performance gain achieved with
this kind of code-partition approach.

Keywords-Exascale; Architecture; Cluster-Booster architec-
ture; Modular Supercomputing; Co-design

I. INTRODUCTION

The high-performance community is addressing multiple

challenges to provide industrial and scientific users with

suitable and efficient Exascale systems. Huge power con-

sumptions, much faster growth of computing capabilities

than memory and I/O bandwidth (the so-called memory

wall), and higher hardware failure rates expected in such

huge systems, are some examples. Also extreme concurrency

and the integration of heterogeneous computing resources do

affect the programmability of a system, since both require

specific code adaptations to fully exploit the capabilities of

the platform.

The DEEP projects [1] are a series of three EC-funded

projects (DEEP, DEEP-ER, and DEEP-EST) performing

research addressing the Exascale computing challenges. The

first member of this family (DEEP: Dynamical Exascale

Entry Platform) introduced a new heterogeneous supercom-

puter architecture: the Cluster-Booster concept [2], aiming

at increasing the scalability and energy efficiency of cluster

systems, while keeping their programmability and flexibi-

lity. DEEP built a first hardware prototype, including a

complete software stack with resource management, sche-

duler, programming environment, and performance analysis

tools [3]. DEEP-ER (DEEP - Extended Reach) extended

the Cluster-Booster architecture implementing a multi-level

memory hierarchy, acting as a basis for a complete I/O

and resiliency software stack. Finally, the recently started

project DEEP-EST (DEEP – Extreme Scale Technologies)

generalises the Cluster-Booster concept introducing the so-

called Modular Supercomputing architecture [4].

All three projects follow a stringent co-design stra-

tegy, using full-fledged scientific applications to guide and

strongly influence the design and implementation of system

hardware and software. The applications requirements, iden-

tified by detailed analysis, guided all the project’s develop-

ments. The selected codes have also been adapted to the

Cluster-Booster platform and served as a measure to validate

and benchmark the hardware and software technologies

implemented.

This paper describes the Cluster-Booster architecture,

its second-generation prototype (DEEP-ER prototype), the

software environment, and the advantages that the concept

brings to applications exemplified by some of the results

achieved within the DEEP-ER project. Section II presents

the DEEP-ER system architecture, including the underlying

Cluster-Booster concept, the specific hardware configuration

of the DEEP-ER prototype, and its memory hierarchy and

technologies. The software stack is explained in section III,

including the programming environment already introduced

in the predecessor DEEP project, and a summary of the

DEEP-ER I/O and resiliency software developments. The

application used to evaluate the Cluster-Booster architecture

is shortly described in section IV, together with the results

achieved distributing it over both parts of the DEEP-ER pro-

totype. Finally, the conclusions of the paper are summarised

in section VI.

II. SYSTEM ARCHITECTURE

Cluster computing enables to build high-performance

systems benefiting from the lower cost of commodity of

the shelf (COTS) components. Traditional, homogeneous

clusters are built by connecting a number of general purpose

processors (e.g. Intel Xeon, AMD Opteron, etc.) using a

high speed network. The limitation of this approach lies

on the relatively high power consumption and cost per

performance of general purpose processors, which makes
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Figure 1: Sketch of the Cluster-Booster architecture in

its second generation implemented in the DEEP-ER pro-

ject (KNL: Knights Landing; NVM: non-volatile memory;

NAM: network attached memory)

a large scale homogeneous system made of this kind of

processors extremely power hungry and costly.

The overall energy and cost efficiency of a cluster can

be improved by adding accelerator devices (e.g. many-core

processors or general purpose graphic cards, GPGPUs),

which provide higher Flop/s performance per Watt. Standard

heterogeneous clusters are built by attaching one or more

accelerators to each node. However, this accelerated node

approach presents some caveats. An important one is the

combined effect of the accelerators’ dependency on the

host CPU and the static arrangement of hardware resources,

which limit the accessibility to the accelerators for other

applications than the one running on the host CPU. Furt-

hermore, both CPU and accelerator have to compete for the

scarce network bandwidth in this concept.

A. Cluster-Booster concept

The Cluster-Booster architecture (sketched in figure 1)

integrates heterogeneous computing resources at the system

level. Instead of plugging accelerators into the node at-

taching them directly to the CPUs, they are moved into

a stand-alone cluster of accelerators that has been named

Booster. These accelerators can act autonomously and com-

municate directly with each other through a high-speed

network, not needing any host node. Leveraging this feature,

full codes with intensive internal communication can run on

the Booster alone, without employing any Cluster node in

their execution.

The Booster is attached to a standard HPC Cluster via

a high-speed network. This connection, together with a

uniform software stack running over both parts of the

machine (see section III), enables Cluster and Booster acting

together as a unified system. This opens up new prospects

Figure 2: Picture of the DEEP-ER prototype, at JSC

for application developers, who have full freedom to decide

how they distribute their codes over the system. For example,

code sections requiring high-single thread performance an-

d/or large memory capacity will run best on the Cluster side,

while well-parallelized and vectorised code parts will profit

from the highly-scalable, energy efficient Booster. This is

demonstrated in section IV, which presents measurements

of an application that benefits from the Cluster-Booster

approach.

In contrast to accelerated clusters, the Cluster-Booster

concept poses no constraints on the combination of CPU

and accelerator nodes that an application may select, since

resources are reserved and allocated independently. This has

two important effects: Firstly, each application can run on

an optimal combination of resources and achieve maximum

performance. Secondly, all resources can be put to good

use by a system-wide resource manager. The latter allows

combining the set of applications in a complementary way,

increasing throughput and efficiency of use for the overall

system. In the course of the DEEP project, major efforts

were put into the extension of batch-system capabilities [5].

In DEEP-ER, additional memory components have been

added to the Cluster-Booster system, including the NAM

and the NVMe presented in section II-B.

B. Prototype hardware configuration

The first prototype of the Cluster-Booster concept was

designed and built in the course of the DEEP project [1]. The

DEEP prototype consisted of 128 Cluster nodes (Intel Xeon,

Sandy Bridge generation), and 384 Booster nodes (Intel

Xeon Phi, Knights Corner - KNC generation). The different

network technologies on Cluster (InfiniBand) and Booster



Table I: Hardware configuration of the DEEP-ER prototype.

Feature Cluster Booster

Processor Intel Xeon E5-2680 v3 Intel Xeon Phi 7210

Microarchitecture Haswell Knights Landing (KNL)

Sockets per node 2 1

Cores per node 24 64

Threads per node 48 256

Frequency 2.5 GHz 1.3 GHz

Memory (RAM) 128 GB 16 GB – MCDRAM

96 GB – DDR4

NVMe capacity 400 GB 400 GB

Interconnect EXTOLL Tourmalet A3 EXTOLL Tourmalet A3

Max. link bandwidth 100 Gbit/s 100 Gbit/s

MPI latency1 1.0 µs 1.8 µs

Node count 16 8

Peak performance 16 TFlop/s 20 TFlop/s

(EXTOLL) made it necessary to use bridge-nodes between

the two parts of the system. These where responsible both

for transferring messages and for remote-booting the KNC

nodes from the network, since these were not designed as

stand-alone processors.

The successor – called the DEEP-ER prototype – (fi-

gure 2) is the second generation of the same architecture

and was installed at JSC in 2016. It consists of 16 Cluster

nodes and 8 Booster nodes; the configuration is detailed

in table I. Given the size of the system and the strong

focus of the DEEP-ER project on software development,

the prototype construction was kept as simple as possible

employing off-the-shelf, air-cooled hardware components.

Cluster and Booster modules are integrated in a single,

standard 19” rack, which also holds the storage system (one

meta-data, two storage servers and 57 TB of storage on

spinning disks).

A uniform high-speed Tourmalet A3 EXTOLL fabric runs

across Cluster and Booster, connecting them each internally,

between each other, and to the central storage. Bandwidth

and latency measured by end-to-end MPI communications

between the different kinds of nodes are displayed in fi-

gure 3. For small message sizes communication is more

efficient between the Cluster nodes due to the higher single

thread performance of the Intel Xeon processors, compared

to KNL. For large messages communication performance

between all kinds of nodes is limited by fabric bandwidth.

The DEEP-ER prototype is enhanced by advanced me-

mory technologies. A multi-level memory hierarchy has

been built providing a total memory capacity of 8 TBytes.

This enables the implementation of innovative I/O and

resiliency techniques.

Each node of the DEEP-ER prototype (in both Cluster

and Booster) features a non-volatile memory (NVM) device

for efficient buffering of I/O and checkpointing. The chosen

technology is Intel’s DC P3700 NVMe device, an replace-

1Note: The larger MPI latency on the Booster is due to the lower
single thread performance of the Xeon Phi processor. It results from
its different micro-architecture in combination with the reduced clock
frequency compared to standard Xeon processors.
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Figure 3: End-to-end MPI communication (bandwidth and

latency) measured with ParaStation MPI on the DEEP-ER

prototype. (CN: Cluster node; BN: Booster node). CN-CN:

communication between Cluster nodes; BN-BN: commu-

nication between Booster nodes; CN-BN: communication

between a Cluster and a Booster node.

ment for SSD with 400 GByte capacity that provides high

speed, non-volatile local memory, directly attached to the

node via 4 lanes of PCIe gen3. NVMe is a new standard

providing APIs and interfaces for this direct connection in

the server market. On the long run, it aims at replacing

today’s standard interfaces like SATA.

DEEP-ER has also introduced an innovative memory con-

cept: the network attached memory (NAM) [6]. It combines

Hybrid Memory Cube (HMC) devices with a state-of-the-

art Xilinx Virtex 7 FPGA and exploits the remote DMA

capabilities of the EXTOLL fabric. The latter enables access

to remote memory resources without the intervention of

an active component (as a CPU) on the remote side. In

this way a high-speed memory device is created, which

is directly attached to the EXTOLL fabric and therefore

globally accessible by all nodes in the system.

The DEEP-ER prototype holds two NAM devices with

a capacity of 2 GBytes each. This relatively small size is

due to current HMC technology limitations. Future imple-

mentations potentially increase capacities and may trigger a

rethinking of memory architectures for HPC and data analy-

tics. In fact, the NAM concept is being further investigated

by the successor project DEEP-EST.
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application starting on the Cluster and offloading a part of its

code to the Booster. (CN: Cluster node; BN: Booster node).

III. SOFTWARE ENVIRONMENT

The guiding principle in the development of software

for the Cluster-Booster concept has been to stick, as much

as possible, to standards and well established APIs. The

specific software features required to operate Cluster and

Booster together as a single system are implemented in the

lower layers of the software stack and are as transparent

as possible to application developers. Thus, they experience

the same software environment as on any other current

HPC system and do not have to deal with the underlying

hardware complexity. Furthermore, their codes stay portable

and keep the capability to run out-of-the-box on this new

kind of platform as well as on any other HPC system.

Thus, application developers are not required to maintain

yet another branch of their application’s source-code but just

have to add corresponding pragmas.

A. Programming Environment

The ParaStation MPI library has been specifically optimi-

zed to efficiently run within both, Cluster and Booster, and

across them. In particular, MPI programs can run solely on

the Cluster (without employing any Booster node), solely

on the Booster (without using any Cluster node), or run

distributed among both kinds of nodes. For the latter case,

enhancements have been done in ParaStation implementing

a heterogeneous, global MPI by exploiting semantic con-

cepts long existing in the MPI-standard. In particular, the

MPI-2 function MPI_Comm_spawn realises the offloading

mechanism, which allows to spawn groups of processes from

Cluster to Booster (or vice-versa). At the same time the

global MPI provides an efficient way of exchanging data

between the two parts of the system [3].

As sketched in figure 4, MPI_Comm_spawn is a col-

lective operation performed by a (sub-)set of application

processes running on either Cluster or Booster. The call re-

quires as input the name of the binary to run and the number

of processes to be started. It returns an inter-communicator,

providing a connection handle to the children. Each child

calls then MPI_Init, as usual, and gets access to the other

end of the inter-communicator via MPI_Get_parent.

Both parts of the applications – the original main part and

the offloaded part – have their own MPI_COMM_WORLDs

providing full MPI functionality on either side, and are

connected to each other via inter-communicators.

B. OmpSs abstraction layer

For a programmer, directly employing the

MPI_Comm_spawn functionality requires coordinating

and managing two or more sets of parallel MPI processes.

This includes explicitly exchanging the necessary data

between both sides of the system. This approach may

become cumbersome for large and complex applications.

To reduce the porting effort, an abstraction layer employing

the global MPI has been implemented already in the DEEP

project. It enables application developers to offload large,

complex tasks by simply annotating via pragmas these

parts of their code that shall run on a different part of the

system.

This abstraction layer is based on the OmpSs data-

flow programming model [7], [8]: an OpenMP 4.0-like

environment exploiting task-level parallelism and suppor-

ting asynchronicity, heterogeneity and data movement. With

OmpSs, an application’s code is annotated using OpenMP-

like pragmas that indicate data dependencies between the

different parts of the program. Taking these dependencies

into account, the OmpSs runtime decides on the sequence of

tasks and whether concurrent execution is allowed, creating

a task dependency graph at run-time. All this information

is used to schedule the tasks on the available hardware

resources.

In order to support the DEEP offloading functionality

OmpSs has been extended by an additional pragma to

indicate the offload of a large compute-task including com-

munication from Cluster to Booster, or vice-versa [9]. The

pragma also holds information on data dependency and by

this means it enables the OmpSs source-to-source compiler

to insert all necessary MPI calls and to pass the resulting

sources to the native tool-chain of the specific part of the

system creating the binaries to be executed.

C. I/O

The non-volatile memory of the DEEP-ER prototype

(see II-B) is used as the foundation of a scalable I/O

infrastructure. The resulting I/O software platform combines

the parallel I/O library SIONlib [10] with the parallel file

system BeeGFS [11]. Together, they enable the efficient and

transparent use of the underlying hardware and provide the

functionality and performance required by data-intensive ap-

plications and multi-level checkpointing-restart techniques.

The I/O library SIONlib acts as a concentration-layer

enabling applications utilizing task-local I/O to efficiently



use the underlying parallel file system. SIONlib bundles all

data locally generated by applications, and stores it into one

or very few large files, that the file system can easily manage.

Furthermore, in DEEP-ER SIONlib bridges between the

I/O and resiliency components of the software stack. It is

used to copy local checkpoints into the NVM of a compa-

nion (buddy) node for redundancy, and to efficiently store

checkpoint-data in the global file system. Both functions

work in combination with the scalable checkpointing/restart

library SCR (see section III-D).

The file system utilized in DEEP-ER is BeeGFS. It pro-

vides a solid, common basis for high-performance, parallel

I/O operations. Advanced functionalities, such as a local

cache layer in the file system, have been added to BeeGFS

during the DEEP-ER project. The cache domain – based on

BeeGFS on demand (BeeOND) [12] – stores data in fast

node-local non-volatile memory devices and can be used

in a synchronous or asynchronous mode. This speeds up

the applications’ I/O operations and reduces the frequency

of accesses to the global storage, increasing the overall

scalability of the file system. The corresponding results will

be discussed in detail in an up-coming article [13].

D. Resiliency

The DEEP-ER project has adopted an improved user-level

application checkpoint-restart approach, combining it with a

task-based resiliency strategy.

The Open Source Scalable Checkpoint-Restart library

(SCR) offers a flexible interface for applications to perform

checkpoints and to restart from them in case of failure [14].

The user only needs to call SCR and indicate the data

required by the application to restart execution. This library

keeps a database of checkpoints and their locations in prepa-

ration for eventual re-initialization. In DEEP-ER, SCR has

been extended to decide where and how often checkpoints

are performed, based on a failure model of the DEEP-ER

prototype.

The OmpSs programming model has been also extended

by three new resiliency features. Input data of the OmpSs

tasks can be saved into main memory before starting them,

such that they can be restarted in case of failure. Alter-

natively, the input dependencies of a task can be used by

OmpSs to fast-forward a re-started application to the latest

check-point. Tasks offloaded from Cluster to Booster (or

vice-versa) can also be restarted without loosing the work

that has been performed in parallel by other OmpSs tasks.

IV. APPLICATION RESULTS

Several real-world HPC applications have been used to

steer and evaluate the design of the hardware and software

developments in the DEEP projects. To properly represent

the typically broad user portfolio of large-scale computer

centres, the chosen co-design applications come from a

wide range of scientific areas, including astrophysics, neu-

roscience, seismic imaging, climate science, computational

fluid dynamics, molecular dynamics, etc.

The role of these applications in the project is two-fold:

on the one hand, their requirements have provided co-design

input to fix the characteristics of hardware and software

components; on the other hand, the codes have evaluated

the project developments by running different uses cases on

the DEEP-ER prototype.

This paper focuses on the distribution of an application

over both parts of the Cluster-Booster architecture, tested

with the Space Weather application xPic. This code has

been chosen for two reasons: it displays best the effect of

partitioning an application between Cluster and Booster, and

it is the code with which the most exhaustive benchmark-

tests of this scenario have been performed until now. Other

applications tested on the DEEP-ER prototype are of rather

monolithic nature, meaning that they run either on the Clus-

ter or the Booster, alone. Further heterogeneous simulation-

workflows are being adapted to the concept in the recently

started DEEP-EST project. Thorough experimental results

will be presented in future publications.

A. Application description and structure

xPic is a Particle-in-Cell (PIC) simulation code from

KU Leuven (Katholieke Universiteit Leuven) to forecast

space weather events with the potential to harm spacecraft

electronics, disturb GPS signals, or even damage the electri-

cal infrastructure on Earth. It simulates the plasma produced

in solar eruptions using the Implicit Moment Method [15].

Like most PIC codes, xPic consists of two parts, a particle

solver and a field solver. The particle solver calculates the

motion of charged particles in response to the electromagne-

tic field and collects statistical information about their charge

density, velocity distribution and the corresponding electric

current (called moment gathering); the field solver computes

the electromagnetic field evolution in response to the particle

movement. The workflow of xPic is presented in figure 5.

Here, the color-coding employed along the paper has been

kept: code-parts best suited for the Cluster are marked in

green, while those in blue fit best on the Booster side of the

DEEP-ER prototype.

Field  
solver

Maxwell‘s  
equation

E,B = f (ρ,J)

Particle solver

Moment  
gathering 

E,B

Interface 
buffer

ρ,J

E,B

Interface 
buffer

ρ,J

Cluster Booster

Newton‘s equation
r,v = f (E,B)

ρ,J = f (r,v)

Figure 5: xPic workflow



B. Distributing an application between Cluster and Booster

The applications tested in the DEEP-ER prototype em-

ployed two alternative approaches to take advantage of the

Cluster-Booster system: (1) launching MPI processes in one

of the modules and spawning children MPI processes on the

second module (see section III-A); and (2) using OmpSs

pragmas to offload computing zones from the Cluster to the

Booster (section III-B). The developers of the xPic code

explored both approaches at the beginning of the DEEP

project but finally decided to go for the first of them, due

to their personal larger experience in MPI programming.

The xPic code has then been divided in a particle solver

that runs on Booster nodes and a field solver that runs on

Cluster nodes. The application can also run in traditional

architectures, by executing particle and field solver on the

same kind of nodes.

The listing 1 in figure 6 shows the main loop of xPic in

its original configuration. The field and particle solvers are

labelled fld and pcl respectively. The solver calculates

the electric (E) and magnetic (B) fields, while the particle

solver performs the particle movement and the moment

gathering. The functions cpyFromArr and cpyToArr

move information between the solvers and the interface

buffer shown in figure 5.

In the Cluster-Booster mode, the main loop is divided into

two files, one containing the Cluster routines, and the second

containing the Booster routines. In practice, the developer

creates two copies of the main file and erases the fld calls

in the Booster copy, and the pcl calls in the Cluster copy.

Finally, after each cpy call, data is moved between the two

solvers.

Figure 6 show the original main loop, together with the

newly defined main loops for Cluster (listing 2) and Booster

(listing 3). Differences are highlighted in green for the

Cluster parts, and in blue for the Booster parts.

The functions ClusterToBooster and

BoosterToCluster perform the MPI communications

between the two modules. These are non blocking, and allow

to overlap with non critical operations, like the computations

of particle and field energy, the post-processing of data, and

writing output files. Communications are performed using

the INTERCOMM communicator created at the initialisation

of the code with the MPI_Comm_spawn routine. Listing 4

shows how the function BoosterToCluster() uses

these MPI communications.

#ifdef __BOOSTER__

MPI_Issend(Rho,..., INTERCOMM, nextSreq());

#endif

#ifdef __CLUSTER__

MPI_Irecv (Rho,..., INTERCOMM, nextRreq());

#endif

Listing 4: Booster to Cluster MPI communication

The compilation script generates two executables, one

containing the __BOOSTER__ code and the second contai-

ning the __CLUSTER__ code. At launch time, the execution

script calls the Booster code, and this in turn performs a

spawn with the name of the Cluster executable. ParaStation

and the scheduler detect this call and distribute the child

binaries in the correct locations in the Cluster.

C. Benchmarking results

Figure 7 illustrates how the application xPic profits from

distributing its two solvers (fields and particles) over the

Cluster-Booster architecture described in section II-A. The

results in this figure have been obtained using single Cluster

and Booster nodes. Each solver uses a hybrid MPI+OpenMP

code. The experimental setup is summarized in table II. In

this case, running only on the Cluster means executing the

particle solver on one Cluster node first and, once finished,

using the same node for the field solver. The total execution

time is the sum of the time employed by both solvers.

The same applies to the case that uses only one Booster

node. The Cluster-Booster mode (labelled C+B) runs the

field solver on one Cluster node and the particle solver on

one Booster node. The total execution time is here the sum

of both parts and includes the overhead due to the MPI

communication between them.

Table II: xPic experiment setup in the Cluster-Booster

architecture evaluation measurements.

Number of cells per node 4096

Number of particles per cell 2048

Compilation flags -openmp, -mavx (Cluster),

-xMIC-AVX512 (Booster)

The field solver matches best to the Cluster side, since this

code-part is not highly parallel and requires substantial and

frequent global communication. Accordingly, running the

field solver on the Cluster (Haswell processors) is 6× faster

than on the Booster (KNL processors). The highly parallel

particle solver, on the other hand, moves billions of particles

independently with almost no long-range communication.

It turns out to be naturally suited to the Booster, where it

runs about 1.35× faster than on the Cluster. Point-to-point

communication is done between the field solver and particle

solver (i.e. between Cluster and Booster) and constitutes

only a small fraction (3% to 4% overhead per solver) of

the total application communication.

Thus, the Cluster-Booster architecture allows matching

the intrinsic structure of xPic to the hardware, i.e. running

the field solver on the Cluster and the particle solver

on the Booster. This distributed mode results in a 1.28×

performance gain of the overall application, when compared

to running the full code using only the Cluster. Comparing to

an execution on the Booster alone, still a 1.21× performance

gain of the Cluster-Booster (C+B) mode is achieved.

Scaling results for the three scenarios (only Cluster, only

Booster, and Cluster-Booster mode) are presented in figure

8. The plots indicate that the performance gain of the C+B



for (auto i=beg+1; i <= end; i++){

fld.solver->calculateE();

fld.cpyToArr_F();

pcl.cpyFromArr_F();

for (auto is=0; is<nspec; is++) {

pcl.species[is].ParticlesMove();

pcl.species[is].ParticleMoments();

}

pcl.cpyToArr_M();

fld.solver->calculateB();

fld.cpyFromArr_M();

}

Listing 1: Original main loop

1#ifdef __CLUSTER__

2for (auto i=beg+1; i <= end; i++){

3fld.solver->calculateE();

4fld.cpyToArr_F();

5ClusterToBooster();

6// Auxiliary computations

7ClusterWait();

8

9

10

11

12

13

14BoosterToCluster();

15

16BoosterWait();

17fld.solver->calculateB();

18fld.cpyFromArr_M();

19}

20#endif

Listing 2: Cluster main loop

#ifdef __BOOSTER__

for (auto i=beg+1; i <= end; i++){

ClusterToBooster();

ClusterWait();

pcl.cpyFromArr_F();

for (auto is=0; is<nspec; is++) {

pcl.species[is].ParticlesMove();

pcl.species[is].ParticleMoments();

}

pcl.cpyToArr_M();

BoosterToCluster();

// I/O and auxiliary computations

BoosterWait();

}

#endif

Listing 3: Booster main loop

Figure 6: Listings showing the main loop in the original (Listing 1) and new xPic application. In the new version the loop

is distributed between Cluster (Listing 2) and Booster (Listing 3). Cluster-to-Booster MPI communications have been added

in blue and green. Lines 6 and 15 represent computations that can be done while the non-blocking communications are

performed.
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Figure 7: Runtime of xPic and its constituents: running both

solvers on the Cluster, both on the Booster, and using the

Cluster-Booster mode (labelled C+B). In the latter case the

field solver runs on the Cluster and the particle solver on

the Booster.

mode increases with the number of nodes. In the largest

experiment possible on the DEEP-ER prototype (8 nodes),

the distributed code runs 1.38× faster than using only the

Cluster, and 1.34× faster than on the Booster alone. The

C+B mode also achieves a better parallel efficiency (85%)

than using the Cluster (79%) and Booster (77%) as stand-

alone systems.

V. RELATED WORK

This paper presents a different approach for the integration

of heterogeneous resources within a HPC system. In fact, the

actual idea is similar to the concept behind the development
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of the Quadrics Supercomputing World’s PQE 2000 system

in the late 1990s [16]. Here the role of the Cluster as a more

general purpose system was filled by a Meiko CS2 system

utilizing SPARC processors and a proprietary interconnect

build by Meiko. The part now named Booster was planned

to be realized by a highly scalable APE Mille MPP system

that was based on the APE series of machines originally

designed for lattice QCD calculations. Nevertheless, at that

time the idea did not make it to the market.

The original Cluster-Booster prototype of the DEEP pro-

ject was challenging to realize since the first generation of

Intel Xeon Phi processors were not designed to run as stand-

alone processors. With the advent of Xeon Phi processors of

the KNL generation also major hardware vendors like Cray

offer systems that integrate Intel Xeon and Intel Xeon Phi

processors into a single system. Examples for larger systems

of this type are the Cori system at NERSC [17] based on

Cray’s XC40 series or the Trinity system at LANL [18]

based on Cray XC30. However, until now there is no

indication that these systems will be used in the same fashion

that is presented in this paper, i.e. by running applications

across both type of processor architectures at the same time,

utilizing MPI_Comm_spawn or similar calls in the MPI

standard. In fact, MPI_Comm_spawn was not supported by

Cray’s MPI until recently.

In a more general sense the integration of heterogeneous

resources into a single system is available in many large-

scale HPC system. They might have large memory nodes

in order to support applications with the need for larger

amounts of memory, although those applications are usually

restricted to a single class of nodes alone. More in the sense

of the approach presented in this paper are visualization

nodes within a large scale supercomputer used for online

visualization. Here both classes of nodes are used at the

same time, one for running the actual application, the other

in order to tap data from the running simulation and to derive

graphical representation of these data. Nevertheless, in both

cases the heterogeneity of the nodes is restricted to a diffe-

rent amount of memory or additional hardware like GPUs

but typically leaving the processor architecture untouched.

Furthermore there is no spawning of additional processes

via MPI_Comm_spawn. Instead, communication between

the different application parts (simulation and visualization)

is done by different measures.

For the concept of NAM a similar approach is realized

by the RAM Area Network developed by Kove in its

xpd appliance [19]. While NAM directly attaches HMC

memory to the EXTOLL interconnect, Kove utilizes standard

DRAM DIMMs and multiple InfiniBand HCA in order to

realize larger capacity and higher bandwidth. The main

difference between the two concepts is that the xpd appliance

still requires a standard processor while for the NAM all

functionality is integrated in a single FPGA.

VI. CONCLUSIONS AND OUTLOOK

The DEEP projects have introduced several hardware

and software innovations to improve the capabilities of

today’s HPC systems, addressing several of the Exascale

challenges. In particular, an innovative architecture concept

has been introduced, which provides the applications with

full flexibility on how to exploit different kinds of computing

resources.

The Cluster-Booster architecture integrates heterogeneous

resources at the system level, instead of the node level. The

Booster (a cluster of many-core processors or accelerators)

is attached to a Cluster (a system of general purpose proces-

sors) via a high-speed network. Application developers have

full freedom to decide how they distribute their codes over

the system and can match the requirements of their different

code parts to the available hardware.

The performance improvement that this approach can

provide to real-world applications has been demonstrated

by the Space Weather code xPic. It was able to achieve its

results in shorter time, and with a better parallel efficiency

when distributing the code over Cluster and Booster, than

when running separately on any of them.

It is important to mention that these results have been

achieved without compromising the portability of the code,

which regularly runs on other “standard” HPC systems. This

has been achieved by using standard interfaces and software

components.

The Cluster-Booster architecture, which was first pro-

totyped in the DEEP projects, has gone into production in

the meantime. The JURECA Cluster, running at the Jülich

Supercomputing Center (JSC) in Germany since 2015 [20],

has been recently accompanied by a KNL-based, 5 PFlop/s

Booster, which is planned to become available to users in

Q1/2018.

The DEEP and DEEP-ER projects have been completed

and successfully evaluated by external reviewers. Building

on their results, the successor project (DEEP-EST) currently

generalises the Cluster-Booster concept to create a Modular

Supercomputing architecture [4]. It combines any number

of compute modules (Cluster and Booster are two such

modules) into a unified computing platform. Each compute

module is a cluster of a potentially large size, tailored to

the specific needs of a class of applications. A high-speed

interconnect between the modules and a uniform software

stack across them enables codes and work-flows to run

distributed over the whole machine, matching their specific

needs to the available computing resources. One of the most

important contributions expected from DEEP-EST is the

further enhancement of resource management software and

scheduling strategies to deal with any number of compute

modules. To demonstrate its capabilities, a hardware pro-

totype consisting of three modules will be built. It shall

cover the needs of both HPC and high performance data



analytics (HPDA) workloads.

In parallel to DEEP-EST, JSC is already starting the

implementation of the Modular Supercomputing architecture

in a large-scale production system. The first module of

the new Modular Supercomputing infrastructure will be

a general purpose cluster, to be deployed in Q2/2018.

Its Booster component is planned for 2019/2020. Further

modules will be added in the future, always aiming at

optimally addressing the needs of the wide spectrum of user

communities and applications running at the HPC centre.
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